In this paper, we examine a connotation between certain subclasses of harmonic univalent functions by applying certain convolution operator regarding Mittag-Leffler function. To be more precise, we confer such influences with Janowski-type harmonic univalent functions in the open unit disc D.
Citation: Murugusundaramoorthy Gangadharan, Vijaya Kaliyappan, Hijaz Ahmad, K. H. Mahmoud, E. M. Khalil. Mapping properties of Janowski-type harmonic functions involving Mittag-Leffler function[J]. AIMS Mathematics, 2021, 6(12): 13235-13246. doi: 10.3934/math.2021765
[1] | Muhammad Ghaffar Khan, Bakhtiar Ahmad, Thabet Abdeljawad . Applications of a differential operator to a class of harmonic mappings defined by Mittag-leffer functions. AIMS Mathematics, 2020, 5(6): 6782-6799. doi: 10.3934/math.2020436 |
[2] | Gauhar Rahman, Iyad Suwan, Kottakkaran Sooppy Nisar, Thabet Abdeljawad, Muhammad Samraiz, Asad Ali . A basic study of a fractional integral operator with extended Mittag-Leffler kernel. AIMS Mathematics, 2021, 6(11): 12757-12770. doi: 10.3934/math.2021736 |
[3] | Sabir Hussain, Rida Khaliq, Sobia Rafeeq, Azhar Ali, Jongsuk Ro . Some fractional integral inequalities involving extended Mittag-Leffler function with applications. AIMS Mathematics, 2024, 9(12): 35599-35625. doi: 10.3934/math.20241689 |
[4] | Bushra Kanwal, Saqib Hussain, Thabet Abdeljawad . On certain inclusion relations of functions with bounded rotations associated with Mittag-Leffler functions. AIMS Mathematics, 2022, 7(5): 7866-7887. doi: 10.3934/math.2022440 |
[5] | Madan Mohan Soren, Luminiţa-Ioana Cotîrlǎ . Fuzzy differential subordination and superordination results for the Mittag-Leffler type Pascal distribution. AIMS Mathematics, 2024, 9(8): 21053-21078. doi: 10.3934/math.20241023 |
[6] | Saima Naheed, Shahid Mubeen, Gauhar Rahman, M. R. Alharthi, Kottakkaran Sooppy Nisar . Some new inequalities for the generalized Fox-Wright functions. AIMS Mathematics, 2021, 6(6): 5452-5464. doi: 10.3934/math.2021322 |
[7] | Ye Yue, Ghulam Farid, Ayșe Kübra Demirel, Waqas Nazeer, Yinghui Zhao . Hadamard and Fejér-Hadamard inequalities for generalized $ k $-fractional integrals involving further extension of Mittag-Leffler function. AIMS Mathematics, 2022, 7(1): 681-703. doi: 10.3934/math.2022043 |
[8] | Maryam Saddiqa, Ghulam Farid, Saleem Ullah, Chahn Yong Jung, Soo Hak Shim . On Bounds of fractional integral operators containing Mittag-Leffler functions for generalized exponentially convex functions. AIMS Mathematics, 2021, 6(6): 6454-6468. doi: 10.3934/math.2021379 |
[9] | Dan-Ning Xu, Zhi-Ying Li . Mittag-Leffler stabilization of anti-periodic solutions for fractional-order neural networks with time-varying delays. AIMS Mathematics, 2023, 8(1): 1610-1619. doi: 10.3934/math.2023081 |
[10] | Zeya Jia, Nazar Khan, Shahid Khan, Bilal Khan . Faber polynomial coefficients estimates for certain subclasses of $ q $-Mittag-Leffler-Type analytic and bi-univalent functions. AIMS Mathematics, 2022, 7(2): 2512-2528. doi: 10.3934/math.2022141 |
In this paper, we examine a connotation between certain subclasses of harmonic univalent functions by applying certain convolution operator regarding Mittag-Leffler function. To be more precise, we confer such influences with Janowski-type harmonic univalent functions in the open unit disc D.
