Research article

Sharp refined quadratic estimations of Shafer's inequalities

  • Received: 31 December 2020 Accepted: 25 February 2021 Published: 04 March 2021
  • MSC : 26D15, 42A10

  • In this paper, using the power series expansions of $ (\tan x)^{k}(k = 1, 2, 3) $ and the monotonicity of a function involving the Riemann's zeta function, we sharpen the quadratic estimations of Shafer's inequalities which is refined by Nishizawa [5].

    Citation: Ling Zhu. Sharp refined quadratic estimations of Shafer's inequalities[J]. AIMS Mathematics, 2021, 6(5): 5020-5027. doi: 10.3934/math.2021296

    Related Papers:

  • In this paper, using the power series expansions of $ (\tan x)^{k}(k = 1, 2, 3) $ and the monotonicity of a function involving the Riemann's zeta function, we sharpen the quadratic estimations of Shafer's inequalities which is refined by Nishizawa [5].



    加载中


    [1] R. E. Shafer, On quadratic approximation, SIAM J. Numer. Anal., 11 (1974), 447–460.
    [2] R. E. Shafer, Analytic inequalities obtained by quadratic approximation, Publ. Elektroteh. Fak. Ser. Mat. Fiz., (1977), 96–97.
    [3] R. E. Shafer, On quadratic approximation, Ⅱ, Publ. Elektroteh. Fak. Ser. Mat. Fiz., (1978), 163–170.
    [4] L. Zhu, On a quadratic estimate of Shafer, J. Math. Inequal., 2 (2008), 571–574.
    [5] Y. Nishizawa, Refined quadratic estimations of Shafer's inequality, J. Inequal. Appl., 2017 (2017), 1–11. doi: 10.1186/s13660-016-1272-0
    [6] B. N. Guo, Q. M. Luo, F. Qi, Sharpening and generalizations of Shafer-Fink's double inequality for the arc sine function, Filomat, 27 (2013), 261–265. doi: 10.2298/FIL1302261G
    [7] B. J. Maleševic, Application of $\lambda $-method on Shafer-Fink's inequality, Publ. Elektroteh. Fak. Ser. Mat., (1997), 103–105.
    [8] B. J. Maleševic, An application of $\lambda $-method on inequalities of Shafer-Fink's type, Math. Inequal. Appl., 10 (2007), 529–534.
    [9] Y. Nishizawa, Sharpening of Jordan's type and Shafer-Fink's type inequalities with exponential approximations, Appl. Math. Comput., 269 (2015), 146–154.
    [10] J. L. Sun, C. P. Chen, Shafer-type inequalities for inverse trigonometric functions and Gauss lemniscate functions, J. Inequal. Appl., 2016 (2016), 1–9. doi: 10.1186/s13660-015-0952-5
    [11] L. Zhu, On Shafer-Fink inequalities, Math. Inequal. Appl., 8 (2005), 571–574.
    [12] L. Zhu, On Shafer-Fink-type inequality, J. Inequal. Appl., 2007 (2007), 1–4.
    [13] L. Zhu, New inequalities of Shafer-Fink type for arc hyperbolic sine, J. Inequal. Appl., 2008 (2008), 1–5.
    [14] L. Zhu, A refinement of the Becker-Stark inequalities, Math. Notes, 93 (2013), 421–425. doi: 10.1134/S0001434613030085
    [15] L. Zhu, J. Hua, Sharpening the Becker-Stark inequalities, J. Inequal. Appl., 2010 (2010), 931275.
    [16] W. Scharlau, H. Opolka, From fermat to Minkowski, Springer-Verlag New York Inc., 1985
    [17] A. Jeffrey, Handbook of mathematical formulas and integrals, 3Eds., Elsevier Academic Press, 2004
    [18] B. J. Maleševic, M. Makragic, A method for proving some inequalities on mixed trigonometric polynomial functions, J. Math. Inequal., 10 (2016), 849–876.
    [19] B. J. Maleševic, T. Lutovac, B. Banjac, A proof of an open problem of Yusuke Nishizawa for a power-exponential function, J. Math. Inequal., 12 (2018), 473–485.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1964) PDF downloads(220) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog