In this research work, we demonstrate the Hyers-Ulam stability for Cauchy-Jensen functional equation in multi-Banach algebras by the fixed point technique. In fact, we prove that for a function which is approximately Cauchy-Jensen in multi Banach algebra, there is a unique involution near it. Next, we show that under some conditions the involution is continuous, the multi-Banach algebra becomes multi-$ C^* $-algebra and the Banach algebra is self-adjoint.
Citation: Ehsan Movahednia, Choonkil Park, Dong Yun Shin. Approximation of involution in multi-Banach algebras: Fixed point technique[J]. AIMS Mathematics, 2021, 6(6): 5851-5868. doi: 10.3934/math.2021346
In this research work, we demonstrate the Hyers-Ulam stability for Cauchy-Jensen functional equation in multi-Banach algebras by the fixed point technique. In fact, we prove that for a function which is approximately Cauchy-Jensen in multi Banach algebra, there is a unique involution near it. Next, we show that under some conditions the involution is continuous, the multi-Banach algebra becomes multi-$ C^* $-algebra and the Banach algebra is self-adjoint.
[1] | N. K. Agbeko, Stability of maximum preserving functional equation on Banach lattice, Miskolc Math. Notes, 13 (2012), 187–196. doi: 10.18514/MMN.2012.570 |
[2] | Y. Aissi and D. Zeglami, D'Aembert's matrix functional equation with an endomorphism on Abelian groups, Results Math., 75 (2020), 1–17. doi: 10.1007/s00025-019-1126-4 |
[3] | J. Brzdkek, L. Cadariu, K. Cieplinski, Fixed point theory and the Ulam stability, J. Funct. Spaces, 2014 (2014), 829419. |
[4] | L. Cadariu, V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math., 4 (2003), 4. |
[5] | L. Cǎdariu, V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber., 346 (2004), 43–52. |
[6] | Y. Cho, C. Park, Th. M. Rassias, R. Saadati, Stability of Functional Equations in Banach Algebras, Springer, New York, 2015. |
[7] | H. G. Dales, M. S. Moslehian, Stability of mappings on multi-normed spaces, Glasgow Math. J., 49 (2007), 321–332. doi: 10.1017/S0017089507003552 |
[8] | H. G. Dales, M. E. Polyakov, Multi-normed spaces and multi-Banach algebras, preprint. |
[9] | I. El-Fassi, Solution and approximation of radical quintic functional equation related to quintic mapping in quasi-$\beta$-Banach spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 113 (2019), 675–687. doi: 10.1007/s13398-018-0506-z |
[10] | M. Eshaghi Gordji, Nearly involutions on Banach algebras: A fixed point approach, Fixed Point Theory, 14 (2013), 117–124. |
[11] | Z. X. Gao, H. X. Cao, W. T. Zheng, L. Xu, Generalized Hyers-Ulam-Rassias stability of functional inequalities and functional equations, J. Math. Inequal., 3 (2009), 63–77. |
[12] | H. D. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222–224. doi: 10.1073/pnas.27.4.222 |
[13] | S. Jung, Hyers-Ulam-Rassias stability of Jensen's equation and its application, Proc. Am. Math. Soc., 126 (1998), 3137–3143. doi: 10.1090/S0002-9939-98-04680-2 |
[14] | S. Jung, D. Popa, M. Th. Rassias, On the stability of the linear functional equation in a single variable on complete metric spaces, J. Global Optim., 59 (2014), 13–16. |
[15] | Y. Lee, S. Jung, M. Th. Rassias, Uniqueness theorems on functional inequalities concerning cubic-quadratic-additive equation, J. Math. Inequal., 12 (2018), 43–61. |
[16] | S. M. S. M. Mosadegh, E. Movahednia, Stability of preserving lattice cubic functional equation in Menger probabilistic normed Riesz spaces, J. Fixed Point Theory Appl., 20 (2018), 1–15. doi: 10.1007/s11784-018-0489-6 |
[17] | M. S. Moslehian, Superstability of higher derivations in multi-Banach algebras, Tamsui Oxf. J. Math. Sci., 24 (2008), 417–427. |
[18] | M. S. Moslehian, K. Nikodem, D. Popa, Asymptotic aspect of the quadratic functional equation in multi-normed spaces, J. Math. Anal. Appl., 355 (2009), 717–724. doi: 10.1016/j.jmaa.2009.02.017 |
[19] | E. Movahednia, Fuzzy stability of quadratic functional equations in general cases, ISRN Math. Anal., 10 (2011), 553–560. |
[20] | E. Movahednia, S. M. S. M. Mosadegh, C. Park, D. Shin, Stability of a lattice preserving functional equation on riesz space: Fixed point alternative, J. Comput. Anal. Appl., 21 (2016), 83–89. |
[21] | E. Movahednia, M. Mursaleen, Stability of a generalized quadratic functional equation in intuitionistic fuzzy 2-normed space, Filomat, 30 (2016), 449–457. doi: 10.2298/FIL1602449M |
[22] | V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory, 4 (2003), 91–96. |
[23] | Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc., 72 (1978), 297–300. doi: 10.1090/S0002-9939-1978-0507327-1 |
[24] | K. Y. N. Sayar, A. Bergam, Approximate solutions of a quadratic functional equation in 2-Banach spaces using fixed point theorem, J. Fixed Point Theory Appl., 22 (2020), 1–16. doi: 10.1007/s11784-019-0746-3 |
[25] | S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1964. |
[26] | J. Vanterler da C. Sousa, E. Capelas de Oliveira, F. G. Rodrigues, Ulam-Hyers stabilities of fractional functional differential equations, AIMS Math., 5 (2020), 1346–1358. doi: 10.3934/math.2020092 |