Denote by A, the family of analytic functions in the unit disc
D={z:|z|<1,z∈C} |
whose members are
h(z)=z+∞∑k=2Akzk, | (1.1) |
and normalized by h(0)=h′(0)−1=0. Let continuous complex- valued harmonic function in a complex domain Ω be f=u+iv, if both u and v are real and harmonic in Ω. We write f=h+¯g, where h and g are analytic in C⊂Ω, a simply-connected domain. We appeal h the analytic part and g the co-analytic part of f. Clunie and Sheil-Small [1] pointed out that f to be locally univalent and sense preserving in C if and only if |h′(z)|>|g′(z)| in D.
Denote by H the family of all harmonic functions of the form f=h+¯g, is given by,
f(z)=z+∞∑j=2|Aj|zj+¯∞∑j=1|Bj|zj,(0≤B1<1), | (1.2) |
where
h(z)=z+∞∑j=2Ajzj,g(z)=∞∑j=1Bjzj,|B1|<1,(z∈D), |
are members of A. We let
TH={f(z)=z+∞∑j=2|Aj|zj−¯∞∑k=1|Bj|zj,(0≤B1<1)}. | (1.3) |
Symbolize SH, the subclass of H that are univalent and orientation preserving in D. Note that f−¯B1f1−|B1|2∈SH whenever f∈SH. Due to Clunie and Sheil-Small [1] we also let
S0H={f=h+¯g∈SH:g′(0)=B1=0}. |
Further, let K0H, ST0H and C0H are the subclasses of S0H which are harmonic convex, starlike and close-to-convex in D respectively. Also T0H, denotes typically real harmonic functions for further details refer [1,2,3,4].
We recall following lemmas proved in [1,2].
Lemma 1. ([1,2]). If f∈K0H is assumed as in (1.2) with B1=0, then
|Aj|≤j+12and|Bj|≤j−12. | (1.4) |
Lemma 2. [1,2] If f∈ST0H (or f∈C0H) is assumed as in (1.2) with B1=0, then
|Aj|≤(2j+1)(j+1)6,|Bj|≤(2j−1)(j−1)6. | (1.5) |
Lately, for f∈SH whose members are given by (1.2), Dziok[5] introduced a new class S∗H(F,G) (−G≤F<G≤1) by
S∗H(F,G)={f=h+¯g∈H:DHf(z)f(z)≺1+Fz1+Gz;}, | (1.6) |
where DHf(z)=zh′(z)−¯zg′(z)andz∈D. Also let
KH(F,G):=f∈SH:DHf∈S∗H(F,G). | (1.7) |
In particular RH(F,G), the class discussed by Dziok [6] is given by
RH(F,G)={f=h+¯g∈H:DHf(z)z′≺1+Fz1+Gz}. | (1.8) |
Remark 1. We note that
1). S∗(F,G):=S∗H(F,G)∩A was introduced by Janowski [7].
2). For 0≤ϑ<1 the classes S∗H(ϑ):=S∗H(2ϑ−1,1) and KH(ϑ):=KH(2ϑ−1,1) were investigated by Jahangiri [8,9].
3). Also S∗H:=S∗H(0) and KH:=KH(0) are the classes harmonic starlike and convex functions in D and S∗H(F,G)⊂S∗H, KH(F,G)⊂KH.
Lately, Dizok [5] gave the following coefficient conditions:
Lemma 3. [5] Let f∈H be assumed as in (1.2), then f∈S∗H(F,G) if
∞∑j=2(j(1+G)−(1+F)G−F|Aj|+j(1+G)+(1+F)G−F|Bj|)≤1, | (1.9) |
where A1=1;B1=0 and −G≤F<G≤1.
Lemma 4. [5] Let f∈TH be assumed as in (1.3) and
f∈ST∗H(F,G)⇔∞∑j=2(j(1+G)−(1+F)G−F|Aj|+j(1+G)+(1+F)G−F|Bj|)≤1, | (1.10) |
where A1=1;B1=0 and −G≤F<G≤1.
