Processing math: 72%
Research article Special Issues

Some operators in soft primal spaces

  • The concept of operators in topological spaces occupies a very important place. For this reason, a great deal of work and many results were presented via operators. Herein, we defined a primal local soft closure operator Λ() using the concept of soft topology and soft primal and reconnoitered its basic characteristics. Then, we found several fundamental results about the behavior of the primal soft closure operator λ() with the help of Λ(). Among other obtained results, we introduced a new topology induced by the primal soft closure operator. At last, we defined primal soft suitable spaces and gave some equivalent descriptions of it.

    Citation: Ahmad Al-Omari, Mesfer H. Alqahtani. Some operators in soft primal spaces[J]. AIMS Mathematics, 2024, 9(5): 10756-10774. doi: 10.3934/math.2024525

    Related Papers:

    [1] Mesfer H. Alqahtani, Zanyar A. Ameen . Soft nodec spaces. AIMS Mathematics, 2024, 9(2): 3289-3302. doi: 10.3934/math.2024160
    [2] Tareq M. Al-shami, Zanyar A. Ameen, A. A. Azzam, Mohammed E. El-Shafei . Soft separation axioms via soft topological operators. AIMS Mathematics, 2022, 7(8): 15107-15119. doi: 10.3934/math.2022828
    [3] Mohammed Abu Saleem . On soft covering spaces in soft topological spaces. AIMS Mathematics, 2024, 9(7): 18134-18142. doi: 10.3934/math.2024885
    [4] Baravan A. Asaad, Tareq M. Al-shami, Abdelwaheb Mhemdi . Bioperators on soft topological spaces. AIMS Mathematics, 2021, 6(11): 12471-12490. doi: 10.3934/math.2021720
    [5] Ibtesam Alshammari, Islam M. Taha . On fuzzy soft $ \beta $-continuity and $ \beta $-irresoluteness: some new results. AIMS Mathematics, 2024, 9(5): 11304-11319. doi: 10.3934/math.2024554
    [6] Ahmad Al-Omari, Ohud Alghamdi . Regularity and normality on primal spaces. AIMS Mathematics, 2024, 9(3): 7662-7672. doi: 10.3934/math.2024372
    [7] Dina Abuzaid, Samer Al-Ghour . Supra soft Omega-open sets and supra soft Omega-regularity. AIMS Mathematics, 2025, 10(3): 6636-6651. doi: 10.3934/math.2025303
    [8] Tareq M. Al-shami, Abdelwaheb Mhemdi, Radwan Abu-Gdairi, Mohammed E. El-Shafei . Compactness and connectedness via the class of soft somewhat open sets. AIMS Mathematics, 2023, 8(1): 815-840. doi: 10.3934/math.2023040
    [9] Arife Atay . Disjoint union of fuzzy soft topological spaces. AIMS Mathematics, 2023, 8(5): 10547-10557. doi: 10.3934/math.2023535
    [10] Alaa M. Abd El-latif . Novel types of supra soft operators via supra soft sd-sets and applications. AIMS Mathematics, 2024, 9(3): 6586-6602. doi: 10.3934/math.2024321
  • The concept of operators in topological spaces occupies a very important place. For this reason, a great deal of work and many results were presented via operators. Herein, we defined a primal local soft closure operator Λ() using the concept of soft topology and soft primal and reconnoitered its basic characteristics. Then, we found several fundamental results about the behavior of the primal soft closure operator λ() with the help of Λ(). Among other obtained results, we introduced a new topology induced by the primal soft closure operator. At last, we defined primal soft suitable spaces and gave some equivalent descriptions of it.



    Molodtsov [1] obtained the initial step of soft sets. Many well-known scholars and thinkers have expressed interest in Molodtsov's soft set theory proposal because it compensates for the flaws and shortcomings of existing mathematical model tools and has a significant applicability benefit when dealing with uncertainty. Following the successful introduction of soft sets, the concept was refined and hybridized into soft rough sets, and fuzzy soft sets. Soft set theory has been used to obtain and investigate various structures of mathematics. Soft theory includes soft algebra [1,2], soft category theory [1,3], and so on. Shabir and Naz [4] demonstrated two strategies for defining soft topology in 2011.

    Soft open sets are known to be the building blocks of soft topology, although other classes of soft sets, such as soft generalized open sets and soft weak structures, can also contribute to the creation of soft topology. Several researchers and philosophers produced a soft version of classical topological concepts and conceptions in the aftermath of Shabir and Naz's work, soft submaximal [5], infra soft structure [6], soft somewhat [7], soft ideal [8], soft grail [9], congruence representation via soft ideals [10], and according to Al-shami et al. in [11], the concept of primal soft topological spaces. Also, he defined a soft operator () using the elements of the soft topology and soft primal in soft primal. After that, in soft contexts, many traditional topological ideas have been introduced, for instance, Baire category soft sets and their symmetric local properties [12] and some classes of soft functions via soft open sets modulo soft sets of the first category [13].

    Another fascinating research topic is how to build soft topologies over a universal set. Terepeta [14] revealed two efficient methods for constructing soft topologies from crisp topologies. According to Al-Shami et al. in [15], the soft topology of one of the techniques is identical to the enriched soft topology. One of basic extended soft topologies is produced by Ameen et al. [30] and defined by old soft topology and a soft ideal combined to form the cluster soft topology, which is ideal soft topologies. Similarly, [9] used soft grills to explain the concept of soft topology.

    Recently, Acharjee et al. [16] introduced a new structure called primal. They get not just some primal-related fundamental features, but also some links between topological spaces and primal topological spaces. Primals [16] appear to be the dual of the concept of grills, while the duals of filters are ideals. After that, Al-Omari et al. [17,18] used primal to establish several new operators in primal topological spaces. Moreover, in obtaining the concept of soft primal topology and some results, we show that the set of primal topologies forms a natural class in the lattice of topologies and provide some descriptions for primal soft topology under specific types of soft primal.

    The motivations for writing this paper are as follows: The first reason we produce this post is to provide a new form of soft structure that improves soft setting research by establishing distinct frameworks that allow us to design new soft concepts and features. Second, we create a new method for generating soft topology that is inspired by several soft operators.

    We arrange the content of the paper as follows: In Section 2, we recall the basic concepts and findings that make this work self-contained. In Section 3, we define the concept of the primal local soft closure operator Λ() inspired by the concept of soft topology and soft primal. The concept of the primal local soft closure operator Λ() is modification of a soft operator (), which is obtained by Al-Shami et al. in [11], then we study the main properties of this concept. In Section 4, we find a number of fundamental truths about the behavior of the primal soft closure operator λ(), then we introduce a new topology via λ(). Among other obtained results, we define primal soft suitable spaces and give some equivalent descriptions in Section 5.

    Definition 2.1. [1] Let Φ:ρ2A be a set-valued function form of parameters set ρ to the power set of a nonempty set A, then the pair (Φ,ρ) is said to be a soft set over A, which is defined as follows: (Φ,ρ)={(α,Φ(α)):αρ and Φ(α)2A}, and we represented the soft set as Φρ. Throughout this paper, Φρ, Ωρ, and Ψρ denote the soft sets over A. We symbolized the family of all soft sets over A with parameters ρ by SS(Aρ).

    Definition 2.2. [4,20,21,22,23] Let Φρ,Ψρ be two soft sets over A, then:

    (1) The null soft set is {(α,Φ(α)):Φ(α)=,αρ} and symbolized by ρ.

    (2) The absolute soft set is {(α,Φ(α)):Φ(α)=A,αρ} and symbolized by Aρ.

    (3) If there exists αρ and aA with Φ(α)={a} and Φ(β)= βρ{α}, then this set is said to be a soft point and denoted by aα. We write aαΦρ if aΦ(α).

    (4) We say that Φρ is a soft subset of Ψρ if Φ(α)Ψ(α), αρ, and it is written as follows: ΦρΨρ.

    (5) The soft union ΦρΨρ=Ωρ, where Ω(α)=Φ(α)Ψ(α), αρ.

    (6) The soft intersection ΦρΨρ=Ωρ, where Ω(α)=Φ(α)Ψ(α), αρ.

    (7) The soft difference ΦρΨρ=Ωρ, where Ω(α)=Φ(α)Ψ(α), αρ.

    (8) We say that Φρ is a soft complement of Ψρ if Φ(α)=AΨ(α), αρ, and written as follows Φcρ=Ψρ.

    Definition 2.3. [4,24] A collection of a soft subset Δs of SS(Aρ) is called a soft topology on A if the following:

    (1) ρ and Aρ are members of Δs.

    (2) The finite soft intersection is closed in Δs.

    (3) The arbitrary soft union is closed in Δs.

    The notions (Aρ,Δs) are named a soft topology space over A with parameters ρ (soft topology space is briefly, STOS). A soft set in STOS is called soft open and the complement of soft open is soft closed. For aαAρ, the family of all members of Δs containing aα is denoted by Δs(aα).

    Definition 2.4. [25] A soft subset Φρ of an STOS (Aρ,Δs) is called a soft neighborhood of a soft point aρ provided that there exists soft open ΨρΔs such that aρΨρΦρ.

    Definition 2.5. [4] Let (Aρ,Δs) be an STOS, then

    (1) The soft closure of a soft set Φρ is given by Cl(Φρ)={Ψρ:ΦρΨρ,ΨcρΔs}.

    (2) The soft interior of a soft set Φρ is given by Int(Φρ)={Ψρ:ΨρΦρ,ΨρΔs}.

    Definition 2.6. [27] A soft subset Φρ of STOS (Aρ,Δs) is called a soft clopen, provided that it is both soft open and soft closed.

    Definition 2.7. [28] A mapping c:SS(Aρ)SS(Aρ) is said to be a soft closure operator on A if it has the following properties for every ζρ,ΨρSS(Aρ):

    (1) c(ϕρ)=ϕρ.

    (2) Ψρc(Ψρ).

    (3) c(c(Ψρ))=c(Ψρ).

    (4) c(ζρΨρ)=c(ζρ)c(Ψρ).

    Definition 2.8. [26] A collection of I of SS(Aρ) is said to be a soft ideal over A with parameters ρ if the following satisfies

    (1) If Φρ,ΨρI, then ΦρΨρI.

    (2) If ΦρI and ΨρΦρ, then ΨρI.

    Definition 2.9. [9] A collection of F of SS(Aρ) is said to be a soft grill over A with parameters ρ if it obeys the following postulates:

    (1) ρF.

    (2) If ΦρΨρF, then ΦρF, or ΨρF.

    (3) If ΦρF and ΦρΨρ, then ΨρF.

    Definition 2.10. [11] A subfamily of P of SS(Aρ) is said to be a soft primal over A with parameters ρ if it satisfies the following postulates:

    (1) AρP.

    (2) If ΦρΨρP, then ΦρP, or ΨρP.

    (3) If ΦρP and ΨρΦρ, then ΨρP.

    Lemma 2.1. [11] A subfamily of P of SS(Aρ) is a soft primal over A with parameters ρ if the following holds:

    (1) AρP.

    (2) If ΦρP and ΦρΨρ, then ΨρP.

    (3) If ΦρP and ΨρP, then ΨρΦρP.

    Definition 2.11. [11] The triple (Aρ,Δs,P) is said to be a primal soft topological space (briefly PSTOS), where (Aρ,Δs) is a soft topological space and P is a soft primal on A.

    Definition 2.12. [11] Let (Aρ,Δs,P) be a PSTOS. The operator ():SS(Aρ)SS(Aρ) is defined for each soft set Φρ as follows: Φρ={aαAρ:ΦcρΨcρP for all ΨρΔs(aα)}, and consider the closure operator Cl:SS(Aρ)SS(Aρ) as follows: Cl(Φρ)=ΦρΦρ, where ΦρSS(Aρ).

    Definition 2.13. [31] Let (Aρ,Δs) be an STOS and let ΦρSS(Aρ).

    (1) A soft point aα is in the soft θ-closure of Φρ (aαClθ(Φρ)) if for every soft open set Ψρ with aαΨρ, we have Cl(Ψρ)Φρρ.

    (2) Φρ is a soft θ-closed in (Aρ,Δs) if Clθ(Φρ)=Φρ.

    (3) Φρ is a soft θ-open in (Aρ,Δs) if the soft complement of Φρ is soft θ-closed in (Aρ,Δs).

    (4) A soft point aα is called a soft θ-interior of Φρ (aαIntθ(Φρ) if there exists a soft open set Ψρ such that aαΨρCl(Ψρ)Φρ. The soft set of all soft θ-interior points of Φρ is called the soft θ-interior of Φρ and denoted by Intθ(Φρ).

    More properties of primal topological space and primal soft topological space can be found in [11,19].

    In this section, we define a primal local soft closure operator using the concept of soft topology and soft primal. We give some characterizations of this concept.

    Definition 3.1. Let (Aρ,Δs,P) be a PSTOS. For ΦρSS(Aρ), we define the operator Λ():SS(Aρ)SS(Aρ) as follows: Λ(Φρ)={aαAρ:Φcρ[Cl(Ψρ)]cP for all ΨρΔs(aα)}, and it is called a primal local soft closure operator of Φρ with respect to Δs and P.

    Lemma 3.1. Let (Aρ,Δs,P) be a PSTOS, then for any ΦρSS(Aρ), we have ΦρΛ(Φρ).

    Proof. Let aαΦρ, then we have ΦcρΨcρP, for all ΨρΔs(aα). Since Φcρ[Cl(Ψρ)]cΦcρΨcρ, we get Φcρ[Cl(Ψρ)]cP and, hence, aαΛ(Φρ). So, ΦρΛ(Φρ).

    The next example shows that Λ(Φρ)Φρ, in general.

    Example 3.1. Let A={x,y,z,r} with parameter ρ={α}. Consider the following soft sets:

    Φρ(1)=(Φ(1),ρ)={(α,{z})};

    Φρ(2)=(Φ(2),ρ)={(α,{r})};

    Φρ(3)=(Φ(3),ρ)={(α,{y})};

    Φρ(4)=(Φ(4),ρ)={(α,{x,z})};

    Φρ(5)=(Φ(5),ρ)={(α,{x,z,r})};

    Φρ(6)=(Φ(6),ρ)={(α,{z,r})};

    Φρ(7)=(Φ(7),ρ)={(α,{x,y,z})};

    Φρ(8)=(Φ(8),ρ)={(α,{x,y,x,r})}; and

    ρ=(Φ(1),ρ)={(α,)}.

    Then, Δs={ρ,Φρ(2),Φρ(4),Φρ(5),Φρ(8)} is a soft primal topology and P={ρ,Φρ(1),Φρ(2),Φρ(6)} is a soft primal on A with parameters ρ. We have Λ(Φρ(7))=Φρ(7) and Φρ(7)=Φρ(3). It is clear that Λ(Φρ)Φρ.

    Lemma 3.2. Let (Aρ,Δs) be an STOS, then for any soft subset ΦρSS(Aρ), we have

    (1) if Φρ is a soft open set, then Cl(Φρ)=Clθ(Φρ),

    (2) if Φρ is a soft closed set, then Int(Φρ)=Intθ(Φρ).

    Proof. (1): We know that Cl(Φρ)Clθ(Φρ) in general. Let aαClθ(Φρ), then ΦρCl(Ψρ)ρ for every soft open set Ψρ containing aα. Since ΦρCl(Ψρ)ρ, there exists bαΦρCl(Ψρ), that is, bαΦρ and bαCl(Ψρ). Therefore, ΨρΥρρ for every soft open set Υρ containing bα, and since Φρ is a soft open set containing bα, ΨρΦρρ. Thus, aαCl(Φρ) and Cl(Φρ)=Clθ(Φρ).

    (2): It follows from (1).

    Theorem 3.1. Let Φρ,Ψρ be soft subsets of a PSTOS (Aρ,Δs,P), then the following is true:

    (1) Λ(ρ)=ρ.

    (2) If ΦρΨρ, then Λ(Φρ)Λ(Ψρ).

    (3) If ΦcρP, then Λ(Φρ)=ρ.

    (4) Λ(Φρ)=Cl(Λ(Φρ))Clθ(Φρ) and Λ(Φρ) is a soft closed set.

    (5) If Λ(Φρ) is a soft open set and ΦρΛ(Φρ), then Λ(Φρ)=Clθ(Φρ).

    (6) Λ(ΦρΨρ)=Λ(Φρ)Λ(Ψρ).

    (7) Λ(ΦρΨρ)Λ(Φρ)Λ(Ψρ).

    Proof. (1) Since cρ[Cl(Φρ)]c=Aρ for any soft open set Φρ, AρP, hence, Λ(ρ)=ρ.

    (2) Let aαΛ(Ψρ), then there exists ΩρΔs(aα) Ψcρ[Cl(Ωρ)]cP, and since Ψcρ[Cl(Ωρ)]cΦcρ[Cl(Ωρ)]c, Φcρ[Cl(Ωρ)]cP. Hence, we have aαΛ(Φρ). Therefore, we get Λ(Φρ)Λ(Ψρ).

    (3) Suppose that there exists aαΛ(Φρ), then for all ΩρΔs(aα) which means that Φcρ[Cl(Ωρ)]cP. By assumption, ΦcρP; therefore, Φcρ[Cl(Ωρ)]cP, for all ΩρΔs(aα). This is a logical contradiction. Hence, Λ(Φρ)=ρ.

    (4) First, we know that Λ(Φρ)Cl(Λ(Φρ)) in general. Let aα1Cl(Λ(Φρ)), then Λ(Φρ)Ωρρ for all soft open sets ΩρΔs(aα1). Therefore, there exists some soft points aα2Λ(Φρ)Ωρ and ΩρΔs(aα2). Now, since aα2Λ(Φρ), then Φcρ[Cl(Ωρ)]cP and, hence, aα1Λ(Φρ). Therefore, we have Cl(Λ(Φρ))Λ(Φρ) and Cl(Λ(Φρ))=Λ(Φρ). Now, let aα1Cl(Λ(Φρ))=Λ(Φρ), then Φcρ[Cl(Ωρ)]cP, for all soft open set ΩρΔs(aα1). This means that ΦρCl(Ωρ)ρ for all soft open set ΩρΔs(aα1). Therefore, aα1Clθ(Φρ). Thus, Λ(Φρ)=Cl(Λ(Φρ))Clθ(Φρ).

    (5) For any soft subset Φρ of SS(Aρ). By item (4), we have Λ(Φρ)=Cl(Λ(Φρ))Clθ(Φρ), and since Λ(Φρ) is soft open and ΦρΛ(Φρ), by Lemma 3.2, Clθ(Φρ)Clθ(Λ(Φρ))=Cl(Λ(Φρ))=Λ(Φρ)Clθ(Φρ). Hence, Λ(Φρ)=Clθ(Φρ).

    (6) According to item (2), we have Λ(Φρ)Λ(Ψρ)Λ(ΦρΨρ). Let us demonstrate the reverse of the inclusion if aαΛ(Φρ)Λ(Ψρ), then aα neither belongs to Λ(Φρ) nor to Λ(Ψρ). So, there exists two soft open sets Ωρ,ΥρΔs(aα) Φcρ[Cl(Ωρ)]cP and Ψcρ[Cl(Υρ)]cP by properties of primal soft (Φcρ[Cl(Ωρ)]c)(Ψcρ[Cl(Υρ)]c)P. Moreover, since P is hereditary and

    (Φcρ[Cl(Ωρ)]c)(Ψcρ[Cl(Υρ)]c)=[(Φcρ[Cl(Ωρ)]c)Ψcρ][(Φcρ[Cl(Ωρ)]c)[Cl(Υρ)]c]=[ΦcρΨcρ][[Cl(Ωρ)]cΨcρ][Φcρ[Cl(Υρ)]c][[Cl(Ωρ)]c[Cl(Υρ)]c][ΦcρΨcρ][Cl(Ωρ)]c[Cl(Υρ)]c([Cl(Ωρ)]c[Cl(Υρ)]c)[ΦρΨρ]c[Cl(ΩρΥρ)]c,

    then [ΦρΨρ]c[Cl(ΩρΥρ)]cP. Since ΩρΥρΔs(aα), then we get aαΛ(ΦρΨρ). Therefore, Λ(ΦρΨρ)=Λ(Φρ)Λ(Ψρ).

    (7) Since ΦρΨρΦρ and ΦρΨρΨρ, then by item (2), Λ(ΦρΨρ)Λ(Φρ) and Λ(ΦρΨρ)Λ(Ψρ). Therefore, Λ(ΦρΨρ)Λ(Φρ)Λ(Ψρ).

    The following example discusses some properties of Theorem 3.1.

