In the present article, a new category of mathematical structure is described based on the topological structure "primal" and the notion of "generalized". Such a structure is discussed in detail in terms of topological properties and some basic theories. Also, we introduced some operators using the concepts "primal" and "generalized primal neighbourhood", which have a lot of nice properties.
Citation: Hanan Al-Saadi, Huda Al-Malki. Generalized primal topological spaces[J]. AIMS Mathematics, 2023, 8(10): 24162-24175. doi: 10.3934/math.20231232
In the present article, a new category of mathematical structure is described based on the topological structure "primal" and the notion of "generalized". Such a structure is discussed in detail in terms of topological properties and some basic theories. Also, we introduced some operators using the concepts "primal" and "generalized primal neighbourhood", which have a lot of nice properties.
[1] | S. Acharjee, M. Özkoç, F. Y. Issaka, Primal topological spaces, arXiv, 2022. https://doi.org/10.48550/arXiv.2209.12676 |
[2] | J. C. R. Alcantud, Convex soft geometries, J. Comput. Cognit. Eng., 1 (2022), 2–12. http://doi.org/10.47852/bonviewJCCE597820 doi: 10.47852/bonviewJCCE597820 |
[3] | A. Al-Omari, S. Acharjee, M. Özkoç, A new operator of primal topological spaces, arXiv, 2022. https://doi.org/10.48550/arXiv.2210.17278 |
[4] | A. Al-Omari, T. Noiri, On $ \widetilde\Psi_{\mathcal{G}}$-sets in grill topological spaces, Filomat, 25 (2011), 187–196. http://doi.org/10.2298/FIL1102187A doi: 10.2298/FIL1102187A |
[5] | A. Al-Omari, T. Noiri, On $\Psi_{\ast}$-operator in ideal $m$-spaces, Bol. Soc. Parana. Math., 30 (2012), 53–66. http://doi.org/10.5269/bspm.v30i1.12787 doi: 10.5269/bspm.v30i1.12787 |
[6] | A. Al-Omari, T. Noiri, On $\Psi_G$-perator in grill topological spaces, Ann. Univ. Oradea Fasc. Mat., 2012. |
[7] | T. M. Al-shami, M. Abo-Elhamayel, Novel class of ordered separation axioms using limit points, Appl. Math. Inf. Sci., 14 (2020), 1103–1111. http://doi.org/10.18576/amis/140617 doi: 10.18576/amis/140617 |
[8] | T. M. Al-shami, Z. A. Ameen, R. Abu-Gdairi, A. Mhemdi, On primal soft topology, Mathematics, 11 (2023), 2329. https://doi.org/10.3390/math11102329 doi: 10.3390/math11102329 |
[9] | K. C. Chattopadhyay, O. Njåstad, W. J. Thron, Merotopic spaces and extensions of closure spaces, Can. J. Math., 35 (1983), 613–629. https://doi.org/10.4153/CJM-1983-035-6 doi: 10.4153/CJM-1983-035-6 |
[10] | K. Chattopadhyay, W. J. Thron, Extensions of closure spaces, Can. J. Math., 29 (1977), 1277–1286. https://doi.org/10.4153/CJM-1977-127-6 doi: 10.4153/CJM-1977-127-6 |
[11] | G. Choquet, Sur les notions de filtre et de grille, Comptes Rendus Acad. Sci. Paris, 224 (1947), 171–173. |
[12] | Á. Császár, Generalized open sets, Acta Math. Hung., 75 (1997), 65–87. https://doi.org/10.1023/A:1006582718102 doi: 10.1023/A:1006582718102 |
[13] | Á. Császár, Generalized topology, generalized continuity, Acta Math. Hung., 96 (2002), 351–357. https://doi.org/10.1023/A:1019713018007 doi: 10.1023/A:1019713018007 |
[14] | Á. Császár, Separation axioms for generalized topologies, Acta Math. Hung., 104 (2004), 63–69. https://doi.org/10.1023/B:AMHU.0000034362.97008.c6 doi: 10.1023/B:AMHU.0000034362.97008.c6 |
[15] | Á. Császár, Extremally disconnected generalized topologies, Ann. Univ. Sci. Budapest, 47 (2004), 151–161. |
[16] | Á. Császár, $\delta$- and $\theta$-modifications of generalized topologies, Acta. Math. Hung., 120 (2008), 275–279. http://doi.org/10.1007/s10474-007-7136-9 doi: 10.1007/s10474-007-7136-9 |
[17] | T. R. Hamlett, Ideals in topological spaces and the set operator $\Psi$, Boll. Un. Mat. Ital., 7 (1990), 863–874. |
[18] | E. Hatir, S. Jafari, On some new classes of sets and a new decomposition of continuity via grills, J. Adv. Math. Stud., 3 (2010), 33–40. |
[19] | D. Janković, T. R. Hamlett, New topologies from old via ideals, Am. Math. Mon., 97 (1990), 295–310. https://doi.org/10.1080/00029890.1990.11995593 doi: 10.1080/00029890.1990.11995593 |
[20] | K. Kuratowski, Topology, Vol. I, Elsevier, 1966. https://doi.org/10.1016/C2013-0-11022-7 |
[21] | L. Mejías, J. Vielma, Á. Guale, E. Pineda, Primal topologies on finite-dimensional vector spaces induced by matrices, Int. J. Math. Math. Sci., 2023 (2023), 9393234. https://doi.org/10.1155/2023/9393234 doi: 10.1155/2023/9393234 |
[22] | S. Modak, Topology on grill-filter space and continuity, Bol. Soc. Parana. Mat., 31 (2013), 219–230. http://doi.org/10.5269/bspm.v31i2.16603 doi: 10.5269/bspm.v31i2.16603 |
[23] | S. Modak, Grill-filter space, J. Indian Math. Soc., 80 (2013), 313–320. |
[24] | S. Modak, Decompositions of generalized continuity in grill topological spaces, Thai. J. Math., 13 (2015), 509–515. |
[25] | L. Nachbin, Topology and order, D. Van Nostrand Inc., 1965. |
[26] | B. Roy, M. N. Mukherjee, On a typical topology induced by a grill, Soochow J. Math., 33 (2007), 771–786. |
[27] | B. Roy, M. N. Mukherjee, On a type of compactness via grills, Mat. Ves., 59 (2007), 113–120. |
[28] | B. Roy, M. N. Mukherjee, S. K. Ghosh, On a new operator based on grill and its associated topology, Arab J. Math. Sci., 14 (2008), 21–32. |
[29] | B. Roy, M. N. Mukherjee, Concerning topologies induced by principal grills, An. Stiint. Univ. Al. I. Cuza Iasi., 55 (2009), 285–294. |
[30] | W. J. Thron, Proximity structure and grills, Math. Ann., 206 (1973), 35–62. https://doi.org/10.1007/BF01431527 doi: 10.1007/BF01431527 |
[31] | B. K. Tyagi, H. V. S. Chauhan, On generalized closed sets in generalized topological spaces, Cubo, 18 (2016), 27–45. https://doi.org/10.4067/S0719-06462016000100003 doi: 10.4067/S0719-06462016000100003 |
[32] | S. VibinSalimRaj, V. Senthilkumaran, Y. Palaniappan, On contra $G_{(gs)^\ast}$ continuous functions in grill topological spaces, Global. J. Pure Appl. Math., 17 (2021), 333–342. |
[33] | G. E. Xun, G. E. Ying, $\mu$-separations in generalized topological spaces, Appl. Math., 25 (2010), 243–252. http://doi.org/10.1007/s11766-010-2274-1 doi: 10.1007/s11766-010-2274-1 |