Remark 2. If f∈S∗H(F,G), then
|Aj|≤G−Fj(1+G)−(1+F)and|Bj|≤G−Fj(1+G)+(1+F),j≥2. | (1.11) |
Lemma 5. [5] Let f∈TH be assumed as in (1.3) and
f∈KTH(F,G)⇔∞∑j=2j(j(1+G)−(1+F)G−F|Aj|+j(1+G)+(1+F)G−F|Bj|)≤1, | (1.12) |
where A1=1;B1=0 and −G≤F<G≤1.
Lemma 6. [6] Let f∈H be assumed as in (1.2) then f∈RH(F,G) if
∞∑j=2(j(1+G)G−F|Aj|+j(1+G)G−F|Bj|)≤1, | (1.13) |
where A1=1;B1=0 and −G≤F<G≤1.
Lemma 7. Let f∈TH be assumed as in (1.3) and
f∈RTH(F,G)⇔∞∑j=2(j(1+G)G−F|Aj|+j(1+G)G−F|Bj|)≤1, | (1.14) |
where A1=1;B1=0 and −G≤F<G≤1.
Remark 3. If f∈RH(F,G), then |Aj|≤G−Fj(1+G) and |Bj|≤G−Fj(1+G),k≥2.
Mittag-Leffler [10] defined a function Eα(z) given by
Eα(z)=∞∑j=0zjΓ(αj+1),(z∈C,α∈C,withReα>0) |
was commonly known as the Mittag-Leffler function. Wiman [11] defined a more general function Eα,β generalizing Eα(z) was given by
Eα,β(z)=∞∑j=0zjΓ(αj+β),(z∈C,α,β∈C,withReα>0,Reβ>0.). | (1.15) |
Perceive that the function Eα,β comprises many well-known functions as its exceptional case, for example, E0,0(z)=∑∞j=0zj, E1,1(z)=ez, E1,2(z)=ez−1z, E2,1(z2)=coshz, E2,1(−z2)=cosz, E2,2(z2)=sinhzz, E2,2(−z2)=sinzz, E4(z)=12[cosz1/4+coshz1/4] and E3(z)=12[ez1/3+2e−12z1/3cos(√32z1/3)]. It is of interest to note that by fixing α=1/2 and β=1 we get
E12,1(z)=ez2⋅erfc(−z)=ez2(1+2√π∞∑n=0(−1)nn!(2n+1)z2n+1). |
The Mittag-Leffler function ascends logically in the elucidation of fractional order differential and integral equations, and primarily in the investigations of fractional generalization of kinetic equation, random walks, Lévy flights, super-diffusive transport and in the study of complex systems. Numerous properties of Mittag-Leffler function and generalized Mittag-Leffler function can be found e.g., in [12,13,14,15]. We prompt that Mittag-Leffler function Eα,β(z) is not a member of A. Consequently, it is probable to cogitate the following normalization of Eα,β(z) as below due to Bansal and Prajapat [13] :
Eα,β(z)=zΓ(β)Eα,β(z)=z+∞∑j=2Γ(β)Γ(α(j−1)+β)zj, |
it grasps for complex parameters z∈C,α,β∈C,withReα>0,Reβ>0.
In our present study, we shall confine our attention to the case of real-valued α,βandz∈D and hence define a new linear operator based on convolution (or hadamard) product as below:
For real parameters α,β,γ,δ(α,β,γ,δ∉{0,−1,−2,…}), we let
Eα,β(z)=z+∞∑j=2Γ(β)Γ(α(j−1)+β)zjandEγ,δ(z)=∞∑j=1Γ(δ)Γ(γ(j−1)+δ)zj, | (1.16) |
and define the convolution operator Λ(f) by
F(z)=Λf(z)=h(z)∗Eα,β(z)+¯g(z)∗Eγ,δ(z)=z+∞∑j=2Γ(β)Γ(α(j−1)+β)Ajzj+¯∞∑j=1Γ(δ)Γ(γ(j−1)+δ)Bjzj. |
Inclusion relations between different subclasses of analytic and univalent functions by using hypergeometric functions (see for example, [16,17,18,19,20,21]) and by the recent investigations related with distribution series (see for example, [22,23,24] and references cited there in) were exclusively studied in the literature. Lately, there has been triggering interest to investigate mapping properties and inclusion results for the families of harmonic univalent functions including various linear and nonlinear operators, (see [25,26,27,28]) and references cited there in) and also by Bessel functions studied by Porwal [29]. Motivated by aforementioned works and recent study in [30], in our current paper, we launch connections among the classes K0H, S∗,0H, C0H, SH(F,G), and RH(F,G) by applying the convolution operator Λ related with Mittag-Leffler function.
