The aim of this paper is to introduce the notion of Suzuki type multivalued contraction with simulation functions and then to set up some new fixed point and data dependence results for these type of contraction mappings. We produce an example to support our results. Moreover, we present an application to functional equation arising in dynamical system.
Citation: Azhar Hussain, Saman Yaqoob, Thabet Abdeljawad, Habib Ur Rehman. Multivalued weakly Picard operators via simulation functions with application to functional equations[J]. AIMS Mathematics, 2021, 6(3): 2078-2093. doi: 10.3934/math.2021127
The aim of this paper is to introduce the notion of Suzuki type multivalued contraction with simulation functions and then to set up some new fixed point and data dependence results for these type of contraction mappings. We produce an example to support our results. Moreover, we present an application to functional equation arising in dynamical system.
[1] | I. Altun, H. A. Hnacer, G. Minak, On a general class of weakly picard operators, Miskolc Math. Notes, 16 (2015), 25–32. doi: 10.18514/MMN.2015.1168 |
[2] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux equations intégrales, Fundamenta Math., 3 (1922), 133–181. doi: 10.4064/fm-3-1-133-181 |
[3] | G. Durmaz, Some theorems for a new type of multivalued contractive maps on metric space, Turkish J. Math., 41 (2017), 1092–1100. doi: 10.3906/mat-1510-75 |
[4] | G. Durmaz, I. Altun, A new perspective for multivalued weakly picard operators, Publications De L'institut Math., 101 (2017), 197–204. doi: 10.2298/PIM1715197D |
[5] | A. A. Eldred, J. Anuradha, P. Veeramani, On equivalence of generalized multivalued contractions and Nadler's fixed point theorem, J. Math. Anal. Appl., 336 (2007), 751–757. doi: 10.1016/j.jmaa.2007.01.087 |
[6] | H. A. Hancer, G. Mmak, I. Altun, On a broad category of multivalued weakly Picard operators, Fixed Point Theory, 18 (2017), 229–236. doi: 10.24193/fpt-ro.2017.1.19 |
[7] | M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl., 2014 (2014), 8. doi: 10.1186/1029-242X-2014-8 |
[8] | Z. Kadelburg, S. Radenovi, A note on some recent best proximity point results for non-self mappings, Gulf J. Math., 1 (2013), 36–41. |
[9] | T. Kamran, S. Hussain, Weakly (s, r)-contractive multi-valued operators, Rend. Circ. Mat. Palermo, 64 (2015), 475–482. |
[10] | E. Karapinar, Fixed points results via simulation functions, Filomat, 30 (2016), 2343–2350. doi: 10.2298/FIL1608343K |
[11] | F. Khojasteh, S. Shukla, S. Radenović, A new approach to the study of fixed point theorems via simulation functions, Filomat, 29 (2015), 1189–1194. doi: 10.2298/FIL1506189K |
[12] | S. B. Nadler Jr, Multivalued contraction mappings, Pacific J. Math., 30 (1969), 475–488. |
[13] | O. Popescu, A new type of contractive multivalued operators, Bull. Sci. Math., 137 (2013), 30–44. doi: 10.1016/j.bulsci.2012.07.001 |
[14] | S. Radenović, S. Chandok, Simulation type functions and coincidence points, Filomat, 32 (2018), 141–147. doi: 10.2298/FIL1801141R |
[15] | A. Rold, E. Karapinar, C. Rold, J. Martinez, Coincidence point theorems on metric spaces via simulation functions, J. Comput. Appl. Math., 275 (2015), 345–355. doi: 10.1016/j.cam.2014.07.011 |
[16] | I. A. Rus, Basic problems of the metric fixed point theory revisited (II), Stud. Univ. Babes-Bolyai, 36 (1991), 81–89. |
[17] | J. Von Neuman, Über ein ökonomisches Gleichungssystem und eine Verallgemeinerung des Brouwerschen Fixpunktsatzes, Ergebn. Math. Kolloq., 8 (1937), 73–83. |