Citation: Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Kottakkaran Sooppy Nisar, Dumitru Baleanu. Some generalized fractional integral inequalities with nonsingular function as a kernel[J]. AIMS Mathematics, 2021, 6(4): 3352-3377. doi: 10.3934/math.2021201
[1] | S. M. Aslani, M. R. Delavar, S. M. Vaezpour, Inequalities of Fejer Type Related to Generalized Convex Functions, Int. J. Anal. Appl., 16 (2018), 38–49. |
[2] | U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865. |
[3] | Y. Zhang, T. S. Du, H. Wang, Y. J. Shen, A. Kashuri, Extensions of different type parameterized inequalities for generalized (m, h) $(m, h) $-preinvex mappings via k-fractional integrals, J. Inequalities Appl., 2018 (2018), 1–30. doi: 10.1186/s13660-017-1594-6 |
[4] | B. Y. Xi, F. Qi, Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means, J. Funct. Spaces Appl., 2012 (2012), 980438. |
[5] | A. Kashuri, M. A. Ali, M. Abbas, H. Budak, New inequalities for generalized m-convex functions via generalized fractional integral operators and their applications, Int. J. Nonlinear Anal. Appl., 10 (2019), 275–299. |
[6] | M. R. Delavar, M. De La Sen, Some generalizations of Hermiteâ€"Hadamard type inequalities, SpringerPlus, 5 (2016), 1661. doi: 10.1186/s40064-016-3301-3 |
[7] | T. Du, M. U. Awan, A. Kashuri, S. Zhao, Some $k$-fractional extensions of the trapezium inequalities through generalized relative semi-$(m, h)$-preinvexity, Appl. Anal., (2019), 1–21. |
[8] | S. Mubeen, S. Iqbal, M. Tomar, On Hermite-Hadamard type inequalities via fractional integrals of a function with respect to another function and $k$-parameter, J. Inequal. Math. Appl., 1 (2016), 1–9. |
[9] | A. Kashuri, R. Liko, Some new hermite-hadamard type inequalities and their applications, Studia Scientiarum Mathematicarum Hungarica, 56 (2019), 103–142. doi: 10.1556/012.2019.56.1.1418 |
[10] | M. Z. Sarikaya, On the Ostrowski type integral inequality, Acta Math. Univ. Comenianae, 79 (2010), 129–134. |
[11] | T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. doi: 10.1016/j.cam.2014.10.016 |
[12] | T. Abdeljawad, D. Baleanu, Monotonicity results for fractional difference operators with discrete exponential kernels, Adv. Differ. Equations, 2017 (2017), 78. doi: 10.1186/s13662-017-1126-1 |
[13] | P. L. Chebyshev, Sur les expressions approximatives des integrales definies par les autres prises entre les m$\widetilde {\rm{A}}$mes limites, In Proc. Math. Soc. Charkov, 2 (1882), 93–98. |
[14] | M. A. Khan, N. Mohammad, E. R. Nwaeze, Y. M. Chu, Quantum Hermite-Hadamard inequality by means of a Green function, Adv. Differ. Equations, 2020 (2020), 1–20. doi: 10.1186/s13662-019-2438-0 |
[15] | S. Khan, M. A. Khan, Y. M. Chu, New converses of Jensen inequality via Green functions with applications, RACSAM, 114 (2020). |
[16] | M. Niezgoda, A generalization of Mercer's result on convex functions, Nonlinear Anal.: Theory Methods Appl., 71 (2009), 2771–2779. doi: 10.1016/j.na.2009.01.120 |
[17] | P. O. Mohammed, T. Abdeljawad, Modification of certain fractional integral inequalities for convex functions, Adv. Differ. Equations, 2020 (2020), 1–22. doi: 10.1186/s13662-019-2438-0 |
[18] | A. Fernandez, P. Mohammed, Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels, Math. Methods Appl. Sci., 2020 (2020), 1–18. |
[19] | P. O. Mohammed, T. Abdeljawad, Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel, Adv. Differ. Equations, 2020 (2020), 1–19. doi: 10.1186/s13662-019-2438-0 |
[20] | P. O. Mohammed, I. Brevik, A new version of the Hermite-Hadamard inequality for Riemann-Liouville fractional integrals, Symmetry, 12 (2020), 610. doi: 10.3390/sym12040610 |
