Research article

Continuous Tsallis and Renyi extropy with pharmaceutical market application

  • Received: 05 June 2023 Revised: 29 July 2023 Accepted: 06 August 2023 Published: 11 August 2023
  • MSC : 62B10, 62H30, 94A17

  • In this paper, the Tsallis and Renyi extropy is presented as a continuous measure of information under the continuous distribution. Furthermore, the features and their connection to other information measures are introduced. Some stochastic comparisons and results on the order statistics and upper records are given. Moreover, some theorems about the maximum Tsallis and Renyi extropy are discussed. On the other hand, numerical results of the non-parametric estimation of Tsallis extropy are calculated for simulated and real data with application to time series model and its forecasting.

    Citation: Mohamed Said Mohamed, Najwan Alsadat, Oluwafemi Samson Balogun. Continuous Tsallis and Renyi extropy with pharmaceutical market application[J]. AIMS Mathematics, 2023, 8(10): 24176-24195. doi: 10.3934/math.20231233

    Related Papers:

  • In this paper, the Tsallis and Renyi extropy is presented as a continuous measure of information under the continuous distribution. Furthermore, the features and their connection to other information measures are introduced. Some stochastic comparisons and results on the order statistics and upper records are given. Moreover, some theorems about the maximum Tsallis and Renyi extropy are discussed. On the other hand, numerical results of the non-parametric estimation of Tsallis extropy are calculated for simulated and real data with application to time series model and its forecasting.



    加载中


    [1] C. Aliprantis, O. Burkinshaw, Principles of real analysis, North Holland: Elsevier, 1990. http://dx.doi.org/10.1016/C2009-0-22273-2
    [2] N. Balakrishnan, F. Buono, M. Longobardi, On Tsallis extropy with an application to pattern recognition, Stat. Probabil. Lett., 180 (2022), 109241. http://dx.doi.org/10.1016/j.spl.2021.109241 doi: 10.1016/j.spl.2021.109241
    [3] F. Belzunce, R. Lillo, J. Ruiz, M. Shaked, Stochastic comparisons of nonhomogeneous processes, Probab. Eng. Inform. Sci., 15 (2001), 199–224. http://dx.doi.org/10.1017/S0269964801152058 doi: 10.1017/S0269964801152058
    [4] T. Jawa, N. Fatima, N. Sayed-Ahmed, R. Aldallal, M. Mohamed, Residual and past discrete Tsallis and Renyi extropy with an application to softmax function, Entropy, 24 (2022), 1732. http://dx.doi.org/10.3390/e24121732 doi: 10.3390/e24121732
    [5] F. Lad, G. Sanfilippo, G. Agro, Extropy: complementary dual of entropy, Stat. Sci., 30 (2015), 40–58. http://dx.doi.org/10.1214/14-STS430 doi: 10.1214/14-STS430
    [6] J. Liu, F. Xiao, Renyi extropy, Commun. Stat. Theor. M., 52 (2023), 5836–5847. http://dx.doi.org/10.1080/03610926.2021.2020843
    [7] OECD Health Statistics, Pharmaceutical market, OECD, 2023. http://dx.doi.org/10.1787/data-00545-en
    [8] E. Parzen, On estimation of a probability density function and mode, Ann. Math. Statist., 33 (1962), 1065–1076. http://dx.doi.org/10.1214/aoms/1177704472 doi: 10.1214/aoms/1177704472
    [9] G. Qiu, The extropy of order statistics and record values, Stat. Probabil. Lett., 120 (2017), 52–60. http://dx.doi.org/10.1016/j.spl.2016.09.016 doi: 10.1016/j.spl.2016.09.016
    [10] G. Qiu, K. Jia, Extropy estimators with applications in testing uniformity, J. Nonparametr. Stat., 30 (2018), 182–196. http://dx.doi.org/10.1080/10485252.2017.1404063 doi: 10.1080/10485252.2017.1404063
    [11] M. Raqab, G. Qiu, On extropy properties of ranked set sampling, Statistics, 53 (2019), 210–226. http://dx.doi.org/10.1080/02331888.2018.1533963 doi: 10.1080/02331888.2018.1533963
    [12] A. Renyi, On measures of entropy and information, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, 1961,547–561.
    [13] M. Shaked, J. George Shanthikumar, Stochastic orders, New York: Springer, 2007. http://dx.doi.org/10.1007/978-0-387-34675-5
    [14] C. Shannon, A mathematical theory of communication, Bell System Technical Journal, 27 (1948), 379–423. http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x doi: 10.1002/j.1538-7305.1948.tb01338.x
    [15] C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys., 52 (1988), 479–487. http://dx.doi.org/10.1007/BF01016429 doi: 10.1007/BF01016429
    [16] F. Xiao, Quantum X-entropy in generalized quantum evidence theory, Inform. Sciences, 643 (2023), 119177. http://dx.doi.org/10.1016/j.ins.2023.119177 doi: 10.1016/j.ins.2023.119177
    [17] F. Xiao, On the maximum entropy negation of a complex-valued distribution, IEEE T. Fuzzy Syst., 29 (2021), 3259–3269. http://dx.doi.org/10.1109/TFUZZ.2020.3016723 doi: 10.1109/TFUZZ.2020.3016723
    [18] F. Xiao, EFMCDM: evidential fuzzy multicriteria decision making based on belief entropy, IEEE T. Fuzzy Syst., 28 (2020), 1477–1491. http://dx.doi.org/10.1109/TFUZZ.2019.2936368 doi: 10.1109/TFUZZ.2019.2936368
    [19] Y. Xue, Y. Deng, Tsallis eXtropy, Commun. Stat. Theor. M., 52 (2023), 751–762. http://dx.doi.org/10.1080/03610926.2021.1921804
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1034) PDF downloads(58) Cited by(1)

Article outline

Figures and Tables

Figures(9)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog