The concept of operators in topological spaces occupies a very important place. For this reason, a great deal of work and many results were presented via operators. Herein, we defined a primal local soft closure operator Λ(⋅) using the concept of soft topology and soft primal and reconnoitered its basic characteristics. Then, we found several fundamental results about the behavior of the primal soft closure operator λ(⋅) with the help of Λ(⋅). Among other obtained results, we introduced a new topology induced by the primal soft closure operator. At last, we defined primal soft suitable spaces and gave some equivalent descriptions of it.
Citation: Ahmad Al-Omari, Mesfer H. Alqahtani. Some operators in soft primal spaces[J]. AIMS Mathematics, 2024, 9(5): 10756-10774. doi: 10.3934/math.2024525
[1] | Mesfer H. Alqahtani, Zanyar A. Ameen . Soft nodec spaces. AIMS Mathematics, 2024, 9(2): 3289-3302. doi: 10.3934/math.2024160 |
[2] | Tareq M. Al-shami, Zanyar A. Ameen, A. A. Azzam, Mohammed E. El-Shafei . Soft separation axioms via soft topological operators. AIMS Mathematics, 2022, 7(8): 15107-15119. doi: 10.3934/math.2022828 |
[3] | Mohammed Abu Saleem . On soft covering spaces in soft topological spaces. AIMS Mathematics, 2024, 9(7): 18134-18142. doi: 10.3934/math.2024885 |
[4] | Baravan A. Asaad, Tareq M. Al-shami, Abdelwaheb Mhemdi . Bioperators on soft topological spaces. AIMS Mathematics, 2021, 6(11): 12471-12490. doi: 10.3934/math.2021720 |
[5] | Ibtesam Alshammari, Islam M. Taha . On fuzzy soft $ \beta $-continuity and $ \beta $-irresoluteness: some new results. AIMS Mathematics, 2024, 9(5): 11304-11319. doi: 10.3934/math.2024554 |
[6] | Ahmad Al-Omari, Ohud Alghamdi . Regularity and normality on primal spaces. AIMS Mathematics, 2024, 9(3): 7662-7672. doi: 10.3934/math.2024372 |
[7] | Dina Abuzaid, Samer Al-Ghour . Supra soft Omega-open sets and supra soft Omega-regularity. AIMS Mathematics, 2025, 10(3): 6636-6651. doi: 10.3934/math.2025303 |
[8] | Tareq M. Al-shami, Abdelwaheb Mhemdi, Radwan Abu-Gdairi, Mohammed E. El-Shafei . Compactness and connectedness via the class of soft somewhat open sets. AIMS Mathematics, 2023, 8(1): 815-840. doi: 10.3934/math.2023040 |
[9] | Arife Atay . Disjoint union of fuzzy soft topological spaces. AIMS Mathematics, 2023, 8(5): 10547-10557. doi: 10.3934/math.2023535 |
[10] | Alaa M. Abd El-latif . Novel types of supra soft operators via supra soft sd-sets and applications. AIMS Mathematics, 2024, 9(3): 6586-6602. doi: 10.3934/math.2024321 |
The concept of operators in topological spaces occupies a very important place. For this reason, a great deal of work and many results were presented via operators. Herein, we defined a primal local soft closure operator Λ(⋅) using the concept of soft topology and soft primal and reconnoitered its basic characteristics. Then, we found several fundamental results about the behavior of the primal soft closure operator λ(⋅) with the help of Λ(⋅). Among other obtained results, we introduced a new topology induced by the primal soft closure operator. At last, we defined primal soft suitable spaces and gave some equivalent descriptions of it.
Molodtsov [1] obtained the initial step of soft sets. Many well-known scholars and thinkers have expressed interest in Molodtsov's soft set theory proposal because it compensates for the flaws and shortcomings of existing mathematical model tools and has a significant applicability benefit when dealing with uncertainty. Following the successful introduction of soft sets, the concept was refined and hybridized into soft rough sets, and fuzzy soft sets. Soft set theory has been used to obtain and investigate various structures of mathematics. Soft theory includes soft algebra [1,2], soft category theory [1,3], and so on. Shabir and Naz [4] demonstrated two strategies for defining soft topology in 2011.
Soft open sets are known to be the building blocks of soft topology, although other classes of soft sets, such as soft generalized open sets and soft weak structures, can also contribute to the creation of soft topology. Several researchers and philosophers produced a soft version of classical topological concepts and conceptions in the aftermath of Shabir and Naz's work, soft submaximal [5], infra soft structure [6], soft somewhat [7], soft ideal [8], soft grail [9], congruence representation via soft ideals [10], and according to Al-shami et al. in [11], the concept of primal soft topological spaces. Also, he defined a soft operator (⋅)⋄ using the elements of the soft topology and soft primal in soft primal. After that, in soft contexts, many traditional topological ideas have been introduced, for instance, Baire category soft sets and their symmetric local properties [12] and some classes of soft functions via soft open sets modulo soft sets of the first category [13].
Another fascinating research topic is how to build soft topologies over a universal set. Terepeta [14] revealed two efficient methods for constructing soft topologies from crisp topologies. According to Al-Shami et al. in [15], the soft topology of one of the techniques is identical to the enriched soft topology. One of basic extended soft topologies is produced by Ameen et al. [30] and defined by old soft topology and a soft ideal combined to form the cluster soft topology, which is ideal soft topologies. Similarly, [9] used soft grills to explain the concept of soft topology.
Recently, Acharjee et al. [16] introduced a new structure called primal. They get not just some primal-related fundamental features, but also some links between topological spaces and primal topological spaces. Primals [16] appear to be the dual of the concept of grills, while the duals of filters are ideals. After that, Al-Omari et al. [17,18] used primal to establish several new operators in primal topological spaces. Moreover, in obtaining the concept of soft primal topology and some results, we show that the set of primal topologies forms a natural class in the lattice of topologies and provide some descriptions for primal soft topology under specific types of soft primal.
The motivations for writing this paper are as follows: The first reason we produce this post is to provide a new form of soft structure that improves soft setting research by establishing distinct frameworks that allow us to design new soft concepts and features. Second, we create a new method for generating soft topology that is inspired by several soft operators.
We arrange the content of the paper as follows: In Section 2, we recall the basic concepts and findings that make this work self-contained. In Section 3, we define the concept of the primal local soft closure operator Λ(⋅) inspired by the concept of soft topology and soft primal. The concept of the primal local soft closure operator Λ(⋅) is modification of a soft operator (⋅)⋄, which is obtained by Al-Shami et al. in [11], then we study the main properties of this concept. In Section 4, we find a number of fundamental truths about the behavior of the primal soft closure operator λ(⋅), then we introduce a new topology via λ(⋅). Among other obtained results, we define primal soft suitable spaces and give some equivalent descriptions in Section 5.
Definition 2.1. [1] Let Φ:ρ→2A be a set-valued function form of parameters set ρ to the power set of a nonempty set A, then the pair (Φ,ρ) is said to be a soft set over A, which is defined as follows: (Φ,ρ)={(α,Φ(α)):α∈ρ and Φ(α)∈2A}, and we represented the soft set as Φρ. Throughout this paper, Φρ, Ωρ, and Ψρ denote the soft sets over A. We symbolized the family of all soft sets over A with parameters ρ by SS(Aρ).
Definition 2.2. [4,20,21,22,23] Let Φρ,Ψρ be two soft sets over A, then:
(1) The null soft set is {(α,Φ(α)):Φ(α)=∅,∀α∈ρ} and symbolized by ∅ρ.
(2) The absolute soft set is {(α,Φ(α)):Φ(α)=A,∀α∈ρ} and symbolized by Aρ.
(3) If there exists α∈ρ and a∈A with Φ(α)={a} and Φ(β)=∅ ∀β∈ρ−{α}, then this set is said to be a soft point and denoted by aα. We write aα∈Φρ if a∈Φ(α).
(4) We say that Φρ is a soft subset of Ψρ if Φ(α)⊆Ψ(α), ∀α∈ρ, and it is written as follows: Φρ⊑Ψρ.
(5) The soft union Φρ⊔Ψρ=Ωρ, where Ω(α)=Φ(α)∪Ψ(α), ∀α∈ρ.
(6) The soft intersection Φρ⊓Ψρ=Ωρ, where Ω(α)=Φ(α)∩Ψ(α), ∀α∈ρ.
(7) The soft difference Φρ∖Ψρ=Ωρ, where Ω(α)=Φ(α)∖Ψ(α), ∀α∈ρ.
(8) We say that Φρ is a soft complement of Ψρ if Φ(α)=A∖Ψ(α), ∀α∈ρ, and written as follows Φcρ=Ψρ.
Definition 2.3. [4,24] A collection of a soft subset Δs of SS(Aρ) is called a soft topology on A if the following:
(1) ∅ρ and Aρ are members of Δs.
(2) The finite soft intersection is closed in Δs.
(3) The arbitrary soft union is closed in Δs.
The notions (Aρ,Δs) are named a soft topology space over A with parameters ρ (soft topology space is briefly, STOS). A soft set in STOS is called soft open and the complement of soft open is soft closed. For aα∈Aρ, the family of all members of Δs containing aα is denoted by Δs(aα).
Definition 2.4. [25] A soft subset Φρ of an STOS (Aρ,Δs) is called a soft neighborhood of a soft point aρ provided that there exists soft open Ψρ∈Δs such that aρ∈Ψρ⊑Φρ.
Definition 2.5. [4] Let (Aρ,Δs) be an STOS, then
(1) The soft closure of a soft set Φρ is given by Cl(Φρ)=⊓{Ψρ:Φρ⊑Ψρ,Ψcρ∈Δs}.
(2) The soft interior of a soft set Φρ is given by Int(Φρ)=⊔{Ψρ:Ψρ⊑Φρ,Ψρ∈Δs}.
Definition 2.6. [27] A soft subset Φρ of STOS (Aρ,Δs) is called a soft clopen, provided that it is both soft open and soft closed.
Definition 2.7. [28] A mapping c:SS(Aρ)→SS(Aρ) is said to be a soft closure operator on A if it has the following properties for every ζρ,Ψρ∈SS(Aρ):
(1) c(ϕρ)=ϕρ.
(2) Ψρ⊑c(Ψρ).
(3) c(c(Ψρ))=c(Ψρ).
(4) c(ζρ⊔Ψρ)=c(ζρ)⊔c(Ψρ).
Definition 2.8. [26] A collection of I of SS(Aρ) is said to be a soft ideal over A with parameters ρ if the following satisfies
(1) If Φρ,Ψρ∈I, then Φρ⊔Ψρ∈I.
(2) If Φρ∈I and Ψρ⊑Φρ, then Ψρ∈I.
Definition 2.9. [9] A collection of F of SS(Aρ) is said to be a soft grill over A with parameters ρ if it obeys the following postulates:
(1) ∅ρ∉F.
(2) If Φρ⊔Ψρ∈F, then Φρ∈F, or Ψρ∈F.
(3) If Φρ∈F and Φρ⊑Ψρ, then Ψρ∈F.
Definition 2.10. [11] A subfamily of P of SS(Aρ) is said to be a soft primal over A with parameters ρ if it satisfies the following postulates:
(1) Aρ∉P.
(2) If Φρ⊓Ψρ∈P, then Φρ∈P, or Ψρ∈P.
(3) If Φρ∈P and Ψρ⊑Φρ, then Ψρ∈P.
Lemma 2.1. [11] A subfamily of P of SS(Aρ) is a soft primal over A with parameters ρ if the following holds:
(1) Aρ∉P.
(2) If Φρ∉P and Φρ⊑Ψρ, then Ψρ∉P.
(3) If Φρ∉P and Ψρ∉P, then Ψρ⊓Φρ∉P.