[21] | E. Set, M. Tomar, M. Z. Sarikaya, On generalized Grüss type inequalities for $k$-fractional integrals, Appl. Math. Comput., 269 (2015), 29–34. |
[22] | K. S. Nisar, G. Rahman, A. Khan, A. Tassaddiq, M. S. Abouzaid, Certain generalized fractional integral inequalities, AIMS Math., 5 (2020), 1588–1602. doi: 10.3934/math.2020108 |
[23] | F. Jarad, E. Ugurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equations, 2017 (2017), 247. doi: 10.1186/s13662-017-1306-z |
[24] | F. Jarad, T. Abdeljawad, J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives, Eur. Phys. J. Spec. Top., 226 (2017), 3457–3471. doi: 10.1140/epjst/e2018-00021-7 |
[25] | C. J. Huang, G. Rahman, K. S. Nisar, A. Ghaffar, F. Qi, Some Inequalities of Hermite-Hadamard type for $k$-fractional conformable integrals, AJMAA, 16 (2019), 1–9. |
[26] | F. Qi, G. Rahman, S. M. Hussain, W. S. Du, K. S. Nisar, Some inequalities of Čebyšev type for conformable $k$-fractional integral operators, Symmetry, 10 (2018), 614. doi: 10.3390/sym10110614 |
[27] | K. S. Nisar, G. Rahman, K. Mehrez, Chebyshev type inequalities via generalized fractional conformable integrals, J. Inequal. Appl., 2019 (2019), 245. doi: 10.1186/s13660-019-2197-1 |
[28] | K. S. Niasr, A. Tassadiq, G. Rahman, A. Khan, Some inequalities via fractional conformable integral operators, J. Inequal. Appl., 2019 (2019), 217. doi: 10.1186/s13660-019-2170-z |
[29] | G. Rahman, K. S. Nisar, F. Qi, Some new inequalities of the Gruss type for conformable fractional integrals, AIMS Math., 3 (2018), 575–583. doi: 10.3934/Math.2018.4.575 |
[30] | K. S. Nisar, G. Rahman, A. Khan, Some new inequalities for generalized fractional conformable integral operators, Adv. Differ. Equations, 2019 (2019), 427. doi: 10.1186/s13662-019-2362-3 |
[31] | G. Rahman, K. S. Nisar, A. Ghaffar, F. Qi, Some inequalities of the Grüss type for conformable $k$-fractional integral operators, RACSAM, 114 (2020), 9. doi: 10.1007/s13398-019-00731-3 |
[32] | G. Rahman, Z. Ullah, A. Khan, E. Set, K. S. Nisar, Certain Chebyshev type inequalities involving fractional conformable integral operators, Mathematics, 7 (2019), 364. doi: 10.3390/math7040364 |
[33] | G. Rahmnan, T. Abdeljawad, F. Jarad, K. S. Nisar, Bounds of Generalized Proportional Fractional Integrals in General Form via Convex Functions and their Applications, Mathematics, 8 (2020), 113. doi: 10.3390/math8010113 |
[34] | G. Rahman, K. S. Nisar, T. Abdeljawad, S. Ullah, Certain Fractional Proportional Integral Inequalities via Convex Functions, Mathematics, 8 (2020), 222. doi: 10.3390/math8020222 |
[35] | G. Rahman, T. Abdeljawad, F. Jarad, A. Khan, K. S. Nisar, Certain inequalities via generalized proportional Hadamard fractional integral operators, Adv. Differ. Equations, 2019 (2019), 454. doi: 10.1186/s13662-019-2381-0 |
[36] | G. Rahman, T. Abdeljawad, A. Khan, K. S. Nisar, Some fractional proportional integral inequalities, J. Inequal. Appl., 2019 (2019), 244. doi: 10.1186/s13660-019-2199-z |
[37] | G. Rahman, A. Khan, T. Abdeljawad, K. S. Nisar, The Minkowski inequalities via generalized proportional fractional integral operators, Adv. Differ. Equations, 2019 (2019), 287. doi: 10.1186/s13662-019-2229-7 |
[38] | G. Rahman, K. S. Nisar, T. Abdeljawad, Certain Hadamard Proportional Fractional Integral Inequalities, Mathematics, 8 (2020), 504. doi: 10.3390/math8040504 |
[39] | G. Rahman, K. S. Nisar, S. Rashid, T. Abdeljawad, Certain Grüss-type inequalities via tempered fractional integrals concerning another, J. Inequal. Appl., 2020 (2020), 147. doi: 10.1186/s13660-020-02420-x |
[40] | G. Rahman, K. S. Nisar, T. Abdeljawad, Tempered Fractional Integral Inequalities for Convex Functions, Mathematics, 8 (2020), 500. doi: 10.3390/math8040500 |