    Example 3.2. Let A={a,b} and ρ={α,ϵ}. Consider the following soft sets:

    Φρ(1)=(Φ(1),ρ)={(α,),(ϵ,{a})};

    Φρ(2)=(Φ(2),ρ)={(α,),(ϵ,{b})};

    Φρ(3)=(Φ(3),ρ)={(α,{a}),(ϵ,)};

    Φρ(4)=(Φ(4),ρ)={(α,{b}),(ϵ,)};

    Φρ(5)=(Φ(5),ρ)={(α,{b}),(ϵ,{b})};

    Φρ(6)=(Φ(6),ρ)={(α,{a}),(ϵ,{b})};

    Φρ(7)=(Φ(7),ρ)={(α,{a,b}),(ϵ,)};

    Φρ(8)=(Φ(8),ρ)={(α,),(ϵ,{a,b})};

    Φρ(9)=(Φ(9),ρ)={(α,{a,b}),(ϵ,{b})}; and

    Φρ(10)=(Φ(10),ρ)={(α,{b}),(ϵ,{a})}.

    Thus, P={ρ,Φρ(i):i=1,2,...,9} is a soft primal on A with parameters ρ.

    (1) Let Δs={ρ,Aρ,Φρ(6),Φρ(10)} be a soft primal topology on a set A with parameters ρ, then the elucidates of the properties Λ(Φρ)Φρ and ΦρΛ(Φρ) are not true in general. It is easy to check that Φρ(6)Λ(Φρ(6))=ρ. On the other hand, Λ(Φρ(1))=Φρ(10)Φρ(1).

    (2) Let Δs={ρ,Aρ} be a soft primal topology on a set A with parameters ρ, then the properties Λ(ΦρΨρ)=Λ(Φρ)Λ(Ψρ) are not true in general. Obviously, Λ[Φρ(1)Φρ(9)]=Λ[ρ]=ρ. On the other hand, Λ[Φρ(1)]Λ[Φρ(9)]=AρAρ=Aρ.

    Proposition 3.1. Let Φρ,Ψρ be soft subsets of a PSTOS (Aρ,Δs,P) with Φρ as a soft θ-open set, then ΦρΛ(Ψρ)=ΦρΛ(ΦρΨρ)Λ(ΦρΨρ).

    Proof. Let aαΦρΛ(Ψρ) and Φρ be a soft θ-open, then aαΦρ and aαΛ(Ψρ). Since Φρ is soft θ-open, then there exists Ωρ which a soft open set such that aαΩρCl(Ωρ)Φρ. Let Υρ be any soft open set, aαΥρ, then ΥρΩρΔs(aα), [Cl(ΥρΩρ)]cΨcρP, and [Cl(Υρ)]c[ΦρΨρ]c=[Cl(Υρ)]cΦcρΨcρ[Cl(Υρ)]c[Cl(Ωρ)]cΨcρΨcρ[Cl(Υρ)Cl(Ωρ)]cΨcρ[Cl(ΥρΩρ)]cP, and, hence, [Cl(Υρ)]c[ΦρΨρ]cP. Therefore, aαΛ(ΦρΨρ). As a result, we get ΦρΛ(Ψρ)Λ(ΦρΨρ). Hence, ΦρΛ(Ψρ)ΦρΛ(ΦρΨρ). By (2) of Theorem 3.1, Λ(ΦρΨρ)Λ(Ψρ), so ΦρΛ(Ψρ)=ΦρΛ(ΦρΨρ).

    Lemma 3.3. Let Φρ,Ψρ be two soft subsets of a PSTOS (Aρ,Δs,P), then Λ(Φρ)Λ(Ψρ)=Λ(ΦρΨρ)Λ(Ψρ).

    Proof. By item (6) of Theorem 3.1, Λ(Φρ)=Λ([ΦρΨρ][ΦρΨρ])=Λ(ΦρΨρ)Λ(ΦρΨρ)Λ(ΦρΨρ)Λ(Φρ). Thus, Λ(Φρ)Λ(Ψρ)Λ(ΦρΨρ)Λ(Ψρ). Also, by item (2) of Theorem 3.1, Λ(ΦρΨρ)Λ(Φρ), and, hence, Λ(ΦρΨρ)Λ(Ψρ)Λ(Φρ)Λ(Ψρ). So, we have Λ(Φρ)Λ(Ψρ)=Λ(ΦρΨρ)Λ(Ψρ).

    Corollary 3.1. Let Φρ,Ψρ be soft subsets of a PSTOS (Aρ,Δs,P) with ΨcρP, then Λ(ΦρΨρ)=Λ(Φρ)=Λ(ΦρΨρ).