Definition 2.11. [11] The triple (Aρ,Δs,P) is said to be a primal soft topological space (briefly PSTOS), where (Aρ,Δs) is a soft topological space and P is a soft primal on A.
Definition 2.12. [11] Let (Aρ,Δs,P) be a PSTOS. The operator (⋅)⋄:SS(Aρ)→SS(Aρ) is defined for each soft set Φρ as follows: Φ⋄ρ={aα∈Aρ:Φcρ⊔Ψcρ∈P for all Ψρ∈Δs(aα)}, and consider the closure operator Cl⋄:SS(Aρ)→SS(Aρ) as follows: Cl⋄(Φρ)=Φρ⊔Φ⋄ρ, where Φρ∈SS(Aρ).
Definition 2.13. [31] Let (Aρ,Δs) be an STOS and let Φρ∈SS(Aρ).
(1) A soft point aα is in the soft θ-closure of Φρ (aα∈Clθ(Φρ)) if for every soft open set Ψρ with aα∈Ψρ, we have Cl(Ψρ)⊓Φρ≠∅ρ.
(2) Φρ is a soft θ-closed in (Aρ,Δs) if Clθ(Φρ)=Φρ.
(3) Φρ is a soft θ-open in (Aρ,Δs) if the soft complement of Φρ is soft θ-closed in (Aρ,Δs).
(4) A soft point aα is called a soft θ-interior of Φρ (aα∈Intθ(Φρ) if there exists a soft open set Ψρ such that aα∈Ψρ⊑Cl(Ψρ)⊑Φρ. The soft set of all soft θ-interior points of Φρ is called the soft θ-interior of Φρ and denoted by Intθ(Φρ).
More properties of primal topological space and primal soft topological space can be found in [11,19].
In this section, we define a primal local soft closure operator using the concept of soft topology and soft primal. We give some characterizations of this concept.
Definition 3.1. Let (Aρ,Δs,P) be a PSTOS. For Φρ∈SS(Aρ), we define the operator Λ(⋅):SS(Aρ)→SS(Aρ) as follows: Λ(Φρ)={aα∈Aρ:Φcρ⊔[Cl(Ψρ)]c∈P for all Ψρ∈Δs(aα)}, and it is called a primal local soft closure operator of Φρ with respect to Δs and P.
Lemma 3.1. Let (Aρ,Δs,P) be a PSTOS, then for any Φρ∈SS(Aρ), we have Φ⋄ρ⊑Λ(Φρ).
Proof. Let aα∈Φ⋄ρ, then we have Φcρ⊔Ψcρ∈P, for all Ψρ∈Δs(aα). Since Φcρ⊔[Cl(Ψρ)]c⊑Φcρ⊔Ψcρ, we get Φcρ⊔[Cl(Ψρ)]c∈P and, hence, aα∈Λ(Φρ). So, Φ⋄ρ⊑Λ(Φρ).
The next example shows that Λ(Φρ)⋢Φ⋄ρ, in general.
Example 3.1. Let A={x,y,z,r} with parameter ρ={α}. Consider the following soft sets:
Φρ(1)=(Φ(1),ρ)={(α,{z})};
Φρ(2)=(Φ(2),ρ)={(α,{r})};
Φρ(3)=(Φ(3),ρ)={(α,{y})};
Φρ(4)=(Φ(4),ρ)={(α,{x,z})};
Φρ(5)=(Φ(5),ρ)={(α,{x,z,r})};
Φρ(6)=(Φ(6),ρ)={(α,{z,r})};
Φρ(7)=(Φ(7),ρ)={(α,{x,y,z})};
Φρ(8)=(Φ(8),ρ)={(α,{x,y,x,r})}; and
∅ρ=(Φ(1),ρ)={(α,∅)}.
Then, Δs={∅ρ,Φρ(2),Φρ(4),Φρ(5),Φρ(8)} is a soft primal topology and P={∅ρ,Φρ(1),Φρ(2),Φρ(6)} is a soft primal on A with parameters ρ. We have Λ(Φρ(7))=Φρ(7) and Φ⋄ρ(7)=Φρ(3). It is clear that Λ(Φρ)⋢Φ⋄ρ.
Lemma 3.2. Let (Aρ,Δs) be an STOS, then for any soft subset Φρ∈SS(Aρ), we have
(1) if Φρ is a soft open set, then Cl(Φρ)=Clθ(Φρ),
(2) if Φρ is a soft closed set, then Int(Φρ)=Intθ(Φρ).
Proof. (1): We know that Cl(Φρ)⊑Clθ(Φρ) in general. Let aα∈Clθ(Φρ), then Φρ⊓Cl(Ψρ)≠∅ρ for every soft open set Ψρ containing aα. Since Φρ⊓Cl(Ψρ)≠∅ρ, there exists bα∈Φρ⊓Cl(Ψρ), that is, bα∈Φρ and bα∈Cl(Ψρ). Therefore, Ψρ⊓Υρ≠∅ρ for every soft open set Υρ containing bα, and since Φρ is a soft open set containing bα, Ψρ⊓Φρ≠∅ρ. Thus, aα∈Cl(Φρ) and Cl(Φρ)=Clθ(Φρ).
(2): It follows from (1).
Theorem 3.1. Let Φρ,Ψρ be soft subsets of a PSTOS (Aρ,Δs,P), then the following is true:
(1) Λ(∅ρ)=∅ρ.
(2) If Φρ⊑Ψρ, then Λ(Φρ)⊑Λ(Ψρ).
(3) If Φcρ∉P, then Λ(Φρ)=∅ρ.
(4) Λ(Φρ)=Cl(Λ(Φρ))⊑Clθ(Φρ) and Λ(Φρ) is a soft closed set.
(5) If Λ(Φρ) is a soft open set and Φρ⊑Λ(Φρ), then Λ(Φρ)=Clθ(Φρ).
(6) Λ(Φρ⊔Ψρ)=Λ(Φρ)⊔Λ(Ψρ).
(7) Λ(Φρ⊓Ψρ)⊑Λ(Φρ)⊓Λ(Ψρ).
Proof. (1) Since ∅cρ⊔[Cl(Φρ)]c=Aρ for any soft open set Φρ, Aρ∉P, hence, Λ(∅ρ)=∅ρ.
(2) Let aα∉Λ(Ψρ), then there exists Ωρ∈Δs(aα) ∋ Ψcρ⊔[Cl(Ωρ)]c∉P, and since Ψcρ⊔[Cl(Ωρ)]c⊑Φcρ⊔[Cl(Ωρ)]c, Φcρ⊔[Cl(Ωρ)]c∉P. Hence, we have aα∉Λ(Φρ). Therefore, we get Λ(Φρ)⊑Λ(Ψρ).
(3) Suppose that there exists aα∈Λ(Φρ), then for all Ωρ∈Δs(aα) which means that Φcρ⊔[Cl(Ωρ)]c∈P. By assumption, Φcρ∉P; therefore, Φcρ⊔[Cl(Ωρ)]c∉P, for all Ωρ∈Δs(aα). This is a logical contradiction. Hence, Λ(Φρ)=∅ρ.
(4) First, we know that Λ(Φρ)⊑Cl(Λ(Φρ)) in general. Let aα1∈Cl(Λ(Φρ)), then Λ(Φρ)⊓Ωρ≠∅ρ for all soft open sets Ωρ∈Δs(aα1). Therefore, there exists some soft points aα2∈Λ(Φρ)⊓Ωρ and Ωρ∈Δs(aα2). Now, since aα2∈Λ(Φρ), then Φcρ⊔[Cl(Ωρ)]c∈P and, hence, aα1∈Λ(Φρ). Therefore, we have Cl(Λ(Φρ))⊑Λ(Φρ) and Cl(Λ(Φρ))=Λ(Φρ). Now, let aα1∈Cl(Λ(Φρ))=Λ(Φρ), then Φcρ⊔[Cl(Ωρ)]c∈P, for all soft open set Ωρ∈Δs(aα1). This means that Φρ⊓Cl(Ωρ)≠∅ρ for all soft open set Ωρ∈Δs(aα1). Therefore, aα1∈Clθ(Φρ). Thus, Λ(Φρ)=Cl(Λ(Φρ))⊑Clθ(Φρ).
(5) For any soft subset Φρ of SS(Aρ). By item (4), we have Λ(Φρ)=Cl(Λ(Φρ))⊑Clθ(Φρ), and since Λ(Φρ) is soft open and Φρ⊑Λ(Φρ), by Lemma 3.2, Clθ(Φρ)⊑Clθ(Λ(Φρ))=Cl(Λ(Φρ))=Λ(Φρ)⊑Clθ(Φρ). Hence, Λ(Φρ)=Clθ(Φρ).
(6) According to item (2), we have Λ(Φρ)⊔Λ(Ψρ)⊑Λ(Φρ⊔Ψρ). Let us demonstrate the reverse of the inclusion if aα∉Λ(Φρ)⊔Λ(Ψρ), then aα neither belongs to Λ(Φρ) nor to Λ(Ψρ). So, there exists two soft open sets Ωρ,Υρ∈Δs(aα) ∋ Φcρ⊔[Cl(Ωρ)]c∉P and Ψcρ⊔[Cl(Υρ)]c∉P by properties of primal soft (Φcρ⊔[Cl(Ωρ)]c)⊓(Ψcρ⊔[Cl(Υρ)]c)∉P. Moreover, since P is hereditary and
(Φcρ⊔[Cl(Ωρ)]c)⊓(Ψcρ⊔[Cl(Υρ)]c)=[(Φcρ⊔[Cl(Ωρ)]c)⊓Ψcρ]⊔[(Φcρ⊔[Cl(Ωρ)]c)⊓[Cl(Υρ)]c]=[Φcρ⊓Ψcρ]⊔[[Cl(Ωρ)]c⊓Ψcρ]⊔[Φcρ⊓[Cl(Υρ)]c]⊔[[Cl(Ωρ)]c⊓[Cl(Υρ)]c]⊑[Φcρ⊓Ψcρ]⊔[Cl(Ωρ)]c⊔[Cl(Υρ)]c⊔([Cl(Ωρ)]c⊓[Cl(Υρ)]c)⊑[Φρ⊔Ψρ]c⊔[Cl(Ωρ⊓Υρ)]c, |
then [Φρ⊔Ψρ]c⊔[Cl(Ωρ⊓Υρ)]c∉P. Since Ωρ⊓Υρ∈Δs(aα), then we get aα∉Λ(Φρ⊔Ψρ). Therefore, Λ(Φρ⊔Ψρ)=Λ(Φρ)⊔Λ(Ψρ).
(7) Since Φρ⊓Ψρ⊑Φρ and Φρ⊓Ψρ⊑Ψρ, then by item (2), Λ(Φρ⊓Ψρ)⊑Λ(Φρ) and Λ(Φρ⊓Ψρ)⊑Λ(Ψρ). Therefore, Λ(Φρ⊓Ψρ)⊑Λ(Φρ)⊓Λ(Ψρ).
The following example discusses some properties of Theorem 3.1.
Example 3.2. Let A={a,b} and ρ={α,ϵ}. Consider the following soft sets:
Φρ(1)=(Φ(1),ρ)={(α,∅),(ϵ,{a})};
Φρ(2)=(Φ(2),ρ)={(α,∅),(ϵ,{b})};
Φρ(3)=(Φ(3),ρ)={(α,{a}),(ϵ,∅)};
Φρ(4)=(Φ(4),ρ)={(α,{b}),(ϵ,∅)};
Φρ(5)=(Φ(5),ρ)={(α,{b}),(ϵ,{b})};
Φρ(6)=(Φ(6),ρ)={(α,{a}),(ϵ,{b})};
Φρ(7)=(Φ(7),ρ)={(α,{a,b}),(ϵ,∅)};
Φρ(8)=(Φ(8),ρ)={(α,∅),(ϵ,{a,b})};
Φρ(9)=(Φ(9),ρ)={(α,{a,b}),(ϵ,{b})}; and
Φρ(10)=(Φ(10),ρ)={(α,{b}),(ϵ,{a})}.