[41] | Q. Xiaoli, G. Farid, J. Pecaric, S. B. Akbar, Generalized fractional integral inequalities for exponentially (s, m) $(s, m) $-convex functions, J. Inequalities Appl., 2020 (2020), 1–13. doi: 10.1186/s13660-019-2265-6 |
[42] | K. S. Nisar, G. Rahman, D. Baleanu, M. Samraiz, S. Iqbal, On the weighted fractional Pólya–Szegö and Chebyshev-types integral inequalities concerning another function, Adv. Differ. Equations, 2020 (2020), 1–18. doi: 10.1186/s13662-019-2438-0 |
[43] | P. Agarwal, J. E. Restrepo, An extension by means of $\omega$-weighted classes of the generalized Riemann-Liouville k-fractional integral inequalities, J. Math. Inequalities, 14 (2020), 35–46. |
[44] | S. Rashid, I. Iscan, D. Baleanu, Y. M. Chu, Generation of new fractional inequalities via n polynomials s-type convexity with applications. Adv. Differ. Equations, 2020 (2020), 1–20. |
[45] | M. A. Noor, K. I. Noor, S. Rashid, Some new classes of preinvex functions and inequalities, Mathematics, 7 (2019), 29. |
[46] | M. A. Noor, K. I. Noor, New classes of strongly exponentially preinvex functions, AIMS Math., 4 (2019), 1554–1568. doi: 10.3934/math.2019.6.1554 |
[47] | A. Rehman, G. Farid, S. Bibi, C. Y. Jung, S. M. Kang, $k$-fractional integral inequalities of Hadamard type for exponentially $(s, m) $-convex functions, AIMS Math., 6 (2020), 882. |
[48] | S. Rashid, M. A. Latif, Z. Hammouch, Y. M. Chu, Fractional integral inequalities for strongly h-preinvex functions for a kth order differentiable functions, Symmetry, 11 (2019), 1448. doi: 10.3390/sym11121448 |
[49] | M. U. Awan, S. Talib, A. Kashuri, M. A. Noor, K. I. Noor, Y. M. Chu, A new q-integral identity and estimation of its bounds involving generalized exponentially µ-preinvex functions. Adv. Differ. Equations, 2020 (2020), 1–12. |
[50] | G. Grüss, Über das Maximum des absoluten Betrages von, Mathematische Zeitschrift, 39 (1935), 215–226. doi: 10.1007/BF01201355 |
[51] | G. Pólya, G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Julius Springer, 1925. |
[52] | S. S. Dragomir, N. T. Diamond, Integral inequalities of Grüss type via Pólya-Szegö and Shisha-Mond results, RGMIA Res. Rep. Collect., 5 (2002). |
[53] | J. Hadamard, Étude sur les propriétés des fonctions entiéres et en particulier dune fonction considerée par Riemann, J. de mathématiques pures et appliquées, (1893), 171–216. |
[54] | A. M. Mercer, A variant of Jensen's inequality, J. Ineq. Pure Appl. Math., 4 (2003). |
[55] | M. U. Awan, M. A. Noor, K. I. Noor, Hermite-Hadamard inequalities for exponentially convex functions, Appl. Math. Inf. Sci., 12 (2018), 405–409. doi: 10.18576/amis/120215 |
[56] | S. Mititelu, Invex sets, Stud. Cerc. Mat., 46 (1994), 529–532. |
[57] | T. Weir, B. Mond, Pre-invex functions in multiple objective optimization, J. Math. Anal. Appl., 136 (1988), 29–38. doi: 10.1016/0022-247X(88)90113-8 |
[58] | J. Choi, P. Agarwal, A note on fractional integral operator associated with multiindex Mittag-Leffler functions, Filomat, 30 (2016), 1931–1939. doi: 10.2298/FIL1607931C |
[59] | T. N. Srivastava, Y. P. Singh, On Maitland's Generalised Bessel Function. Can. Math. Bull., 11 (1968), 739–741. |
[60] | H. M. Srivastava, $\check{Z}$. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag -Leffler function in the kernel, Appl. Math. Comput., 211 (2009), 198–210. |
[61] | R. S. Ali, S. Mubeen, I. Nayab, S. Araci, G. Rahman, K. S. Nisar, Some Fractional Operators with the Generalized Bessel-Maitland Function, Discrete Dyn. Nat. Soc., 2020 (2020), 1378457. |
[62] | T. R. Prabhakar, A singular integral equation with a generalized Mittag Leffler function in the kernel, Yokhama Math. J., 19 (1971), 7–15. |