In order to establish our main results, throughout this paper we let the following:
Eα,β(z)=z+∞∑j=2Γ(β)Γ(α(j−1)+β)zj;Eα,β(1)=1+∞∑j=2Γ(β)Γ(α(j−1)+β) | (2.1) |
and
E′α,β(z)=1+∞∑j=2jΓ(β)Γ(α(j−1)+β)zj−1;E′α,β(1)−1=∞∑j=2jΓ(β)Γ(α(j−1)+β) | (2.2) |
E″α,β(1)=∞∑j=2j(j−1)Γ(β)Γ(α(j−1)+β) | (2.3) |
E‴α,β(1)=∞∑j=2j(j−1)(j−2)Γ(β)Γ(α(j−1)+β) | (2.4) |
Now by using Lemma 1, we establish connection between harmonic convex functions and SH(F,G):
Theorem 2.1. Let α,β,γ,δ,(α,β,γ,δ∉{0,−1,−2,…}) are real. If for some −G≤F<G≤1 and the inequality
(1+G)E″α,β(1)+(1+2G−F)E′α,β(1)−(1+F)Eα,β(1)+(1+G)E″γ,δ(1)+(1+F)E′γ,δ(1)−(1+F)Eγ,δ(1)≤4(G−F). | (2.5) |
is satisfied then Λ(K0H)⊂S∗H(F,G).
Proof. Let f∈K0H be as assumed in (1.2) with B1=0. We requisite to show that Λ(f)=F(z)∈S∗H(F,G), which is given by (1.17) with B1=0. In view of Lemma 3, we need to assert that
Ψ1=∞∑j=2[j(1+G)−(1+F)]|Γ(β)Γ(α(j−1)+β)Aj|+∞∑j=2[j(1+G)+(1+F)]|Γ(δ)Γ(γ(j−1)+δ)Bj|≤G−F. |
In view of Lemma 1, we have Aj=j+12 and Bj=j−12, thus
Ψ1≤12[∞∑j=2(j+1)[j(1+G)−(1+F)]Γ(β)Γ(α(j−1)+β)+∞∑j=2(j−1)[j(1+G)+(1+F)]Γ(δ)Γ(γ(j−1)+δ)]=12[∞∑j=2{(j2+j)(1+G)−(j+1)(1+F)}Γ(β)Γ(α(j−1)+β)+∞∑j=2{j(j−1)(1+G)+(j−1)(1+F)}Γ(δ)Γ(γ(j−1)+δ)]. |
Expressing j2=j(j−1)+j, we get
Ψ1=12[∞∑j=2{j(j−1)(1+G)+j(1+2G−F)−(1+F)}Γ(β)Γ(α(j−1)+β)+∞∑j=2{j(j−1)(1+G)+j(1+F)−(1+F)}Γ(δ)Γ(γ(j−1)+δ)]=12[(1+G)∞∑j=2j(j−1)Γ(β)Γ(α(j−1)+β)+(1+2G−F)∞∑j=2jΓ(β)Γ(α(j−1)+β)−(1+F)∞∑j=2Γ(β)Γ(α(j−1)+β)+(1+G)∞∑j=2j(j−1)Γ(δ)Γ(γ(j−1)+δ)+(1+F)∞∑j=2jΓ(δ)Γ(γ(j−1)+δ)−(1+F)∞∑j=2Γ(δ)Γ(γ(j−1)+δ)]. |
Now by using (2.1)–(2.3), we get
Ψ1=12[(1+G)E″α,β(1)+(1+2G−F)[E′α,β(1)−1]−(1+F)[Eα,β(1)−1]+(1+G)E″γ,δ(1)+(1+F)[E′γ,δ(1)−1])−(1+F)[Eγ,δ(1)−1]]=12((1+G)E″α,β(1)+(1+2G−F)E′α,β(1)−[1+F]Eα,β(1)+2[F−G]+(1+G)E″γ,δ(1)+(1+F)E′γ,δ(1)−(1+F)Eγ,δ(1)), |
but Ψ1 is bounded above by G−F, if and only if (2.5) holds.
As in Theorem 2.1, using Lemma 2, we determine the analogous results for the classes ST∗,0H, C0H with S∗H(F,G).
Theorem 2.2. Let α,β,γ,δ,(α,β,γ,δ∉{0,−1,−2,…}) are real. If for some −G≤F<G≤1 and the inequality
2(1+G)E‴α,β(1)+[9G−2F+7]E″α,β(1)+[6G−5F+1]E′α,β(1)−(1+F)Eα,β(1)+6(F−G)+2(1+G)E‴γ,δ(1)+[3G+2F+5]E″γ,δ(1)−(1+F)E′γ,δ(1)+(1+F)[Eγ,δ(1)≤12[G−F] | (2.6) |
is satisfied, then Λ(S∗,0H)⊂S∗H(F,G)andΛ(C0H)⊂S∗H(F,G).
Proof. Let f∈S∗,0H (orC0H) be as assumed in (1.2) with B1=0. It is adequate to verify that Λ(f)=F(z)∈S∗H(F,G). In sight of Theorem 3, it is profuse to show that
Ψ2=∞∑j=2[j(1+G)−(1+F)]Γ(β)Γ(α(j−1)+β)|Aj|+∞∑j=2[j(1+G)+(1+F)]Γ(δ)Γ(γ(j−1)+δ)|Bj|≤G−F. |
By Lemma 2, we have Aj=(2j+1)(j+1)6 and Bj=(2j−1)(j−1)6, thus
Ψ2≤16[∞∑j=2(2j+1)(j+1)[j(1+G)−(1+F)]Γ(β)Γ(α(j−1)+β)+∞∑j=2(2j−1)(j−1)[j(1+G)+(1+F)]Γ(δ)Γ(γ(j−1)+δ)] |
=16∞∑j=2{2(1+G)j3+(3G−2F+1)j2+(G−3F−2)j−(1+F)}Γ(β)Γ(α(j−1)+β)+16∞∑j=2{2(1+G)j3+(2F−3G−1)j2+(G−3F−2)j+(1+F)}Γ(δ)Γ(γ(j−1)+δ). |
Writing j3=j(j−1)(j−2)+3j(j−1)+j and j2=j(j−1)+j, we have
Ψ2=16[2(1+G)∞∑j=2j(j−1)(j−2)Γ(β)Γ(α(j−1)+β)+(9G−2F+7)∞∑j=2j(j−1)Γ(β)Γ(α(j−1)+β)+(6G−5F+1)∞∑j=2jΓ(β)Γ(α(j−1)+β)−(1+F)∞∑j=2Γ(β)Γ(α(j−1)+β)+2(1+G)∞∑j=2j(j−1)(j−2)Γ(δ)Γ(γ(j−1)+δ)+(3G+2F+5)∞∑j=2j(j−1)Γ(δ)Γ(γ(j−1)+δ)−(1+F)∞∑j=2jΓ(δ)Γ(γ(j−1)+δ)+(1+F)∞∑j=2Γ(δ)Γ(γ(j−1)+δ)]. |
Now by using (2.1)–(2.4), we get
Ψ2=16{2(1+G)E‴α,β(1)+(9G−2F+7)E″α,β(1)+(6G−5F+1)[E′α,β(1)−1]−(1+F)[Eα,β(1)−1]+2(1+G)E‴γ,δ(1)+(3G+2F+5)E″γ,δ(1)−(1+F)[E′γ,δ(1)−1]+(1+F)[Eγ,δ(1)−1]}=16{2(1+G)E‴α,β(1)+(9G−2F+7)E″α,β(1)+(6G−5F+1)E′α,β(1)−(1+F)Eα,β(1)+6(F−G)+2(1+G)E‴γ,δ(1)+(3G+2F+5)E″γ,δ(1)−(1+F)E′γ,δ(1)+(1+F)Eγ,δ(1)}. |
But Ψ2 confined above by G−F, if and only if (2.6) holds.