Thus, P={∅ρ,Φρ(i):i=1,2,...,9} is a soft primal on A with parameters ρ.
(1) Let Δs={∅ρ,Aρ,Φρ(6),Φρ(10)} be a soft primal topology on a set A with parameters ρ, then the elucidates of the properties Λ(Φρ)⊑Φρ and Φρ⊑Λ(Φρ) are not true in general. It is easy to check that Φρ(6)⋢Λ(Φρ(6))=∅ρ. On the other hand, Λ(Φρ(1))=Φρ(10)⋢Φρ(1).
(2) Let Δs={∅ρ,Aρ} be a soft primal topology on a set A with parameters ρ, then the properties Λ(Φρ⊓Ψρ)=Λ(Φρ)⊓Λ(Ψρ) are not true in general. Obviously, Λ[Φρ(1)⊓Φρ(9)]=Λ[∅ρ]=∅ρ. On the other hand, Λ[Φρ(1)]⊓Λ[Φρ(9)]=Aρ⊓Aρ=Aρ.
Proposition 3.1. Let Φρ,Ψρ be soft subsets of a PSTOS (Aρ,Δs,P) with Φρ as a soft θ-open set, then Φρ⊓Λ(Ψρ)=Φρ⊓Λ(Φρ⊓Ψρ)⊑Λ(Φρ⊓Ψρ).
Proof. Let aα∈Φρ⊓Λ(Ψρ) and Φρ be a soft θ-open, then aα∈Φρ and aα∈Λ(Ψρ). Since Φρ is soft θ-open, then there exists Ωρ which a soft open set such that aα∈Ωρ⊑Cl(Ωρ)⊑Φρ. Let Υρ be any soft open set, ∋ aα∈Υρ, then Υρ⊓Ωρ∈Δs(aα), [Cl(Υρ⊓Ωρ)]c⊔Ψcρ∈P, and [Cl(Υρ)]c⊔[Φρ⊓Ψρ]c=[Cl(Υρ)]c⊔Φcρ⊔Ψcρ⊑[Cl(Υρ)]c⊔[Cl(Ωρ)]c⊔Ψcρ⊑Ψcρ⊔[Cl(Υρ)⊓Cl(Ωρ)]c⊑Ψcρ⊔[Cl(Υρ⊓Ωρ)]c∈P, and, hence, [Cl(Υρ)]c⊔[Φρ⊓Ψρ]c∈P. Therefore, aα∈Λ(Φρ⊓Ψρ). As a result, we get Φρ⊓Λ(Ψρ)⊑Λ(Φρ⊓Ψρ). Hence, Φρ⊓Λ(Ψρ)⊑Φρ⊓Λ(Φρ⊓Ψρ). By (2) of Theorem 3.1, Λ(Φρ⊓Ψρ)⊑Λ(Ψρ), so Φρ⊓Λ(Ψρ)=Φρ⊓Λ(Φρ⊓Ψρ).
Lemma 3.3. Let Φρ,Ψρ be two soft subsets of a PSTOS (Aρ,Δs,P), then Λ(Φρ)∖Λ(Ψρ)=Λ(Φρ∖Ψρ)∖Λ(Ψρ).
Proof. By item (6) of Theorem 3.1, Λ(Φρ)=Λ([Φρ∖Ψρ]⊔[Φρ⊓Ψρ])=Λ(Φρ∖Ψρ)⊔Λ(Φρ⊓Ψρ)⊑Λ(Φρ∖Ψρ)⊔Λ(Φρ). Thus, Λ(Φρ)∖Λ(Ψρ)⊑Λ(Φρ∖Ψρ)∖Λ(Ψρ). Also, by item (2) of Theorem 3.1, Λ(Φρ∖Ψρ)⊑Λ(Φρ), and, hence, Λ(Φρ∖Ψρ)∖Λ(Ψρ)⊑Λ(Φρ)∖Λ(Ψρ). So, we have Λ(Φρ)∖Λ(Ψρ)=Λ(Φρ∖Ψρ)∖Λ(Ψρ).
Corollary 3.1. Let Φρ,Ψρ be soft subsets of a PSTOS (Aρ,Δs,P) with Ψcρ∉P, then Λ(Φρ⊔Ψρ)=Λ(Φρ)=Λ(Φρ∖Ψρ).
Proof. Since Ψcρ∉P by item (3) of Theorem 3.1, Λ(Ψcρ)=∅ρ. By Lemma 3.3, Λ(Φρ)=Λ(Φρ∖Ψρ), and by item (6) of Theorem 3.1, Λ(Φρ⊔Ψρ)=Λ(Φρ)=Λ(Φρ∖Ψρ).
Theorem 3.2. Let (Aρ,Δs,P) be a PSTOS, then the following conditions are equivalent:
(1) Δs∖{Aρ}⊑P;
(2) If Φcρ∉P, then Intθ(Φρ)=∅ρ;
(3) For every soft clopen subset Ψρ, Ψρ⊑Λ(Ψρ);
(4) Aρ=Λ(Aρ).
Proof. (1) ⇒ (2): Let Φcρ∉P and Δs∖{Aρ}⊑P. Suppose that there exists aα∈Intθ(Φρ), then there exists a soft open set Ωρ such that aα∈Ωρ⊑Cl(Ωρ)⊑Φρ, so Φcρ⊑[Cl(Ωρ)]c. Since Φcρ∉P, [Cl(Ωρ)]c∉P. This is contrary for Δs∖{Aρ}⊑P. Therefore, Intθ(Φρ)=∅ρ.
(2) ⇒ (3): Let aα∈Ψρ and assume that aα∉Λ(Ψρ), then there exists Φρ∈Δs(aα) such that, Ψcρ⊔[Cl(Φρ)]c∉P and hence [Ψρ⊓Cl(Φρ)]c∉P. Since isnΨρ soft clopen, by item (2) and Proposition 3.1, aα∈Ψρ⊓Φρ=Int(Ψρ⊓Φρ)⊑Int(Ψρ⊓Cl(Φρ))=Intθ(Ψρ⊓Cl(Φρ))=∅ρ. This is a logical contradiction. Hence, aα∈Λ(Ψρ) and Ψρ⊑Λ(Ψρ).
(3) ⇒ (4): Since Aρ is a soft clopen set, then Aρ=Λ(Aρ).
(4) ⇒ (1): Since Aρ=Λ(Aρ)={aα∈Acρ⊔[Cl(Φρ)]c=[Cl(Φρ)]c∈P,∀aα∈Φρ∈Δs}. Hence, Δs∖{Aρ}⊑P.
Theorem 3.3. Let (Aρ,Δs,P) be a PSTOS and Aρ=Λ(Aρ) with Ψρ be a soft θ-open set, then Ψρ⊑Λ(Ψρ).
Proof. In case Ψρ=∅ρ, we obviously have Ψρ⊑Λ(Ψρ)=∅ρ. Since Aρ=Λ(Aρ) and by Proposition 3.1, we have that for all Ψρ, which is soft θ-open, Ψρ=Λ(Aρ)⊓Ψρ⊑Λ(Aρ⊓Ψρ)=Λ(Ψρ). Thus, Ψρ⊑Λ(Ψρ).
For a soft subset Φρ,Ψρ in SS(Aρ) we note that Φρ=Ψρ [mod P] if [(Φρ∖Ψρ)∪(Ψρ∖Φρ)]c∉P and observe that = [mod P] is an equivalence relation.
Definition 3.2. Let (Aρ,Δs,P) be a PSTOS. A soft subset Φρ of SS(Aρ) is called a soft Baire set with respect to Δs and P if there exists a soft θ-open set Ψρ such that Φρ=Ψρ [mod P], and it is denoted by Φρ∈Bθ.
Proposition 3.2. Let (Aρ,Δs,P) be a PSTOS.
(1) If Φρ∈Bθ and Φcρ∈P, then there exists a non-null soft θ-open set Ψρ such that Φρ=Ψρ [mod P].
(2) Let Δs∖{Aρ}⊑P, then Φρ∈Bθ and Φcρ∈P if and only if there exists a non-null soft θ-open set Ψρ such that Φρ=Ψρ [mod P].
Proof. (1) Assume Φρ∈Bθ and Φcρ∈P. Hence, there exists a soft θ-open set Ψρ such that Φρ=Ψρ [mod P]. If Ψρ=∅ρ, then we have Φρ=∅ [mod P] and [(Φρ∖∅ρ)∪(∅ρ∖Φρ)]c∉P. This mean that Φcρ∉P, which is a contradiction.
(2) Assume there exists a non-null soft θ-open set Ψρ such that Φρ=Ψρ [mod P]; hence, by Definition 3.2, Φρ∈Bθ. Thus Ψρ=(Ψρ∖Jρ)∪Iρ, where Jρ=Φρ∖Ψρ,Iρ=Ψρ∖Φρ, then (Ψρ∖Φρ)c and (Φρ∖Ψρ)c∉P. If Φcρ∉P, then (Φρ∖Jρ)c∉P and Ψcρ∉P. Since Ψρ is a non-null soft θ-open set, there exists a non-null soft open set Ωρ ∋ Ωρ⊆Cl(Ωρ)⊆Ψρ. Since Ψcρ∉P, then [Cl(Ωρ)]c∉P and [Cl(Ωρ)]c is a soft open set. This contradicts that Δs∖{Aρ}⊑P.
Definition 4.1. [11] Let (Aρ,Δs,P) be a PSTOS. An operator λ(⋅):SS(Aρ)→SS(Aρ) defined on Φρ∈SS(Aρ) as λ(Φρ)={aα∈Aρ:∃Ψρ∈Δs(aα) and [Cl(Ψρ)∖Φρ]c∉P} for each soft subset Φρ over Aρ.
The following theorem includes a number of fundamental truths about the behavior of the operator λ(⋅).
Theorem 4.1. Let (Aρ,Δs,P) be PSTOS, then the below characteristics hold for all Φρ,Ψρ∈SS(Aρ):
(1) [λ(Φρ)]c=Λ(Φcρ).
(2) λ(Φρ) is a soft open set.
(3) If Φρ⊑Ψρ, then λ(Φρ)⊑λ(Ψρ).
(4) λ(Φρ⊓Ψρ)=λ(Φρ)⊓λ(Ψρ).
(5) λ(Φρ)=λ(λ(Φρ)) if and only if Λ(Φcρ)=Λ(Λ(Φcρ)).
(6) If Φcρ∉P, then λ(Φρ)=[Λ(Aρ)]c.
(7) If Ψcρ∉P, then λ(Φρ∖Ψρ)=λ(Φρ).
(8) If Ψcρ∉P, then λ(Φρ⊔Ψρ)=λ(Φρ).
(9) If [(Φρ∖Ψρ)⊔(Ψρ∖Φρ)]c∉P, then λ(Φρ)=λ(Ψρ).
Proof. (1): Let aα∉[λ(Φρ)]c then aα∈λ(Φρ). Hence, there exists a soft open set Ψρ containing aα such that Φρ⊔[Cl(Ψρ)]c=[Φcρ⊓Cl(Ψρ)]c=[Cl(Ψρ)∖Φρ]c∉P. So, aα∉Λ(Φcρ) and, hence, Λ(Φcρ)⊑[λ(Φρ)]c.
Conversely, let aα∉Λ(Φcρ), then there exists a soft open set Ψρ containing aα such that [Φcρ]c⊔[Cl(Ψρ)]c=[Cl(Ψρ)∖Φρ]c∉P. So, that aα∈λ(Φρ) and aα∉[λ(Φρ)]c. Hence, [λ(Φρ)]c=Λ(Φcρ).
(2): This derives from item (4) of Theorem 3.1.
(3): This derives from item (2) of Theorem 3.1.
(4): It is derived from item (3) that λ(Φρ⊓Ψρ)⊑λ(Φρ) and λ(Φρ⊓Ψρ)⊑λ(Ψρ) so that λ(Φρ⊓Ψρ)⊑λ(Φρ)⊓λ(Ψρ). Now, let aα∈λ(Φρ)⊓λ(Ψρ), then there exists two soft open sets Iρ and Jρ containing aα such that [Cl(Iρ)∖Φρ]c∉P and [Cl(Jρ)∖Ψρ]c∉P. Let Υρ=Iρ⊓Jρ, which is soft open set containing aα, [Cl(Υρ)∖Φρ]c∉P, and [Cl(Υρ)∖Ψρ]c∉P by heredity. Thus, [Cl(Υρ)∖(Φρ⊓Ψρ)]c⊑[Cl(Υρ)∖Φρ]c⊓[Cl(Υρ)∖Ψρ]c∉P by Lemma 2.1, and, hence, aα∈λ(Φρ⊓Ψρ). Therefore, λ(Φρ⊓Ψρ)=λ(Φρ)⊓λ(Ψρ).
(5): It follows from the facts:
1) [λ(Φρ)]c=Λ(Φcρ).
2) λ[λ(Φρ)]=[Λ(Λ(Φcρ))]c.
(6): By Corollary 1, we obtain that Λ(Φcρ)=Λ((Aρ) if Φcρ∉P, then λ(Φρ)=[Λ(Φcρ]c=[Λ((Aρ)]c.
(7): This follows from Corollary 1 and λ(Φρ∖Ψρ)=[Λ([Φρ∖Ψρ]c)]c=[Λ(Φcρ⊔Ψρ)]c=[Λ(Φcρ]c=λ(Φρ) by item (1).
(8): This follows by Corollary 1 and λ(Φρ⊔Ψρ)=[Λ([Φρ⊔Ψρ]c)]c=[Λ(Φcρ∖Ψρ)]c=[Λ(Φcρ]c=λ(Φρ) by item (1).
(9): Assume that [(Φρ∖Ψρ)⊔(Ψρ∖Φρ)]c∉P. Let Φρ∖Ψρ=Iρ and Ψρ∖Φρ=Jρ. We observe that Icρ,Jcρ∉P. Also, we note that Ψρ=(Φρ∖Iρ)⊔Jρ. Thus, λ(Φρ)=λ(Φρ∖Iρ)=λ((Φρ∖Iρ)⊔Jρ)=λ(Ψρ) by items (7) and (8).
Corollary 4.1. Let (Aρ,Δs,P) be a PSTOS and Φρ be a soft θ-open set, then Φρ⊑λ(Φρ).
Proof. We know that [λ(Φρ)]c=Λ(Φcρ). Now, Λ(Φcρ)⊑Clθ(Φcρ)=Φcρ, since Φcρ is a soft θ-closed set. Therefore, Φρ=(Φcρ)c⊑[Λ(Φcρ)]c=λ(Φρ).
Proposition 4.1. Let (Aρ,Δs,P) be a PSTOS Φρ∈SS(Aρ), then the following hold:
(1) λ(Φρ)=⊔{Ψρ∈Δs:[Cl(Ψρ)∖Φρ]c∉P}.
(2) λ(Φρ)⊒⊔{Ψρ∈Δs:[Cl(Ψρ)∖Φρ]c⊔[Φρ∖Cl(Ψρ)]c∉P}.
Proof. (1): This comes logically from the definition of λ-operator.
(2): Since P is heredity, it is clear that ⊔{Ψρ∈Δs:[Cl(Ψρ)∖Φρ]c⊔[Φρ∖Cl(Ψρ)]c∉P}⊑⊔{Ψρ∈Δs:[Cl(Ψρ)∖Φρ]cP}=λ(Φρ) for all Φρ∈SS(Aρ).
We will conclude this part with some technical results relating to the idempotents of the primal soft closure operator and the λ-operator.
Proposition 4.2. Let (Aρ,Δs,P) be a PSTOS, and for all Φρ∈SS(Aρ), we have
Λ(Λ(Φρ))⊑Λ(Φρ) if and only if λ(Φcρ)⊑λ(λ(Φcρ)).
Proof. Let Φρ∈SS(Aρ), then
Λ(Λ(Φρ))⊑Λ(Φρ)if and only if [Λ(Φρ)]c⊑[Λ(Λ(Φρ))]cif and only if [Λ((Φcρ)c)]c⊑[Λ([Λ(Φcρ)c]c)c]cif and only if λ(Φcρ)⊑[Λ(λ(Φcρ))c]cif and only if λ(Φcρ)⊑λ[λ(Φcρ)]. |
Corollary 4.2. Let (Aρ,Δs,P) be a PSTOS and for all Φρ∈SS(Aρ), then the following criteria are equivalent:
(1) Λ(Λ(Φρ))⊑Λ(Φρ).
(2) λ(Φρ)⊑λ(λ(Φρ)).
Proposition 4.3. Let (Aρ,Δs,P) be a PSTOS with Δs∖{Aρ}⊑P. If Φρ∈Bθ and Φcρ∈P, then λ(Φρ)⊓Intθ(Λ(Φρ))≠∅ρ.
Proof. Let Φρ∈Bθ and Φcρ∈P, then by item (1) of Proposition 3.2, there exists a nun-null soft θ-open set Ψρ such that Φρ=Ψρ [mod P]. By Theorem 3.2 and Proposition 3.1, Ψρ=Ψρ⊓Aρ=Ψρ⊓Λ(Aρ)⊑Λ(Ψρ⊓Aρ)=Λ(Ψρ). This means that Ψρ⊑Λ(Ψρ)=Λ((Φρ∖Jρ)⊔Iρ)=Λ(Φρ), where Jcρ=[Φρ∖Ψρ]c, Icρ=[Ψρ∖Φρ]c∉P by Corollary 3.1. Since Ψρ is a soft θ-open then, Ψρ⊑Intθ(Λ(Φρ)). Also Ψρ⊑λ(Ψρ) by Corollary 4.1 and Φρ=Ψρ [mod P] which implies that [(Φρ∖Ψρ)⊔(Ψρ∖Φρ)]c∉P, hence, Ψρ⊑λ(Ψρ)⊑λ(Φρ) by item (9) of Theorem 4.1. Consequently, we obtain Ψρ⊑λ(Φρ)⊓Intθ(Λ(Φρ)) and λ(Φρ)⊓Intθ(Λ(Φρ))≠∅ρ.
Theorem 4.2. Let (Aρ,Δs,P) be a PSTOS with Δs∖{Aρ}⊑P. If every soft open is a soft θ-open set, then, the following statements are equivalent:
(1) There is Ψρ∈Bθ and Ψcρ∈P such that Ψρ⊑Φρ;
(2) λ(Φρ)⊓Intθ(Λ(Φρ))≠∅ρ;
(3) λ(Φρ)⊓Λ(Φρ)≠∅ρ;
(4) λ(Φρ)≠∅ρ;
(5) λ(Φρ)⊓Φρ≠∅ρ;
(6) There is a non-null soft open Υρ such that [Cl(Υρ)∖Φρ]c∉P and [Cl(Υρ)⊓Φρ]c∈P.
Proof. (1) ⇒ (2): Let Ψρ∈Bθ and Ψcρ∈P such that Ψρ⊑Φρ, then Intθ(Λ(Ψρ))⊑Intθ(Λ(Φρ)) and λ(Ψρ)⊑λ(Φρ) and, hence, Intθ(Λ(Ψρ))⊓λ(Ψρ)⊑Intθ(Λ(Φρ))⊓λ(Φρ). By Proposition 4.3, we have λ(Φρ)⊓Intθ(Λ(Φρ))≠∅ρ.
(2) ⇒ (3): The evidence is clear.
(3) ⇒ (4): The evidence is clear.
(4) ⇒ (5): Let λ(Φρ)≠∅ρ, then there exists a non-null soft open set Ψρ such that [Cl(Ψρ)∖Φρ]c∉P. Since Δs∖{Aρ}⊑P, then [Cl(Ψρ)]c∈P and [Cl(Ψρ)]c=[(Cl(Ψρ)∖Φρ)⊔(Cl(Ψρ)⊓Φρ)]c=[(Cl(Ψρ)∖Φρ)]c⊓[(Cl(Ψρ)⊓Φρ)]c, and we get that [(Cl(Ψρ)⊓Φρ)]c∈P. Now, by Theorem 4.1 and Corollary 4.1, we have ∅ρ≠Cl(Ψρ)⊓Φρ⊑λ(Cl(Ψρ))⊓Φρ=λ[(Cl(Ψρ)∖Φρ)⊔(Cl(Ψρ)⊓Φρ)]⊓Φρ=λ[Cl(Ψρ)⊓Φρ]⊓Φρ⊑λ[Φρ]⊓Φρ. Hence, λ(Φρ)⊓Φρ≠∅ρ.
(5) ⇒ (6): Let λ(Φρ)⊓Φρ≠∅ρ, then λ(Φρ)≠∅ρ, so there exists a non-null soft open set Υρ ∋, [Cl(Υρ)∖Φρ]c∉P and
[Cl(Υρ)]c=[(Cl(Υρ)∖Φρ)⊔(Cl(Υρ)⊓Φρ)]c=[Cl(Υρ)∖Φρ]c⊓[Cl(Υρ)⊓Φρ]c. Since Δs∖{Aρ}⊑P, then [Cl(Υρ)]c∈P. This mean that [Cl(Υρ)⊓Φρ]c∈P.
(6) ⇒ (1): Let Ψcρ=[Cl(Υρ)⊓Φρ]c∈P and Υρ is a non-null soft open set, so [Cl(Υρ)∖Φρ]c∉P. Thus, Ψρ∈Bθ and Ψcρ∈P. Since [(Ψρ∖Cl(Υρ))⊔(Cl(Υρ)∖Ψρ)]c=[Cl(Υρ)∖Φρ]c∉P, [(Ψρ∖Cl(Υρ))⊔(Cl(Υρ)∖Ψρ)]c⊑[(Ψρ∖Υρ)⊔(Υρ∖Ψρ)]c and [Cl(Υρ)]c∈P such that Ψρ=Υρ[mod P], then there is Ψρ∈Bθ and Ψcρ∈P such that Ψρ⊑Φρ.
Now, we introduce a new topology induced by the primal soft closure operator.
Theorem 4.3. Let (Aρ,Δs,P) be a PSTOS with Δs∖{Aρ}⊑P and Φρ∈SS(Aρ), then β={Φρ:Φρ⊑λ(Φρ)} is from a soft topology.
Proof. Let β={Φρ∈SS(Aρ):Φρ⊑λ(Φρ)}. Since Aρ∉P, by item (3) of Theorem 3.1, Λ(∅ρ)=∅ρ and λ(Aρ)=Aρ∖Λ(Aρ∖Aρ)=Aρ∖Λ(∅ρ)=Aρ. Moreover, λ(∅ρ)=Aρ∖Λ(Aρ∖∅ρ)=Aρ∖Aρ=∅ρ by Theorem 3.2. Therefore, we obtain that ∅ρ⊑λ(∅ρ) and Aρ⊑λ(Aρ), so ∅ρ,Aρ∈β.
Now, if Φρ,Ψρ∈β, then Φρ⊓Ψρ⊑λ(Φρ)⊓λ(Ψρ)=λ(Φρ⊓Ψρ), so Φρ⊓Ψρ∈β.
Let {Φρ(α):α∈I}⊑β, then Φρ(α)⊑λ(Φρ(α))⊑λ(⊔α∈IΦρ(α)) for all α∈I, and ⊔α∈IΦρ(α)⊑λ(⊔α∈IΦρ(α)). Hence, β={Φρ:Φρ⊑λ(Φρ)} is from a soft topology.
The next example elucidates the properties of Theorem 4.3.
Example 4.1 Let A={x,y,x} with parameter ρ={α}. Consider the following soft sets:
Φρ(1)=(Φ(1),ρ)={(α,∅)};
Φρ(2)=(Φ(2),ρ)={(α,{x})};
Φρ(3)=(Φ(3),ρ)={(α,{y})};
Φρ(4)=(Φ(4),ρ)={(α,{z})};
Φρ(5)=(Φ(5),ρ)={(α,{x,y})};
Φρ(6)=(Φ(6),ρ)={(α,{x,z})};
Φρ(7)=(Φ(7),ρ)={(α,{y,z})}; and
Φρ(8)=(Φ(8),ρ)={(α,{x,y,x})}.
Thus, Δs={∅ρ,Φρ(2),Φρ(3),Φρ(5),Φρ(8)} is a soft primal topology and P={∅ρ,Φρ(2),Φρ(3),Φρ(5)} is a soft primal on A with parameters ρ. It is clear that Δs∖{Aρ}⊑P and β={Φρ:Φρ⊑λ(Φρ)}={∅ρ,Φρ(4),Φρ(6),Φρ(7),Φρ(8)}, as shown by the following table, and it is clear that the soft primal topologies Δs and β are independent.
![]() |
Lemma 4.1. Let (Aρ,Δs,P) be a PSTOS. A soft set Φρ∈SS(Aρ) is soft closed in (Aρ,β) if and only if Λ(Φρ)⊑Φρ.
Proof. Φρ is soft closed in (Aρ,β) if and only if Φcρ is soft open in (Aρ,β) if and only if Φcρ⊑λ(Φcρ) if and only if Φcρ⊑[Λ([Φcρ]c)]c if and only if Φcρ⊑[Λ(Φρ)]c if and only if Λ(Φρ)⊑Φρ.
Theorem 4.4. Let (Aρ,Δs,P) be a PSTOS and Λ(Λ(Φρ))⊑Λ(Φρ), then Clβ(Φρ)=Φρ∪Λ(Φρ) for all Φρ∈SS(Aρ).
Proof. Since Λ(Φρ∪Λ(Φρ))=Λ(Φρ)∪Λ(Λ(Φρ))=Λ(Φρ)⊆Φρ∪Λ(Φρ), we have that Φρ∪Λ(Φρ) is a soft closed set in topology β containing Φρ by Lemma 4.1. Let us prove that Φρ∪Λ(Φρ) is a minimal soft closed set in topology β containing Φρ. Let aα∈Λ(Φρ)∪Φρ. If aα∈Φρ, then aα∈Clβ(Φρ). If aα∈Λ(Φρ), then for each soft open set Ψρ∈Δs(aα), Φcρ∪[Cl(Ψρ)]c∈P. Since [Clβ(Φρ)]c⊆Φcρ and the property of primal space, we have [Cl(Ψρ)]c∪[Clβ(Φρ)]c∈P. Therefore, aα∈Λ[Clβ(Φρ)], and since Clβ(Φρ) is a soft closed in β, then Λ[Clβ(Φρ)]⊆Clβ(Φρ), and we have aα∈Clβ(Φρ). Hence, Clβ(Φρ)=Φρ∪Λ(Φρ) for any Φρ∈SS(Aρ).
Lemma 4.2. Let (Aρ,Δs,P) be a PSTOS for any Φρ,Ψρ∈SS(Aρ), then Int(Cl(Φρ⊓Ψρ))=Int(Cl(Φρ))⊓Int(Cl(Ψρ)).
Proof. This is the direct result by Lemma 3.5 of [29].
Theorem 4.5. Let (Aρ,Δs,P) be a PSTOS with Δs∖{Aρ}⊑P, then the following soft collection set φ={Φρ∈SS(Aρ):Φρ⊑Int(Cl(λ(Φρ)))} from a soft topology.
Proof. By item (2) of Theorem 4.1 λ(Φρ) is a soft open set for all Φρ∈SS(Aρ) so that β⊑φ. Since ∅ρ,Aρ∈β, then ∅ρ,Aρ∈φ.
Let Φρ,Ψρ∈φ, then Φρ⊓Ψρ=Int(Cl(λ(Φρ)))⊓Int(Cl(λ(Ψρ)))=Int(Cl(λ(Φρ)⊓λ(Ψρ)))=Int(Cl(λ(Φρ⊓Ψρ))) by Theorem 4.1 and Lemma 4.2. Therefore, Φρ⊓Ψρ∈φ.
Let Φρ(i)∈φ:i∈I, then Φρ(i)⊑Int(Cl(λ(Φρ(i))) for all i∈I. So, Φρ(i)⊑Int(Cl(λ(Φρ(i)))⊑Int(Cl(λ(⊔i∈IΦρ(i))) and \sqcup_{i\in I}\Phi_{\rho}(i)\sqsubseteq Int(Cl(\lambda(\sqcup_{i\in I}\Phi_{\rho}(i))) . Hence \sqcup_{i\in I}\Phi_{\rho}(i)\in \varphi and \varphi is from a soft topology.
Remark 4.1. By Theorem 4.1, we have \beta \sqsubseteq \varphi in general but in Example 4.1, it is clear that the soft primal topologies \beta and \varphi are equal.
The strict inequality between these two topologies has a required condition,
Lemma 4.3. Let (\mathcal{A}_{\rho}, \Delta_{s}, \mathcal{P}) be PSTOS . If \beta \sqsubset \varphi , then there exist a soft set \Phi_{\rho} and a point a_{\alpha}\in \Phi_{\rho} such that
(1) [Cl(\Psi_{\rho})\setminus\Phi_{\rho}]^{c} \in \mathcal{P} , for each \Psi_{\rho}\in \Delta_{s}(a_{\alpha}) and,
(2) there exist \Omega_{\rho}\in \Delta_{s}(a_{\alpha}) and a soft open \Upsilon_{\rho}\subseteq \Omega_{\rho} such that [Cl(\Upsilon_{\rho})\setminus\Phi_{\rho}]^{c}\notin \mathcal{P} .
Proof. If \beta \subsetneqq \varphi , then there exists \Phi_{\rho}\in \varphi\setminus \beta . Since \Phi_{\rho}\notin \beta , there exists a_{\alpha}\in \Phi_{\rho} such that
\begin{align*} a_{\alpha}\notin \lambda(\Phi_{\rho}) \, \, \text{iff} & \, \, \, a_{\alpha}\notin [ \Lambda( \Phi_{\rho}^{c})]^{c}\\ \text{iff} & \, \, \, a_{\alpha}\in \Lambda( \Phi_{\rho}^{c})\\ \text{iff} & \, \, \, \forall \, \, \, \Psi_{\rho}\in \Delta_{s}(a_{\alpha}), \, \, \, [Cl(\Psi_{\rho})]^{c}\cup \Phi_{\rho}\in \mathcal{P}\\ \text{iff} & \, \, \, \forall \, \, \, \Psi_{\rho}\in \Delta_{s}(a_{\alpha}), \, \, \, [Cl(\Psi_{\rho})\cap \Phi_{\rho}^{c}]^{c}\in \mathcal{P}\\ \text{iff} & \, \, \, \forall \, \, \, \Psi_{\rho}\in \Delta_{s}(a_{\alpha}), \, \, \, [Cl(\Psi_{\rho})\setminus \Phi_{\rho}]^{c}\in \mathcal{P}. \end{align*} |
Since \Phi_{\rho}\in \varphi , for each y_{\rho}\in \Phi_{\rho} , we have
\begin{align*} y_{\rho} \in & \, Int(Cl( \lambda(\Phi_{\rho})))\\ \text{iff} & \, \, \, \exists \, \, I_{\rho} \in \Delta_{s}(y_{\rho}), \, \, \, I_{\rho}\sqsubseteq Cl( \lambda(\Phi_{\rho}))\\ \text{iff}& \, \, \, \exists \, \, I_{\rho} \in \Delta_{s}(y_{\rho}), \, \, \, \forall \, \, \, z_{\rho}\in I_{\rho}, \forall \, \, \, \Omega_{\rho} \in \Delta_{s}(z_{\rho}), \, \, \, \Omega_{\rho}\sqcap \lambda(\Phi_{\rho})\neq \emptyset_{\rho}\\ \text{iff} & \, \, \, \exists \, \, I_{\rho} \in \Delta_{s}(y_{\rho}), \, \, \, \forall \, \, \, \Omega_{\rho}\sqsubseteq I_{\rho}, \, \, \, [\Omega_{\rho} \in \Delta_{s}\Rightarrow \, \, \, \Omega_{\rho}\sqcap \lambda(\Phi_{\rho})\neq \emptyset_{\rho}]\\ \text{iff} & \, \, \, \exists \, \, I_{\rho} \in \Delta_{s}(y_{\rho}), \, \, \, \forall \, \, \, \Omega_{\rho}\sqsubseteq I_{\rho}, \, \, \, [\Omega_{\rho} \in \Delta_{s}\Rightarrow \, \, \, \Omega_{\rho}\sqcap [ \lambda(\Phi_{\rho}^{c})]^{c}\neq \emptyset_{\rho}]\\ \text{iff} & \, \, \, \exists \, \, I_{\rho} \in \Delta_{s}(y_{\rho}), \, \, \, \forall \, \, \, \Omega_{\rho}\sqsubseteq I_{\rho}, \, \, \, [\Omega_{\rho} \in \Delta_{s}\Rightarrow \, \, \, \Omega_{\rho}\setminus \lambda(\Phi_{\rho}^{c})\neq \emptyset_{\rho}]\\ \text{iff} & \, \, \, \exists \, \, I_{\rho} \in\Delta_{s}(y_{\rho}), \, \forall \, \Omega_{\rho}\sqsubseteq I_{\rho}, \, [\Omega_{\rho} \in \Delta_{s}\Rightarrow \, [\, \, \exists \, \, \Upsilon_{\rho}\sqsubseteq \Omega_{\rho}\, \, \, (\Upsilon_{\rho}\in \Delta_{s})\\ & \Rightarrow [Cl(\Upsilon_{\rho})\setminus\Phi_{\rho}]^{c}\notin \mathcal{P})]. \end{align*} |
Definition 5.1. Let (\mathcal{A}_{\rho}, \Delta_{s}, \mathcal{P}) be a PSTOS . We say that a soft topology \Delta_{s} is suitable with the primal \mathcal{P} say primal soft suitable, if for every \Phi_{\rho}\in SS(\mathcal{A}_{\rho}) , and a_{\rho}\in \Phi_{\rho} there exists \Psi_{\rho}\in \Delta_{s}(a_{\rho}) , such that [Cl(\Psi_{\rho})]^{c} \sqcup \Phi_{\rho}^{c}\notin \mathcal{P} , then \Phi_{\rho}^{c}\notin \mathcal{P} .
Remark 5.1. Let (\mathcal{A}_{\rho}, \Delta_{s}, \mathcal{P}) be a PSTOS , then we have the following:
(1) If a soft primal on \mathcal{A} is SS(\mathcal{A}_{\rho})\setminus\mathcal{A}_{\rho} with the family of all soft sets over \mathcal{A} with parameters \rho , then soft topological and primal soft topological spaces are an identical.
