In this paper, we carry out stochastic comparisons of lifetimes of series and parallel systems with dependent heterogeneous Topp-Leone generated components. The usual stochastic order and the reversed hazard rate order are developed for the parallel systems with the help of vector majorization under Archimedean copula dependence, and the results for the usual stochastic order are also obtained for the series systems. Finally, some numerical examples are provided to illustrate the effectiveness of our theoretical findings.
Citation: Li Zhang, Rongfang Yan. Stochastic comparisons of series and parallel systems with dependent and heterogeneous Topp-Leone generated components[J]. AIMS Mathematics, 2021, 6(3): 2031-2047. doi: 10.3934/math.2021124
In this paper, we carry out stochastic comparisons of lifetimes of series and parallel systems with dependent heterogeneous Topp-Leone generated components. The usual stochastic order and the reversed hazard rate order are developed for the parallel systems with the help of vector majorization under Archimedean copula dependence, and the results for the usual stochastic order are also obtained for the series systems. Finally, some numerical examples are provided to illustrate the effectiveness of our theoretical findings.
[1] | N. Balakrishnan, C. R. Rao, Order statistics: applications, Elsevier Science, 1998. |
[2] | B. Khaledi, S. C. Kochar, Some new results on stochastic comparisons of parallel systems, J. Appl. Probab., 37 (2000), 1123–1128. doi: 10.1239/jap/1014843091 |
[3] | P. Zhao, N. Balakrishnan, New results on comparisons of parallel systems with heterogeneous gamma components, Stat. Probab. Lett., 81 (2011), 36–44. doi: 10.1016/j.spl.2010.09.016 |
[4] | L. X. Fang, X. S. Zhang, New results on stochastic comparison of order statistics from heterogeneous Weibull populations, J. Korean Stat. Soc., 41 (2012), 13–16. doi: 10.1016/j.jkss.2011.05.004 |
[5] | E. Barlow, F. Proschan, Statistical theory of reliability and life testing: probability models, Holt, Rinehart & Winston of Canada Ltd, 1975. |
[6] | J. Bartoszewicz, Dispersive ordering and the total time on test transformation, Stat. Probab. Lett., 4 (1986), 285–288. doi: 10.1016/0167-7152(86)90045-3 |
[7] | P. J. Boland, T. Hu, M. Shaked, J. G. Shanthikumar, Stochastic ordering of order statistics Ⅱ, Springer, 2002. |
[8] | A. Kundu, S. Chowdhury, A. K. Nanda, N. K. Hazra, Some results on majorization and their applications, J. Comput. Appl. Math., 301 (2016), 161–177. doi: 10.1016/j.cam.2016.01.015 |
[9] | N. Balakrishnan, P. Nanda, S. Kayal, Ordering of series and parallel systems comprising heterogeneous generalized modified Weibull components, Appl. Stoch. Models. Bus. Ind., 34 (2018), 816–834. doi: 10.1002/asmb.2353 |
[10] | S. Kochar, Stochastic comparisons of order statistics and spacings: a review, ISRN Probability and Statistics, 2012 (2012), 222–229. |
[11] | N. Balakrishnan, P. Zhao, Ordering properties of order statistics from heterogeneous populations: a review with an emphasis on some recent developments, Probab. Eng. Inform. Sci., 27 (2013), 403–443. doi: 10.1017/S0269964813000156 |
[12] | R. L. Dykstra, S. C. Kochar, J. Rojo, Stochastic comparisons of parallel systems of heterogeneous exponential components, J. Stat. Plan. Infer., 65 (1997), 203–211. doi: 10.1016/S0378-3758(97)00058-X |
[13] | N. Balakrishnan, G. Barmalzan, A. Haidari, On usual multivariate stochastic ordering of order statistics from heterogeneous beta variables, J. Multivar. Anal., 127 (2014), 147–150. doi: 10.1016/j.jmva.2014.02.008 |
[14] | N. Torrado, On magnitude orderings between smallest order statistics from heterogeneous beta distributions, J. Math. Anal. Appl., 426 (2015), 824–838. doi: 10.1016/j.jmaa.2015.02.003 |
[15] | J. Navarro, F. Spizzichino, Comparisons of series and parallel systems with components sharing the same copula, Appl. Stoch. Models. Bus. Ind., 26 (2010), 775–791. doi: 10.1002/asmb.819 |
[16] | C. Li, X. H. Li, Likelihood ratio order of sample minimum from heterogeneous Weibull random variables, Stat. Probab. Lett., 97 (2015), 46–53. doi: 10.1016/j.spl.2014.10.019 |
[17] | C. Li, R. Fang, X. H. Li, Stochastic comparisons of order statistics from scaled and interdependent random variables, Metrika, 79 (2015), 553–578. |
[18] | R. Fang, C. Li, X. H. Li, Stochastic comparisons on sample extremes of dependent and heterogenous observations, Statistics, 50 (2016), 930–955. doi: 10.1080/02331888.2015.1119151 |
[19] | A. Kundu, S. Chowdhury, Stochastic comparisons of lifetimes of two series and parallel systems with location-scale family distributed components having archimedean copulas, arXiv: 1710.00769, 2017. |
[20] | R. Fang, C. Li, X. H. Li, Ordering results on extremes of scaled random variables with dependence and proportional hazards, Statistics, 52 (2018), 458–478. doi: 10.1080/02331888.2018.1425998 |
[21] | C. Li, X. H. Li, Hazard rate and reversed hazard rate orders on extremes of heterogeneous and dependent random variables, Stat. Probab. Lett., 146 (2019), 104–111. doi: 10.1016/j.spl.2018.11.005 |
[22] | S. Rezaei, B. B. Sadr, M. Alizadeh, S. Nadarajah, Topp-Leone generated family of distributions: Properties and applications, Commun. Stat. Theor. M., 46 (2017), 2893–2909. doi: 10.1080/03610926.2015.1053935 |
[23] | R. F. Yan, T. Q. Luo, On the optimal allocation of active redundancies in series system, Commun. Stat. Theor. M., 47 (2018), 2379–2388. doi: 10.1080/03610926.2015.1054942 |
[24] | E. J. Veres-Ferrer, J. M. Pavia, On the relationship between the reversed hazard rate and elasticity, Stat. Papers, 55 (2014), 275–284. doi: 10.1007/s00362-012-0470-1 |
[25] | M. Shaked, G. Shanthikumar, Stochastic orders, New York: Springer, 2007. |
[26] | T. Lando, L. Bertoli-Barsotti, Stochastic dominance relations for generalised parametric distributions obtained through compositio, METRON, 78 (2020), 297–311. |
[27] | T. Lando, L. Bertoli-Barsotti, Second-order stochastic dominance for decomposable multiparametric families with applications to order statistics, Stat. Probab. Lett., 159 (2020), 108691. |
[28] | A. W. Marshall, I. Olkin, B. C. Arnold, Inequalities: Theory of majorization and its applications, 2 Eds., New York: Springer, 2011. |
[29] | R. B. Nelsen, An introduction to copulas, New York: Springer, 2006. |
[30] | X. H. Li, R. Fang, Ordering properties of order statistics from random variables of Archimedean copulas with applications, J. Multivar. Anal., 133 (2015), 304–320. doi: 10.1016/j.jmva.2014.09.016 |
[31] | S. Das, S. Kayal, Ordering extremes of exponentiated location-scale models with dependent and heterogeneous random samples, Metrika, 83 (2020), 869–893. doi: 10.1007/s00184-019-00753-2 |
[32] | R. Chanchal, V. Gupta, A. K. Misra, Stochastic comparisons of series and parallel systems with Topp-Leone generated family of distributions, arXiv: 1908.05896, 2019. |