In this paper, we study the following Schrödinger-Poisson system with critical exponent
$ \begin{equation*} \begin{cases} -\Delta u-k(x)\phi u=\lambda h(x)|u|^{p-2}u+s(x)|u|^{4}u, \ ~~x\in\mathbb{R}^{3},\\ -\triangle\phi=k(x)u^{2}, \ \ \ \ \ \ \ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ x\in\mathbb{R}^{3}, \\ \end{cases} \end{equation*} $
where $1 < p < 2$ and $\lambda > 0.$ Under suitable conditions on $k$, $h$ and $s$, we show that there exists $\lambda^{\ast}>0$ such that the above problem possesses infinitely many solutions with negative energy for each $\lambda\in(0, \lambda^{\ast})$. Moreover, we prove the existence of infinitely many solutions with positive energy. The main tools are the concentration compactness principle, $Z_{2}$ index theory and Fountain Theorem. These results extend some existing results in the literature.
Citation: Xueqin Peng, Gao Jia, Chen Huang. Multiplicity of solutions for Schrödinger-Poisson system with critical exponent in $\mathbb{R}^{3}$[J]. AIMS Mathematics, 2021, 6(3): 2059-2077. doi: 10.3934/math.2021126
In this paper, we study the following Schrödinger-Poisson system with critical exponent
$ \begin{equation*} \begin{cases} -\Delta u-k(x)\phi u=\lambda h(x)|u|^{p-2}u+s(x)|u|^{4}u, \ ~~x\in\mathbb{R}^{3},\\ -\triangle\phi=k(x)u^{2}, \ \ \ \ \ \ \ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ x\in\mathbb{R}^{3}, \\ \end{cases} \end{equation*} $
where $1 < p < 2$ and $\lambda > 0.$ Under suitable conditions on $k$, $h$ and $s$, we show that there exists $\lambda^{\ast}>0$ such that the above problem possesses infinitely many solutions with negative energy for each $\lambda\in(0, \lambda^{\ast})$. Moreover, we prove the existence of infinitely many solutions with positive energy. The main tools are the concentration compactness principle, $Z_{2}$ index theory and Fountain Theorem. These results extend some existing results in the literature.
[1] | C. Alves, Schrodinger-Poisson equations without Ambrosetti-Rabinowitz condition, J. Math. Anal. Appl., 377 (2011), 584–592. doi: 10.1016/j.jmaa.2010.11.031 |
[2] | A. Ambrosetti, P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381. doi: 10.1016/0022-1236(73)90051-7 |
[3] | A. Azzollini, A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90–108. doi: 10.1016/j.jmaa.2008.03.057 |
[4] | V. Benci, D. Fortunato, An eigenvalue problem for the Schröinger-Maxwell equations, Methods Nonlinear Anal., 11 (1998), 283–293. |
[5] | R. Benguria, H. Brezis, E. Lieb, The Thomas-Fermi-von Weizsacker theory of atoms and molecules, Comm. Math. Phys., 79 (1981), 167–180. doi: 10.1007/BF01942059 |
[6] | V. I. Bogachev, Measure Theory Springer, Berlin, 2007. |
[7] | H. Brézis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure. Appl. Math., 36 (1983), 437–477. doi: 10.1002/cpa.3160360405 |
[8] | T. D'Aprile, D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 893–906. doi: 10.1017/S030821050000353X |
[9] | T. D'Aprile, D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 4 (2004), 307–322. doi: 10.1515/ans-2004-0305 |
[10] | L. Huang, E. M. Rocha, A positive solution of a Schrödinger-Poisson system with critical exponent, Comm. Math. Anal., 15 (2013), 29–43. |
[11] | R. Kajikiya, A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations, J. Funct. Anal., 225 (2005), 352–370. doi: 10.1016/j.jfa.2005.04.005 |
[12] | R. Kajikiya, Symmetric mountain pass lemma and sublinear elliptic equations, J. Differential Equations, 260 (2016), 2587–2610. doi: 10.1016/j.jde.2015.10.016 |
[13] | C. Y. Lei, H. M. Suo, Positive solutions for a Schrödinger-Poisson system involving concave-convex nonlinearities, Comp. Math. Appl., 74 (2017), 1516–1524. doi: 10.1016/j.camwa.2017.06.029 |
[14] | M. M. Li, C. L. Tang, Multiple positive solutions for Schrödinger-Poisson system in R3 involving concave-convex nonlinearities with critical exponent, Comm. Pure. Appl. Anal., 5 (2017), 1587–1602. |
[15] | E. H. Lieb, Thomas-Fermi and related theories and molecules, Rev. Modern Phys., 53 (1981), 603–641. doi: 10.1103/RevModPhys.53.603 |
[16] | P. L. Lions, The Concentration-Compactness Principle in the Calculus of Variations. The limit case, Part. 1, Rev. Mat. Iberoam., 1 (1985), 145–201. |
[17] | P. L. Lions, The Concentration-Compactness Principle in the Calculus of Variations. The limit case, Part. 2, Rev. Mat. Iberoam., 2 (1985), 45–121. |
[18] | P. L. Lions, Solutions of Hartree-Fock equations for Coulomb systems, Commun. Math. Phys., 109 (1984), 33–97. |
[19] | P. Markowich, C. Ringhofer, C. Schmeiser, Semiconductor equations, Springer Verlag, New York, 1990. |
[20] | P. H. Rabinowitz, Minimax Methods in Critical Points Theory with Application to Differential Equations, CBMS Regional Conf. Ser. Math. vol. 65, Am. Math. Soc., Providence, 1986. |
[21] | D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655–674. doi: 10.1016/j.jfa.2006.04.005 |
[22] | M. Q. Shao, A. M. Mao, Multiplicity of solutions to Schrödinger-Poisson system with concave-convex nonlinearities, Appl. Math. Lett., 83 (2018), 212–218. doi: 10.1016/j.aml.2018.04.005 |
[23] | G. Vaira, Existence of bounded states for Schrödinger-Poisson type systems, S. I. S. S. A., 251 (2012), 112–146. |
[24] | G. Vaira, Ground states for Schrödinger-Poisson type systems, S. I. S. S. A., 60 (2011), 263–297. |
[25] | Y. J. Wang, Multiplicity of solutions for singular quasilinear Schrödinger equations with critical exponents, J. Math. Anal. Appl., 458 (2018), 1027–1043. doi: 10.1016/j.jmaa.2017.10.015 |
[26] | M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications, Birkhauser, 1996. |
[27] | J. Zhang, On ground state and nodal solutions of Schrödinger-Poisson equations with critical growth, J. Math. Anal. Appl., 428 (2015), 387–404. doi: 10.1016/j.jmaa.2015.03.032 |
[28] | X. Zhan, S. W. Ma, Q. L. Xie, Bound state solutions of Schrödinger-Poisson system with critical exponent, Discrete. Contin. Dyn. Syst., 37 (2017), 605–625. doi: 10.3934/dcds.2017025 |