(2) If a parameter \rho is singleton, then primal topological and primal soft topological spaces are identical.
(3) If a soft primal on \mathcal{A} is SS(\mathcal{A}_{\rho})\setminus\mathcal{A}_{\rho} and a parameter \rho is singleton, then a topological space and primal soft topological space are equivalent. So, primal soft suitable space and suitable space in classical topology are equivalent if a soft primal on \mathcal{A} is SS(\mathcal{A}_{\rho})\setminus\mathcal{A}_{\rho} and a parameter \rho is singleton.
We now give some equivalent descriptions of this definition.
Theorem 5.1. Let (\mathcal{A}_{\rho}, \Delta_{s}, \mathcal{P}) be a PSTOS . The subsequent properties are equivalent for primal soft suitable:
(1) \Delta_{s} is primal soft suitable with the primal \mathcal{P} .
(2) If a subset \Phi_{\rho}\in SS(\mathcal{A}_{\rho}) includes a cover of soft open sets, each with its own soft closure union with \Phi_{\rho}^{c} is not in \mathcal{P} , then \Phi_{\rho}^{c}\notin \mathcal{P} .
(3) For every \Phi_{\rho}\in SS(\mathcal{A}_{\rho}) , \Phi_{\rho}\cap \Lambda(\Phi_{\rho}) = \emptyset_{\rho} implies that \Phi_{\rho}^{c}\notin \mathcal{P} .
(4) For every \Phi_{\rho}\in SS(\mathcal{A}_{\rho}) , [\Phi_{\rho}\setminus \Lambda(\Phi_{\rho})]^{c}\notin \mathcal{P} .
(5) For every \Phi_{\rho}\in SS(\mathcal{A}_{\rho}) , if there is non-null subset \Psi_{\rho}\sqsubseteq \Phi_{\rho} with \Psi_{\rho}\sqsubseteq \Lambda(\Psi_{\rho}) then, \Phi_{\rho}^{c}\notin \mathcal{P} .
Proof. (1) \Rightarrow (2): It is obvious to prove.
(2) \Rightarrow (3): Let a_{\alpha}\in\Phi_{\rho}\in SS(\mathcal{A}_{\rho}) . Since \Phi_{\rho}\sqcap \Lambda(\Phi_{\rho}) = \emptyset_{\rho} then, a_{\alpha}\notin \Lambda(\Phi_{\rho}) and there exists \Psi_{\rho}(a_{\alpha})\in \Delta_{s}(a_{\alpha}) , \ni [Cl(\Psi_{\rho}(a_{\alpha}))]^{c}\cup \Phi_{\rho}^{c} \notin \mathcal{P} . So, we have \Phi_{\rho}\subseteq \sqcup\{\Psi_{\rho}(a_{\alpha}): a_{\alpha}\in \Phi_{\rho}\} and \Psi_{\rho}(a_{\alpha})\in \Delta_{s}(a_{\alpha}) , and by item (2), \Phi_{\rho}^{c}\notin \mathcal{P} .
(3) \Rightarrow (4): For any \Phi_{\rho}\in SS(\mathcal{A}_{\rho}) , \Phi_{\rho}\setminus \Lambda(\Phi_{\rho})\sqsubseteq \Phi_{\rho} and (\Phi_{\rho}\setminus \Lambda(\Phi_{\rho}))\sqcap \Lambda(\Phi_{\rho}\setminus \Lambda(\Phi_{\rho}))\sqsubseteq (\Phi_{\rho}\setminus \Lambda(\Phi_{\rho}))\sqcap \Lambda(\Phi_{\rho}) = \emptyset_{\rho} . By item (3), (\Phi_{\rho}\setminus \Lambda(\Phi_{\rho}))^{c}\notin \mathcal{P} .
(4) \Rightarrow (5): By item (4), for every \Phi_{\rho}\in SS(\mathcal{A}_{\rho}) , [\Phi_{\rho}\setminus \Lambda(\Phi_{\rho})]^{c}\notin \mathcal{P} . Let \Phi_{\rho}\setminus \Lambda(\Phi_{\rho}) = J_{\rho}\notin \mathcal{P} , then \Phi_{\rho} = J_{\rho}\sqcup (\Phi_{\rho}\cap \Lambda(\Phi_{\rho})) and by items (3) and (6) of Theorem 3.1, \Lambda(\Phi_{\rho}) = \Lambda(J_{\rho})\sqcup \Lambda(\Phi_{\rho}\sqcap \Lambda(\Phi_{\rho})) = \Lambda(\Phi_{\rho}\cap \Lambda(\Phi_{\rho})) . Therefore, we have \Psi_{\rho} = \Phi_{\rho}\sqcap \Lambda(\Phi_{\rho}) = \Phi_{\rho}\sqcap \Lambda(\Phi_{\rho}\sqcap \Lambda(A))\sqsubseteq \Lambda(\Phi_{\rho}\sqcap \Lambda(\Phi_{\rho})) = \Lambda(\Psi_{\rho}) and \Psi_{\rho} = \Phi_{\rho}\sqcap \Lambda(\Phi_{\rho})\sqsubseteq \Phi_{\rho} . By the assumption \Phi_{\rho}\sqcap \Lambda(\Phi_{\rho}) = \emptyset_\rho , (\Phi_{\rho}\setminus \Lambda(\Phi_{\rho}))^{c} = \Phi_{\rho}^{c}\notin \mathcal{P} .
(5) \Rightarrow (1): Let \Phi_{\rho}\in SS(\mathcal{A}_{\rho}) and assume that for every a_{\alpha}\in \Phi_{\rho} , there exists \Upsilon\in \Delta_{s}(a_{\alpha}) such that [Cl(\Upsilon)]^{c}\sqcup \Phi_{\rho}^{c }\notin \mathcal{P} . Thus, \Phi_{\rho}\sqcap \Lambda(\Phi_{\rho}) = \emptyset_{\rho} (if a_{\alpha}\in \Phi_{\rho}\sqcap \Lambda(\Phi_{\rho}) , then for every \Upsilon\in \Delta_{s}(a_{\alpha}) , we have [Cl(\Upsilon)]^{c}\sqcup \Phi_{\rho}^{c }\in \mathcal{P} , which is a contradiction). Suppose that \Phi_{\rho} contains \Psi_{\rho} such that \Psi_{\rho} \sqsubseteq \Lambda (\Psi_{\rho}) , then \Psi_{\rho} = \Psi_{\rho}\sqcap \Lambda (\Psi_{\rho}) \sqsubseteq \Phi_{\rho}\sqcap \Lambda(\Phi_{\rho}) = \emptyset_{\rho} . Therefore, \Phi_{\rho} contains a non-null subset \Psi_{\rho} with \Psi_{\rho} \sqsubseteq \Lambda (\Psi_{\rho}) . Hence, \Phi_{\rho}^{c}\notin \mathcal{P} , and \Delta_{s} is primal soft suitable with the primal \mathcal{P} .
The next example elucidates the properties of Theorem 5.1.
Example 5.1. Take a soft primal topology \Delta_{s} = \{\emptyset_{\rho}, \Phi_{\rho}(2), \Phi_{\rho}(3), \Phi_{\rho}(5), \Phi_{\rho}(8)\} and soft primal \mathcal{P} = \{\emptyset_{\rho}, \Phi_{\rho}(2), \Phi_{\rho}(3), \Phi_{\rho}(5)\} on \mathcal{A} with parameters \rho , which are displayed in Example 4.1. It is clear that \Delta_{s}\setminus\{\mathcal{A}_{\rho}\}\sqsubseteq \mathcal{P} and \Delta_{s} is primal soft suitable with the primal \mathcal{P} , as shown by the following table.
![]() |
Theorem 5.2. Let (\mathcal{A}_{\rho}, \Delta_{s}, \mathcal{P}) be a PSTOS. If \Delta_{s} is primal soft suitable with the primal \mathcal{P}, then for all \Phi_{\rho}\in SS(\mathcal{A}_{\rho}) , the subsequent are equivalent:
(1) \Phi_{\rho}\sqcap \Lambda(\Phi_{\rho}) = \emptyset_{\rho} implies that \Lambda(\Phi_{\rho}) = \emptyset_{\rho} ;
(2) \Lambda(\Phi_{\rho}\setminus \Lambda(\Phi_{\rho})) = \emptyset_{\rho} ;
(3) \Lambda(\Phi_{\rho}\sqcap \Lambda(\Phi_{\rho})) = \Lambda(\Phi_{\rho}) .
Proof. First, we demonstrate that (1) holds if \Delta_{s} is primal soft suitable with the primal \mathcal{P} . Let \Phi_{\rho}\in SS(\mathcal{A}_{\rho}) and \Phi_{\rho}\sqcap \Lambda(\Phi_{\rho}) = \emptyset_{\rho} , then by Theorem 5.1, \Phi_{\rho}^{c}\notin \mathcal{P} , and by Theorem 3.1 (3), \Lambda(\Phi_{\rho}) = \emptyset_{\rho} .
(1) \Rightarrow (2): Assume that for every \Phi_{\rho}\in SS(\mathcal{A}_{\rho}) , \Phi_{\rho}\sqcap \Lambda(\Phi_{\rho}) = \emptyset_{\rho} implies that \Lambda(\Phi_{\rho}) = \emptyset_{\rho} . Let \Psi_{\rho} = \Phi_{\rho}\setminus \Lambda(\Phi_{\rho}) , then
\begin{align*} \Psi_{\rho}\sqcap \Lambda(\Psi_{\rho}) & = (\Phi_{\rho}\setminus \Lambda(\Phi_{\rho}))\sqcap \Lambda(\Phi_{\rho}\setminus \Lambda(\Phi_{\rho}))\\ & = (\Phi_{\rho}\sqcap [ \Lambda(\Phi_{\rho})]^{c})\sqcap \Lambda(\Phi_{\rho}\sqcap [ \Lambda(\Phi_{\rho})]^{c})\\ &\sqsubseteq (\Phi_{\rho}\sqcap [ \Lambda(\Phi_{\rho})]^{c})\sqcap [ \Lambda(\Phi_{\rho})\sqcap ( \Lambda[ \Lambda(\Phi_{\rho})]^{c})] = \emptyset_{\rho}. \end{align*} |
By item (1), we have \Lambda(\Psi_{\rho}) = \emptyset_{\rho} . Hence, \Lambda(\Phi_{\rho}\setminus \Lambda(\Phi_{\rho})) = \emptyset .
(2) \Rightarrow (3): Assume for every \Phi_{\rho}\in SS(\mathcal{A}_{\rho}) , \Lambda(\Phi_{\rho}\setminus \Lambda(\Phi_{\rho})) = \emptyset_{\rho} .
\begin{align*} \Phi_{\rho} & = (\Phi_{\rho}\setminus \Lambda(\Phi_{\rho}))\sqcup (\Phi_{\rho}\sqcap \Lambda(\Phi_{\rho}))\\ \Lambda(\Phi_{\rho})& = \Lambda[(\Phi_{\rho}\setminus \Lambda(\Phi_{\rho}))\sqcup (\Phi_{\rho}\sqcap \Lambda(\Phi_{\rho}))]\\ & = \Lambda(\Phi_{\rho}\setminus \Lambda(\Phi_{\rho}))\sqcup \Lambda(\Phi_{\rho}\sqcap \Lambda(\Phi_{\rho}))\\ & = \Lambda(\Phi_{\rho}\sqcap \Lambda(\Phi_{\rho})). \end{align*} |
(3) \Rightarrow (1): Assume for every \Phi_{\rho}\in SS(\mathcal{A}_{\rho}) , \Lambda(\Phi_{\rho})\sqcap\Phi_{\rho} = \emptyset_{\rho} and \Lambda(\Lambda(\Phi_{\rho})\sqcap \Phi_{\rho}) = \Lambda(\Phi_{\rho}) . This implies that \emptyset_{\rho} = \Lambda(\emptyset_{\rho}) = \Lambda(\Phi_{\rho}) .
