In this paper, using the power series expansions of $ (\tan x)^{k}(k = 1, 2, 3) $ and the monotonicity of a function involving the Riemann's zeta function, we sharpen the quadratic estimations of Shafer's inequalities which is refined by Nishizawa [
Citation: Ling Zhu. Sharp refined quadratic estimations of Shafer's inequalities[J]. AIMS Mathematics, 2021, 6(5): 5020-5027. doi: 10.3934/math.2021296
In this paper, using the power series expansions of $ (\tan x)^{k}(k = 1, 2, 3) $ and the monotonicity of a function involving the Riemann's zeta function, we sharpen the quadratic estimations of Shafer's inequalities which is refined by Nishizawa [
[1] | R. E. Shafer, On quadratic approximation, SIAM J. Numer. Anal., 11 (1974), 447–460. |
[2] | R. E. Shafer, Analytic inequalities obtained by quadratic approximation, Publ. Elektroteh. Fak. Ser. Mat. Fiz., (1977), 96–97. |
[3] | R. E. Shafer, On quadratic approximation, Ⅱ, Publ. Elektroteh. Fak. Ser. Mat. Fiz., (1978), 163–170. |
[4] | L. Zhu, On a quadratic estimate of Shafer, J. Math. Inequal., 2 (2008), 571–574. |
[5] | Y. Nishizawa, Refined quadratic estimations of Shafer's inequality, J. Inequal. Appl., 2017 (2017), 1–11. doi: 10.1186/s13660-016-1272-0 |
[6] | B. N. Guo, Q. M. Luo, F. Qi, Sharpening and generalizations of Shafer-Fink's double inequality for the arc sine function, Filomat, 27 (2013), 261–265. doi: 10.2298/FIL1302261G |
[7] | B. J. Maleševic, Application of $\lambda $-method on Shafer-Fink's inequality, Publ. Elektroteh. Fak. Ser. Mat., (1997), 103–105. |
[8] | B. J. Maleševic, An application of $\lambda $-method on inequalities of Shafer-Fink's type, Math. Inequal. Appl., 10 (2007), 529–534. |
[9] | Y. Nishizawa, Sharpening of Jordan's type and Shafer-Fink's type inequalities with exponential approximations, Appl. Math. Comput., 269 (2015), 146–154. |
[10] | J. L. Sun, C. P. Chen, Shafer-type inequalities for inverse trigonometric functions and Gauss lemniscate functions, J. Inequal. Appl., 2016 (2016), 1–9. doi: 10.1186/s13660-015-0952-5 |
[11] | L. Zhu, On Shafer-Fink inequalities, Math. Inequal. Appl., 8 (2005), 571–574. |
[12] | L. Zhu, On Shafer-Fink-type inequality, J. Inequal. Appl., 2007 (2007), 1–4. |
[13] | L. Zhu, New inequalities of Shafer-Fink type for arc hyperbolic sine, J. Inequal. Appl., 2008 (2008), 1–5. |
[14] | L. Zhu, A refinement of the Becker-Stark inequalities, Math. Notes, 93 (2013), 421–425. doi: 10.1134/S0001434613030085 |
[15] | L. Zhu, J. Hua, Sharpening the Becker-Stark inequalities, J. Inequal. Appl., 2010 (2010), 931275. |
[16] | W. Scharlau, H. Opolka, From fermat to Minkowski, Springer-Verlag New York Inc., 1985 |
[17] | A. Jeffrey, Handbook of mathematical formulas and integrals, 3Eds., Elsevier Academic Press, 2004 |
[18] | B. J. Maleševic, M. Makragic, A method for proving some inequalities on mixed trigonometric polynomial functions, J. Math. Inequal., 10 (2016), 849–876. |
[19] | B. J. Maleševic, T. Lutovac, B. Banjac, A proof of an open problem of Yusuke Nishizawa for a power-exponential function, J. Math. Inequal., 12 (2018), 473–485. |