Theorem 2.3. Let α,β,γ,δ,(α,β,γ,δ∉{0,−1,−2,…}) are real. If for some −G≤F<G≤1 and −G≤F<G≤1 the inequality
(G−F){[Eα,β(1)−1]−1+FG−F(∫10Eα,β(t)tdt−1)+Eγ,δ(1)+1+FG−F(∫10Eγ,δ(t)dt)}≤G−F, | (2.7) |
is satisfied then Λ(RTH(G,F))⊂S∗H(F,G).
Proof. Let f∈RTH(G,F) be as assumed in (1.3). By virtue of Lemma 3, it is enough to show that Ψ3≤G−F, where
Ψ3=∞∑j=2[j(1+G)−(1+F)]Γ(β)Γ(α(j−1)+β)|Aj|+∞∑j=1[j(1+G)+(1+F)]Γ(δ)Γ(γ(j−1)+δ)|Bj|. |
By Remark 3, we have
Ψ3≤(G−F)[∞∑j=2(1−1+FG−F)Γ(β)Γ(α(j−1)+β)+∞∑j=1(1+1+FG−F)Γ(δ)Γ(γ(j−1)+δ)]=(G−F)[∞∑j=2Γ(β)Γ(α(j−1)+β)−1+FG−F∞∑j=2Γ(β)jΓ(α(j−1)+β)+∞∑j=1Γ(δ)Γ(γ(j−1)+δ)+1+FG−F∞∑j=1Γ(δ)kΓ(γ(j−1)+δ)]=(G−F)[{Eα,β(1)−1}−1+FG−F{∫10Eα,β(t)tdt−1}+Eγ,δ(1)+1+FG−F{∫10Eγ,δ(t)dt}], |
and Ψ3 is bounded above by G−F, if and only if (2.7) holds.
In next theorem, we establish association between Λ(S∗H(F,G)) and S∗H(F,G).
Theorem 2.4. Let α,β,γ,δ,(α,β,γ,δ∉{0,−1,−2,…}) are real. If for some −G≤F<G≤1 the inequality
Eα,β(1)+Eγ,δ(1)≤2 | (2.8) |
is satisfied, then Λ(S∗H(F,G))⊂S∗H(F,G).
Proof. In sight of Lemma 3, it is profuse to show that
Ψ4=∞∑j=2[j(1+G)−(1+F)]Γ(β)Γ(α(j−1)+β)|Aj|+∞∑j=1[j(1+G)+(1+F)]Γ(δ)Γ(γ(j−1)+δ)|Bj|≤G−F. | (2.9) |
By Remark 2, it follows that
Ψ4≤(G−F)[∞∑j=2Γ(β)Γ(α(j−1)+β)+∞∑j=1Γ(δ)Γ(γ(j−1)+δ)]=(G−F)[∞∑j=2Γ(β)Γ(α(j−1)+β)+∞∑j=0Γ(δ)Γ(γj+δ)]=(G−F)[Eα,β(1)−1+Eγ,δ(1)]. |
But Ψ4 is bounded above by G−F, if and only if (2.8) holds.
Now we attain a depiction for Λ which maps STH(F,G) on to itself.
Theorem 2.5. Let α,β,γ,δ,(α,β,γ,δ∉{0,−1,−2,…}) are real and −G≤F<G≤1. Then
Λ(ST∗H(F,G))⊂ST∗H(F,G), |
if and only if,
Eα,β(1)+Eγ,δ(1)≤2. |
Proof. The proof follows in lines similar to the proof of Theorem 2.4, so we overlook the details.