Theorem 5.3. Let (\mathcal{A}_{\rho}, \Delta_{s}, \mathcal{P}) be a PSTOS. If \Delta_{s} is primal soft suitable with the primal \mathcal{P}, then, for every soft \theta -open \Phi_{\rho} and any subset \Psi_{\rho}\in SS(\mathcal{A}_{\rho}) , we have Cl(\Lambda(\Phi_{\rho}\sqcap \Psi_{\rho})) = \Lambda(\Phi_{\rho}\sqcap \Psi_{\rho})\sqsubseteq \Lambda(\Phi_{\rho}\sqcap \Lambda(\Psi_{\rho}))\sqsubseteq Cl_{\theta}(\Phi_{\rho}\sqcap \Lambda(\Psi_{\rho})) .
Proof. By Theorem 3.1 and Theorem 5.2 (3), we have \Lambda(\Psi_{\rho}\sqcap \Phi_{\rho}) = \Lambda((\Psi_{\rho}\sqcap \Phi_{\rho})\sqcap \Lambda(\Psi_{\rho}\sqcap \Phi_{\rho}))\sqsubseteq \Lambda(\Phi_{\rho}\sqcap \Lambda(\Psi_{\rho})) . Moreover, again by Theorem 3.1, Cl(\Lambda(\Phi_{\rho}\cap \Psi_{\rho})) = \Lambda(\Phi_{\rho}\sqcap \Psi_{\rho})\sqsubseteq \Lambda(\Phi_{\rho}\sqcap \Lambda(\Psi_{\rho}))\sqsubseteq Cl_{\theta}(\Phi_{\rho}\sqcap \Lambda(\Psi_{\rho})) .
Theorem 5.4. Let (\mathcal{A}_{\rho}, \Delta_{s}, \mathcal{P}) be a PSTOS , then \Delta_{s} is a primal soft suitable with the primal \mathcal{P} if and only if [\Lambda(\Phi_{\rho})\setminus \Phi_{\rho}]^{c} \notin \mathcal{P} for every \Phi_{\rho}\in SS(\mathcal{A}_{\rho}) .
Proof. Necessity. Assume \Delta_{s} is primal soft suitable with the primal \mathcal{P} and let \Phi_{\rho}\in SS(\mathcal{A}_{\rho}) . Observe that a_{\alpha}\in \lambda(\Phi_{\rho})\setminus\Phi_{\rho} if and only if a_{\alpha}\notin \Phi_{\rho}, and a_{\alpha}\notin \Lambda(\Phi_{\rho}^{c}) if and only if a_{\alpha}\notin \Phi_{\rho} and there exists \Psi_{\rho}\in \Delta_{s}(a_{\alpha}) \ni [Cl(\Psi_{\rho})\setminus \Phi_{\rho}]^{c} = [Cl(\Psi_{\rho})]^{c}\sqcup \Phi_{\rho}\notin \mathcal{P} (since \Delta_{s} is primal soft suitable with the primal \mathcal{P} then \Phi_{\rho}\notin \mathcal{P} ) if and only if there exists \Psi_{\rho}\in \Delta_{s}(a_{\alpha}) \ni a_{\alpha}\in [Cl(\Psi_{\rho})\setminus\Phi_{\rho}]^{c}\notin \mathcal{P} . Now, for each a_{\alpha}\in \lambda(\Phi_{\rho})\setminus\Phi_{\rho} and \Psi_{\rho}\in \Delta_{s}(a_{\alpha}) , [Cl(\Psi_{\rho})\sqcap (\lambda(\Phi_{\rho})\setminus\Phi_{\rho})]^{c} = [Cl(\Psi_{\rho})]^{c}\sqcup [(\lambda(\Phi_{\rho})\setminus\Phi_{\rho})]^{c}\notin \mathcal{P} by heredity and, hence, [\lambda(\Phi_{\rho})\setminus\Phi_{\rho}]^{c} \notin \mathcal{P} by assumption that \Delta_{s} is primal soft suitable with the primal \mathcal{P} .
Sufficiency. Let \Phi_{\rho}\in SS(\mathcal{A}_{\rho}) and assume that for each a_{\alpha}\in \Phi_{\rho} , there exists \Psi_{\rho}\in \Delta_{s}(a_{\alpha}) \ni Cl(\Psi_{\rho})]^{c}\cup \Phi_{\rho}^{c}\notin \mathcal{P} . Observe that \lambda(\Phi_{\rho}^{c})\setminus(\Phi_{\rho}^{c}) = \Phi_{\rho}\setminus \Lambda(\Phi_{\rho}) = \{a_{\alpha}: there exists \Psi_{\rho}\in \Delta_{s}(a_{\alpha}) such that a_{\alpha}\in [Cl(\Psi_{\rho})]^{c} \sqcup \Phi_{\rho}^{c} \notin \mathcal{P}\} . Thus, we have [\Phi_{\rho}\setminus \Lambda(\Phi_{\rho})]^{c} = [\lambda(\Phi_{\rho}^{c})\setminus(\Phi_{\rho}^{c})]^{c}\notin \mathcal{P} and, hence, \Delta_{s} is primal soft suitable with the primal \mathcal{P} .
Theorem 5.5. Let (\mathcal{A}_{\rho}, \Delta_{s}, \mathcal{P}) be a PSTOS such that \Delta_{s} is primal soft suitable with the primal \mathcal{P}, then \beta = \{ \lambda(\Phi_{\rho})\setminus \Psi_{\rho}: \Phi_{\rho}, \Psi_{\rho}\in SS(\mathcal{A}_{\rho}), \, \, \Psi_{\rho}^{c}\notin \mathcal{P}\}
Proof. By Corollary 4.2, we have that \lambda(\Phi_{\rho})\setminus\Psi_{\rho}\sqsubseteq \lambda(\Phi_{\rho}) \sqsubseteq \lambda[\lambda(\Phi_{\rho})] = \lambda[\lambda(\Phi_{\rho})\setminus\Psi_{\rho}] by item (7) Theorem 4.1. So each set of the form \lambda(\Phi_{\rho})\setminus\Psi_{\rho} is in \beta by Theorem 4.3.
Let \Phi_{\rho}\in \beta . Therefore, \Phi_{\rho}\sqsubseteq \lambda(\Phi_{\rho}) but from \Delta_{s} is primal soft suitable with the primal \mathcal{P} . By Theorem 5.4, we have [\lambda(\Phi_{\rho})\setminus\Phi_{\rho}]^{c}\notin \mathcal{P} , that is, there exists \Psi_{\rho}\in SS(\mathcal{A}_{\rho}) such that \Psi_{\rho} = \lambda(\Phi_{\rho})\setminus\Phi_{\rho} . Hence, \Phi_{\rho} = \lambda(\Phi_{\rho})\setminus\Psi_{\rho} and \Psi_{\rho}^{c}\notin \mathcal{P} . So, \Phi_{\rho}\in \{ \lambda(\Phi_{\rho})\setminus\Psi_{\rho} : \Phi_{\rho}\in SS(\mathcal{A}_{\rho}), \, \, \Psi_{\rho}^{c}\notin \mathcal{P}\} = \beta .
Proposition 5.1. Let (\mathcal{A}_{\rho}, \Delta_{s}, \mathcal{P}) be a PSTOS and \Delta_{s} be primal soft suitable with the primal \mathcal{P} and \Phi_{\rho}\in SS(\mathcal{A}_{\rho}) . If \Psi_{\rho}\sqsubseteq \Lambda(\Phi_{\rho})\sqcup \lambda(\Phi_{\rho}) and \Psi_{\rho} is non-null soft open, then [\Psi_{\rho}\setminus\Phi_{\rho}]^{c}\notin \mathcal{P} and [Cl(\Psi_{\rho})]^{c}\sqcup \Phi_{\rho}^{c}\in \mathcal{P} .
Proof. If \Psi_{\rho}\sqsubseteq \Lambda(\Phi_{\rho})\sqcap \lambda(\Phi_{\rho}) , then [\lambda(\Phi_{\rho})\setminus\Phi_{\rho}]^{c}\sqsubseteq[\Psi_{\rho}\setminus\Phi_{\rho}]^{c} by Theorem 5.4 and hence [\Psi_{\rho}\setminus\Phi_{\rho}]^{c}\notin \mathcal{P} by heredity. Since \Psi_{\rho} is non-null soft open and \Psi_{\rho}\sqsubseteq \Lambda(\Phi_{\rho}) , we have [Cl(\Psi_{\rho})]^{c}\sqcup \Phi_{\rho}^{c} \in \mathcal{P} by the definition of \Lambda(\Phi_{\rho}) .
By Theorem 4.1 (9), we have that if \Phi_{\rho} = \Psi_{\rho} [mod \mathcal{P} ], then \lambda(\Phi_{\rho}) = \lambda(\Psi_{\rho}) .
Lemma 5.1. Let (\mathcal{A}_{\rho}, \Delta_{s}, \mathcal{P}) be a PSTOS and \Delta_{s} be primal soft suitable with the primal \mathcal{P} . If \Phi_{\rho} and \Psi_{\rho} are soft \theta -open and \lambda(\Phi_{\rho}) = \lambda(\Psi_{\rho}), then \Phi_{\rho} = \Psi_{\rho} [mod \mathcal{P} ].
Proof. Since \Phi_{\rho} is a soft \theta -open, by Corollary 4.1, we have \Phi_{\rho}\sqsubseteq \lambda(\Phi_{\rho}) , and, hence, \Phi_{\rho}\setminus \Psi_{\rho}\sqsubseteq \lambda(\Phi_{\rho})\setminus \Psi_{\rho} = \lambda(\Psi_{\rho})\setminus \Psi_{\rho} and [\lambda(\Psi_{\rho})\setminus \Psi_{\rho}]^{c}\notin \mathcal{P} by Theorem 5.4. Therefore, [\Phi_{\rho}\setminus\Psi_{\rho}]^{c}\notin \mathcal{P} . Similarly, [\Psi_{\rho}\setminus\Phi_{\rho}]^{c}\notin \mathcal{P} . Now, (\Phi_{\rho}\setminus\Psi_{\rho})^{c}\sqcap (\Psi_{\rho}\setminus\Phi_{\rho})^{c} = [(\Phi_{\rho}\setminus\Psi_{\rho})\sqcup (\Psi_{\rho}\setminus\Phi_{\rho})]^{c} \notin \mathcal{P} by additivity. Hence, \Phi_{\rho} = \Psi_{\rho} [mod \mathcal{P} ].
Theorem 5.6. Let (\mathcal{A}_{\rho}, \Delta_{s}, \mathcal{P}) be a PSTOS and \Delta_{s} be primal soft suitable with the primal \mathcal{P} . If \Phi_{\rho}, \Psi_{\rho}\in \mathcal{B}_{\theta} and \lambda(\Phi_{\rho}) = \lambda(\Psi_{\rho}), then \Phi_{\rho} = \Psi_{\rho} [mod \mathcal{P} ].
Proof. Let \Phi_{\rho}, \Psi_{\rho}\in \mathcal{B}_{\theta} , then there is a soft \theta -open \Upsilon_{\rho} and \Omega_{\rho} such that \Phi_{\rho} = \Upsilon_{\rho} [mod \mathcal{P} ] and \Psi_{\rho} = \Omega_{\rho} [mod \mathcal{P} ]. Now, \lambda(\Phi_{\rho}) = \lambda(\Upsilon_{\rho}) and \lambda(\Psi_{\rho}) = \lambda(\Omega_{\rho}) by item (9) of Theorem 4.1. Since \lambda(\Phi_{\rho}) = \lambda(\Psi_{\rho}) implies that \lambda(\Upsilon_{\rho}) = \lambda(\Omega_{\rho}) , then \Upsilon_{\rho} = \Omega_{\rho} [mod \mathcal{P} ] by Lemma 4.1. Hence, \Phi_{\rho} = \Psi_{\rho} [mod \mathcal{P} ] by transitivity.
