In this paper, we established some common fixed point theorems of four self-mappings in completed quaternion valued $G-$metric space. Moreover, we gave an example of completed quaternion valued $G-$metric space and example for supporting our main results. The results obtained in this paper extend and improve some recent results.
Citation: Mohamed Gamal, Watcharaporn Cholamjiak. Fixed point theorems for weakly compatible mappings under implicit relations in quaternion valued $G$-metric spaces[J]. AIMS Mathematics, 2021, 6(3): 2048-2058. doi: 10.3934/math.2021125
In this paper, we established some common fixed point theorems of four self-mappings in completed quaternion valued $G-$metric space. Moreover, we gave an example of completed quaternion valued $G-$metric space and example for supporting our main results. The results obtained in this paper extend and improve some recent results.
[1] | O. K. Adewale, J. O. Olaleru, H. Akewe, Fixed point theorems on a quaterni spaces, Commun. Nonlinear Anal., 1 (2019), 73–81. |
[2] | R. P. Agarwal, E. Karapinar, D. O'Regan, A. F. Roldan-Lopez-de-Hierro, Fixed point theory in metric type space, Springer International Publishing Switzerland 2015. |
[3] | R. P. Agarwal, Z. Kadelburg, S. Radenović, On coupled fixed point results in asymmetric G-metric spaces, J. Inequal. Appl., 2013 (2013), 528. doi: 10.1186/1029-242X-2013-528 |
[4] | A. E. Ahmed, A. J. Asad, S. Omran, Fixed point theorems in quaternion-valued metric spaces, Abstr. Appl. Anal., 2014 (2014), Article ID 258–985. |
[5] | S. Aleksić, Z. Kadelburg, Z. D. Mitrović, S. Radenović, A new survey: Cone metric spaces, J. Inter. Math. Virtual Inst., 9 (2019), 93–121. |
[6] | W. M. Alfaqih, M. Imdad, F. Rouzkard, Unified common fixed point theorems in complex valued metric spaces via an implicit relation with applications, Bol. Soc. Paran. Mat., 38 (2020), 9–29. |
[7] | F. Brackx, R. Delanghe, F. Sommen, Clifford Analysis, Research Notes in Mathematics, Pitman, Boston, Mass, USA, (76) 1982. |
[8] | F. F. Bonsall, Lecture on some fixed point theorems of functional analysis, Tata Institute Of Fundamental Research, Bombay, 1962. |
[9] | W. Cholamjiak, S. Suantai, Y. J. Cho, Fixed points for nondpreading-type multi-valued mappings: Existence and convergence results, Ann. Acad. Rom. Sci. Ser. Math. Apll., 10 (2), 838–844. |
[10] | P. Cholamjiak, W. Cholamjiak, Fixed point theorems for hybrid multivalued mappings in Hilbert spaces, J. Fixed Point Theory Appl., 18 (2016), 673–688. doi: 10.1007/s11784-016-0302-3 |
[11] | B. C. Dhage, Generalized metric space and mapping with fixed point, Bull. Calcutta Math. Soc., 84 (1992), 329–336. |
[12] | B. C. Dhage, Generalized metric spaces and topological structure–I, An. Stiint. Univ. Al. I. Cuza Iasi. Mat., 46 (2000), 3–24. |
[13] | B. C. Dhage, On generalized metric spaces and topological structure–II, Pure Appl. Math. Sci., 40 (1994), 37–41. |
[14] | S. Gähler, 2-metrische Räume und ihre topologische Struktur, Math. Nachr., 26 (1963), 115–148. doi: 10.1002/mana.19630260109 |
[15] | S. Gähler, Zur geometric 2-metriche raume, Rev. Roum. Math. Pures Appl., 11 (1966), 664–669. |
[16] | K. Gurlebeck, K. Habetha, W. Sprößig, Holomorphic Functions in the Plane and n-Dimensional Space, Birkhäuser, Basel, Switzerland, 2008. |
[17] | K. Gurlebeck, W. Sprößig, Quaternionic and Clifford Calculus for Engineers and Physicists, John Wiley & Sons, Chichester, UK, 1997. |
[18] | W. R. Hamilton, On a new system of imaginaries in algebra, London, Edinburgh Dublin Philos. Mag. J. Sci., (1843), 1844–1850. |
[19] | A. Mohammed, A. Al-Ahmadi, Quaternion-valued generalized metric spaces and m-quaternionvalued m-isometric mapping, Int. J. Pure Appl. Math., 116 (2017), 875–897. |
[20] | Z. Mustafa, B. Sims, Fixed point theorems for contractive mappings in complete G-metric spaces, Fixed Point Theory Appl., 2009, Article ID 917175, 10. |
[21] | V. Todorčević, Harmonic quasiconformal mappings and hyperbolic type metrics, Springer Nature Switzerland AG, 2019. |
[22] | V. Todorčević, Subharmonic behavior and quasiconformal mappings, Anal. Math. Phys., 9 (2019), 1211–1225. doi: 10.1007/s13324-019-00308-8 |