In this investigation we obtained sufficient conditions and inclusion results for functions f∈A to be in the classes S∗H(F,G) and information regarding the images of functions by applying convolution operator with Mittag-Leffler function. By specializing the parameter G=1 and F=2ϱ−1(0≤ϱ<1) we can easily derive the inclusion results and mapping properties for the function classes f∈SH(ϱ) and f∈RH(ϱ) in association with Mittag-Leffler function. By using the Alexander theorem f∈KH⇔zf′∈SH we can define KH(F,G) whose members are given by (1.2), satisfying the condition
KH(F,G)={f=h+¯g∈H:DH(zDHf(z)DHf(z)≺1+Fz1+Gz}. | (3.1) |
By using the result given in Lemma 5, one can easily discuss the above results for f∈KH(F,G) on lines similar to above theorems, we left this as exercise for interested readers.
The authors would like to acknowledge the financial support of Taif University Researchers Supporting Project number (TURSP-2020/162), Taif University, Taif, Saudi Arabia.
The authors declares no conflicts of interest in this paper.
[1] | J. Clunie, T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Series A. I. Math., 9 (1984), 3–25. |
[2] | P. Duren, Harmonic mappings in the plane, Cambridge: Cambridge University Press, 2004. |
[3] | O. P. Ahuja, Planar harmonic univalent and related mappings, J. Inequal. Pure Appl. Math., 6 (2005), 1–18. |
[4] | O. P. Ahuja, J. M. Jahangiri, Noshiro-type harmonic univalent functions, Sci. Math. Jpn., 6 (2002), 253–259. |
[5] | J. Diok, On Janowski harmonic functions, J. Appl. Anal., 21 (2015), 99–107. |
[6] |
J. Diok, Classes of harmonic functions associated with Ruscheweyh derivatives, RACSAM, 113 (2019), 1315–1329. doi: 10.1007/s13398-018-0542-8
![]() |
[7] |
W. Janowski, Some extremal problems for certain families of analytic functions-I, Ann. Polon. Math., 28 (1973), 297–326. doi: 10.4064/ap-28-3-297-326
![]() |
[8] | J. M. Jahangiri, Coefficient bounds and univalence criteria for harmonic functions with negative coefficients, Ann. Univ. Mariae Curie-Skłodowska Sect. A., 52 (1998), 57–66. |
[9] |
J. M. Jahangiri, Harmonic functions starlike in the unit disk, J. Math. Anal. Appl., 235 (1999), 470–477. doi: 10.1006/jmaa.1999.6377
![]() |
[10] | G. M. Mittag-Leffler, Sur la nouvelle fonction E(x), C. R. Acad. Sci. Paris, 137 (1903), 554–558. |
[11] |
A. Wiman, Über die Nullstellun der Funcktionen E(x), Acta Math., 29 (1905), 217–134. doi: 10.1007/BF02403204
![]() |
[12] |
A. A. Attiya, Some applications of Mittag-Leffler function in the unit disk, Filomat, 30 (2016), 2075–2081. doi: 10.2298/FIL1607075A
![]() |
[13] |
D. Bansal, J. K. Prajapat, Certain geometric properties of the Mittag-Leffler functions, Complex Var. Elliptic, 61 (2016), 338–350. doi: 10.1080/17476933.2015.1079628
![]() |
[14] |
S. K. Sahoo, H. Ahmad, M. Tariq, B. Kodamasingh, H. Aydi, M. De la Sen, Hermite-Hadamard type inequalities involving k-fractional operator for (h, m)-convex functions, Symmetry, 13 (2021), 1686. doi: 10.3390/sym13091686
![]() |
[15] | V. Kiryakova, Generalized fractional calculus and applications, Harlow: Longman Scientific & Technical; co-published in New York: John Wiley & Sons, Inc., 1994. |
[16] |
O. P. Ahuja, Planar harmonic convolution operators generated by hypergeometric functions, Integr. Transf. Spec. F., 18 (2007), 165–177. doi: 10.1080/10652460701210227
![]() |
[17] | N. E. Cho, S. Y. Woo, S. Owa, Uniform convexity properties for hypergeometric functions, Fract. Calc. Appl. Anal., 5 (2002), 303–313. |