Theorem 5.7. Let (\mathcal{A}_{\rho}, \Delta_{s}, \mathcal{P}) be a PSTOS with \Delta_{s}\setminus\{\mathcal{A}_{\rho}\}\sqsubseteq \mathcal{P} and \Delta_{s} be primal soft suitable with the primal \mathcal{P} , then for any \Psi_{\rho}\in SS(\mathcal{A}_{\rho}) , we have \lambda(\Psi_{\rho})\sqsubseteq \Lambda(\Psi_{\rho}) .
Proof. Suppose that a_{\alpha}\in \lambda(\Psi_{\rho}) and a_{\alpha}\notin \Lambda(\Psi_{\rho}) , then there exists a non-null soft open set \Phi_{\rho} \ni [Cl(\Phi_{\rho})\sqcap \Psi_{\rho}]^{c} \notin \mathcal{P} . Since a_{\alpha}\in \lambda(\Psi_{\rho}) , by Proposition 4.1, a_{\alpha}\in \sqcup \{\Phi_{\rho}\in \Delta_{s} : [Cl(\Phi_{\rho})\setminus\Psi_{\rho}]^{c}\notin \mathcal{P}\} , and there exists a soft open set \Upsilon_{\rho}\in \Delta_{s}(a_{\alpha}) , and [Cl(\Upsilon_{\rho})\setminus\Psi_{\rho}]^{c}\notin \mathcal{P} . Now, we have \Phi_{\rho}\sqcap \Upsilon_{\rho}\in \Delta_{s}(a_{\alpha}) , [Cl(\Phi_{\rho}\sqcap\Upsilon_{\rho}) \sqcap \Psi_{\rho}]^{c}\notin \mathcal{P} , and [Cl(\Phi_{\rho}\sqcap \Upsilon_{\rho}) \setminus \Psi_{\rho}]^{c}\notin \mathcal{P} by heredity. Hence, by finite additivity, we get [Cl(\Phi_{\rho}\sqcap \Upsilon_{\rho})]^{c} = [Cl(\Phi_{\rho}\sqcap \Upsilon_{\rho}) \sqcap \Psi_{\rho}]^{c}\sqcap [Cl(\Phi_{\rho}\sqcap \Upsilon_{\rho})\setminus \Psi_{\rho}]^{c}\notin \mathcal{P} . Since [Cl(\Phi_{\rho}\sqcap \Upsilon_{\rho})]^{c}\in \Delta_{s}(a_{\alpha}) , this is in opposition to \Delta_{s}\setminus\{\mathcal{A}_{\rho}\}\sqsubseteq \mathcal{P} . So, a_{\alpha}\in \Lambda(\Psi_{\rho}) . This means that \lambda(\Psi_{\rho})\sqsubseteq \Lambda(\Psi_{\rho}) .
Shabir and Naz [4] and Çaǧman et al. [24] have introduced a soft topology on a universal set, extending the conventional (crisp) topology. This topological generalization has proved to be an intriguing field of research. The literature has several ways of creating soft topologies. Acharjee et al. [16] and Al-Omari et al. [17,18] have introduced the primal topology, which builds on the conventional (crisp) topology. The study of topological generalization is gaining popularity. Al-shami et al. [11] has contributed to a primal soft topological space that combines a soft topological space with a soft primal. Our investigation focused on some operators for soft primal space and we have introduced a new topology induced by the primal soft closure operator. Several simple procedures on primal spaces were described. This research has focused on soft primal, a companion concept to soft grills, and covers fundamental operations on them. Our findings in this work are early, and further research into the features of the primal soft topology may provide more insights. This study aims to contribute to the trend of merging soft primal structures with rough approximation spaces in both classical and soft contexts.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors are highly grateful to editors and referees for their valuable comments and suggestions for improving the paper.
The authors declare that they have no conflict of interest.
[1] |
D. Molodtsov, Soft set theory first results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5
![]() |
[2] |
O. Dalkiliç, N. Demirtaş, Algorithms for COVID-19 outbreak using soft set theory: Estimation and application, Soft Comput., 27 (2023), 3203–3211. https://doi.org/10.1007/s00500-022-07519-5 doi: 10.1007/s00500-022-07519-5
![]() |
[3] | Z. A. Ameen, R. A. Mohammed, T. M. Al-shami, B. A. Asaad, Novel fuzzy topologies formed by fuzzy primal, J. Intell. Fuzzy Syst., 2024, 1–10. |
[4] |
M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl., 61 (2011), 1786–1799. https://doi.org/10.1016/j.camwa.2011.02.006 doi: 10.1016/j.camwa.2011.02.006
![]() |
[5] |
S. Al Ghour, Z. A. Ameen, On soft submaximal spaces, Heliyon, 8 (2022), e10574. https://doi.org/10.1016/j.heliyon.2022.e10574 doi: 10.1016/j.heliyon.2022.e10574
![]() |
[6] |
T. M. Al-shami, New soft structure: Infra soft topological spaces, Math. Probl. Eng., 2021 (2021), 3361604. https://doi.org/10.1155/2021/3361604 doi: 10.1155/2021/3361604
![]() |
[7] |
Z. A. Ameen, B. A. Asaad, T. M. Al-shami, Soft somewhat continuous and soft somewhat open functions, TWMS J. Pure Appl. Math., 13 (2023), 792–806. https://doi.org/10.48550/arXiv.2112.15201 doi: 10.48550/arXiv.2112.15201
![]() |
[8] |
A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh, A. M. A. El-latif, Soft ideal theory soft local function and generated soft topological spaces, Appl. Math. Inf. Sci., 8 (2014), 1595–1603. https://doi.org/10.12785/amis/080413 doi: 10.12785/amis/080413
![]() |
[9] | R. A. Mahmoud, Remarks on soft topological spaces with soft grill, Far East J. Math. Sci., 86 (2014), 111–128. |
[10] |
Z. A. Ameen, M. H. Alqahtani, Baire category soft sets and their symmetric local properties, Symmetry, 15 (2023), 1810. https://doi.org/10.3390/sym15101810 doi: 10.3390/sym15101810
![]() |
[11] |
T. M. Al-shami, Z. A. Ameen, R. Abu-Gdairi, A. Mhemdi, On primal soft topology, Mathematics, 11 (2023), 2329. https://doi.org/10.3390/math11102329 doi: 10.3390/math11102329
![]() |
[12] |
Z. A. Ameen, M. H. Alqahtani, Congruence representations via soft ideals in soft topological spaces, Axioms, 12 (2023), 1015. https://doi.org/10.3390/axioms12111015 doi: 10.3390/axioms12111015
![]() |
[13] |
Z. A. Ameen, M. H. Alqahtani, Some classes of soft functions defined by soft open sets modulo soft sets of the first category, Mathematics, 11 (2023), 4368. https://doi.org/10.3390/math11204368 doi: 10.3390/math11204368
![]() |
[14] |
M. Terepeta, On separating axioms and similarity of soft topological spaces, Soft Comput., 23 (2019), 1049–1057. https://doi.org/10.1007/s00500-017-2824-z doi: 10.1007/s00500-017-2824-z
![]() |
[15] | T. M. Al-shami, L. D. Kocinac, The equivalence between the enriched and extended soft topologies, Appl. Comput. Math., 18 (2019), 149–162. |
[16] | S. Acharjee, M. Özkoç, F. Y. Issaka, Primal topological spaces, arXiv preprint, 2022. |
[17] |
A. Al-Omari, S. Acharjee, M. Özkoç, A new operator of primal topological spaces, Mathematica, 65 (2023), 175–183. https://doi.org/10.24193/mathcluj.2023.2.03 doi: 10.24193/mathcluj.2023.2.03
![]() |
[18] | A. Al-Omari, M. Özkoç, S. Acharjee, Primal-proximity spaces, arXiv preprint, 2023. |
[19] |
H. Al-Saadi, H. Al-Malki, Generalized primal topological spaces, AIMS Math., 8 (2023), 24162–24175. http://dx.doi.org/10.3934/math.20231232 doi: 10.3934/math.20231232
![]() |
[20] |
M. I. Ali, F. Feng, X. Liu, W. K. Min, M. Shabir, On some new operations in soft set theory, Comput. Math. Appl., 57 (2009), 1547–1553. https://doi.org/10.1016/j.camwa.2008.11.009 doi: 10.1016/j.camwa.2008.11.009
![]() |
[21] |
A. Allam, T. H. Ismail, R. Muhammed, A new approach to soft belonging, J. Ann. Fuzzy Math. Inform., 13 (2017), 145–152. https://doi.org/10.30948/afmi.2017.13.1.145 doi: 10.30948/afmi.2017.13.1.145
![]() |
[22] | N. Xie, Soft points and the structure of soft topological spaces, Ann. Fuzzy Math. Inform., 10 (2015), 309–322. |
[23] |
A. Aygünoğlu, H. Aygün, Some notes on soft topological spaces, Neural Comput. Appl., 21 (2012), 113–119. https://doi.org/10.1007/s00521-011-0722-3 doi: 10.1007/s00521-011-0722-3
![]() |
[24] |
N. Çağman, S. Karataş, S. Enginoglu, Soft topology, Comput. Math. Appl., 62 (2011), 351–358. https://doi.org/10.1016/j.camwa.2011.05.016 doi: 10.1016/j.camwa.2011.05.016
![]() |
[25] |
S. Nazmul, S. Samanta, Neighbourhood properties of soft topological spaces, Ann. Fuzzy Math. Inform., 6 (2013), 1–15. https://doi.org/10.1186/2251-7456-6-66 doi: 10.1186/2251-7456-6-66
![]() |
[26] | R. Sahin, A. Kuçuk, Soft filters and their convergence properties, Ann. Fuzzy Math. Inform., 6 (2013), 529–543. |
[27] |
A. Bashir, H. Sabir, On some structures of soft topology, Math. Sci., 6 (2012), 64. https://doi.org/10.1186/2251-7456-6-64 doi: 10.1186/2251-7456-6-64
![]() |
[28] |
A. A. Azzam, Z. A. Ameen, T. M. Al-shami, M. E. El-Shafei, Generating soft topologies via soft set operators, Symmetry, 14 (2022), 914. https://doi.org/10.3390/sym14050914 doi: 10.3390/sym14050914
![]() |
[29] |
T. Noiri, On \alpha-continuous functions, Casopis Pest. Mat., 109 (1984), 118–126. https://doi.org/10.21136/CPM.1984.108508 doi: 10.21136/CPM.1984.108508
![]() |
[30] |
Z. A. Ameen, S. Al Ghour, Cluster soft sets and cluster soft topologies, Comp. Appl. Math., 42 (2023), 337. https://doi.org/10.1007/s40314-023-02476-7 doi: 10.1007/s40314-023-02476-7
![]() |
[31] |
D. N. Georgiou, A. C. Megaritis, V. I. Petropoulos, On soft topological spaces, Appl. Math. Inf. Sci., 7 (2013), 1889–1901. https://doi.org/10.12785/amis/070527 doi: 10.12785/amis/070527
![]() |
1. | Ohud Alghamdi, Ahmad Al-Omari, Mesfer H. Alqahtani, Novel operators in the frame of primal topological spaces, 2024, 9, 2473-6988, 25792, 10.3934/math.20241260 |