[18] |
B. A. Frasin, T. Al-Hawary, F. Yousef, Necessary and sufficient conditions for hypergeometric functions to be in a subclass of analytic functions, Afr. Mat., 30 (2019), 223–230. doi: 10.1007/s13370-018-0638-5
![]() |
[19] |
H. Silverman, Starlike and convexity properties for hypergeometric functions, J. Math. Anal. Appl., 172 (1993), 574–581. doi: 10.1006/jmaa.1993.1044
![]() |
[20] |
H. M. Srivastava, G. Murugusundaramoorthy, S. Sivasubramanian, Hypergeometric functions in the parabolic starlike and uniformly convex domains, Integr. Transf. Spec. F., 18 (2007), 511–520. doi: 10.1080/10652460701391324
![]() |
[21] | A. Swaminathan, Certain sufficient conditions on Gaussian hypergeometric functions, J. Ineq. Pure Appl. Math., 5 (2004), 1–10. |
[22] | T. Bulboacǎ, G. Murugusundaramoorthy, Univalent functions with positive coefficients involving Pascal distribution series, Commun. Korean Math. Soc., 35 (2020), 867–877. |
[23] |
G. Murugusundaramoorthy, Subclasses of starlike and convex functions involving Poisson distribution series, Afr. Mat., 28 (2017), 1357–1366. doi: 10.1007/s13370-017-0520-x
![]() |
[24] |
S. Porwal, M. Kumar, A unified study on starlike and convex functions associated with Poisson distribution series, Afr. Mat., 27 (2016), 1021–1027. doi: 10.1007/s13370-016-0398-z
![]() |
[25] |
S. K. Sahoo, M. Tariq, H. Ahmad, J. Nasir, H. Aydi, A. Mukheimer, New Ostrowski-type fractional integral inequalities via generalized exponential-type convex functions and applications, Symmetry, 13 (2021), 1429. doi: 10.3390/sym13081429
![]() |
[26] | S. Porwal, K. K. Dixit, An application of hypergeometric functions on harmonic univalent functions, Bull. Math. Anal. Appl., 2 (2010), 97–105. |
[27] | M. Tariq, H. Ahmad, S. K. Sahoo, The Hermite-Hadamard type inequality and its estimations via generalized convex functions of Raina type, Math. Mod. Num. Sim. Appl. 1 (2021), 32–43. |
[28] |
S. Miller, P. T. Mocanu, Univalence of Gaussian and confluent hypergeometric functions, P. Am. Math. Soc., 110 (1990), 333–342. doi: 10.1090/S0002-9939-1990-1017006-8
![]() |
[29] | S. Porwal, K. Vijaya, M. Kasthuri, Connections between various subclasses of planar harmonic mappings involving generalized Bessel functions, LE Matematiche– Fasc. I, 71 (2016), 99–114. |
[30] | K. Vijaya, H. Dutta, G. Murugusundaramoorthy, Inclusion relation between subclasses of harmonic functions associated with Mittag-Leffier functions, MESA, 11 (2020), 959–968. |
1. | Abeer A. Al-Dohiman, Basem Aref Frasin, Naci Taşar, Fethiye Müge Sakar, Classes of Harmonic Functions Related to Mittag-Leffler Function, 2023, 12, 2075-1680, 714, 10.3390/axioms12070714 | |
2. | Naci Taşar, F. Mūge Sakar, Basem Aref Frasin, Connections between various subclasses of planar harmonic mappings involving Mittag-Leffler functions, 2024, 35, 1012-9405, 10.1007/s13370-024-01171-y | |
3. | Ahmad A. Abubakar, Khaled Matarneh, Suha B. Al-Shaikh, Mohammad Faisal Khan, Mustafa Kamal, New subclass of meromorphic harmonic functions defined by symmetric q-calculus and domain of Janowski functions, 2024, 10, 24058440, e38960, 10.1016/j.heliyon.2024.e38960 | |
4. | Naci Taşar, Fethiye Müge Sakar, Seher Melike Aydoğan, Georgia Irina Oros, Relations of Harmonic Starlike Function Subclasses with Mittag–Leffler Function, 2024, 13, 2075-1680, 826, 10.3390/axioms13120826 |