    Proof. Since ΨcρP by item (3) of Theorem 3.1, Λ(Ψcρ)=ρ. By Lemma 3.3, Λ(Φρ)=Λ(ΦρΨρ), and by item (6) of Theorem 3.1, Λ(ΦρΨρ)=Λ(Φρ)=Λ(ΦρΨρ).

    Theorem 3.2. Let (Aρ,Δs,P) be a PSTOS, then the following conditions are equivalent:

    (1) Δs{Aρ}P;

    (2) If ΦcρP, then Intθ(Φρ)=ρ;

    (3) For every soft clopen subset Ψρ, ΨρΛ(Ψρ);

    (4) Aρ=Λ(Aρ).

    Proof. (1) (2): Let ΦcρP and Δs{Aρ}P. Suppose that there exists aαIntθ(Φρ), then there exists a soft open set Ωρ such that aαΩρCl(Ωρ)Φρ, so Φcρ[Cl(Ωρ)]c. Since ΦcρP, [Cl(Ωρ)]cP. This is contrary for Δs{Aρ}P. Therefore, Intθ(Φρ)=ρ.

    (2) (3): Let aαΨρ and assume that aαΛ(Ψρ), then there exists ΦρΔs(aα) such that, Ψcρ[Cl(Φρ)]cP and hence [ΨρCl(Φρ)]cP. Since isnΨρ soft clopen, by item (2) and Proposition 3.1, aαΨρΦρ=Int(ΨρΦρ)Int(ΨρCl(Φρ))=Intθ(ΨρCl(Φρ))=ρ. This is a logical contradiction. Hence, aαΛ(Ψρ) and ΨρΛ(Ψρ).

    (3) (4): Since Aρ is a soft clopen set, then Aρ=Λ(Aρ).

    (4) (1): Since Aρ=Λ(Aρ)={aαAcρ[Cl(Φρ)]c=[Cl(Φρ)]cP,aαΦρΔs}. Hence, Δs{Aρ}P.

    Theorem 3.3. Let (Aρ,Δs,P) be a PSTOS and Aρ=Λ(Aρ) with Ψρ be a soft θ-open set, then ΨρΛ(Ψρ).

    Proof. In case Ψρ=ρ, we obviously have ΨρΛ(Ψρ)=ρ. Since Aρ=Λ(Aρ) and by Proposition 3.1, we have that for all Ψρ, which is soft θ-open, Ψρ=Λ(Aρ)ΨρΛ(AρΨρ)=Λ(Ψρ). Thus, ΨρΛ(Ψρ).

    For a soft subset Φρ,Ψρ in SS(Aρ) we note that Φρ=Ψρ [mod P] if [(ΦρΨρ)(ΨρΦρ)]cP and observe that = [mod P] is an equivalence relation.

    Definition 3.2. Let (Aρ,Δs,P) be a PSTOS. A soft subset Φρ of SS(Aρ) is called a soft Baire set with respect to Δs and P if there exists a soft θ-open set Ψρ such that Φρ=Ψρ [mod P], and it is denoted by ΦρBθ.

    Proposition 3.2. Let (Aρ,Δs,P) be a PSTOS.

    (1) If ΦρBθ and ΦcρP, then there exists a non-null soft θ-open set Ψρ such that Φρ=Ψρ [mod P].

    (2) Let Δs{Aρ}P, then ΦρBθ and ΦcρP if and only if there exists a non-null soft θ-open set Ψρ such that Φρ=Ψρ [mod P].

    Proof. (1) Assume ΦρBθ and ΦcρP. Hence, there exists a soft θ-open set Ψρ such that Φρ=Ψρ [mod P]. If Ψρ=ρ, then we have Φρ= [mod P] and [(Φρρ)(ρΦρ)]cP. This mean that ΦcρP, which is a contradiction.

    (2) Assume there exists a non-null soft θ-open set Ψρ such that Φρ=Ψρ [mod P]; hence, by Definition 3.2, ΦρBθ. Thus Ψρ=(ΨρJρ)Iρ, where Jρ=ΦρΨρ,Iρ=ΨρΦρ, then (ΨρΦρ)c and (ΦρΨρ)cP. If ΦcρP, then (ΦρJρ)cP and ΨcρP. Since Ψρ is a non-null soft θ-open set, there exists a non-null soft open set Ωρ ΩρCl(Ωρ)Ψρ. Since ΨcρP, then [Cl(Ωρ)]cP and [Cl(Ωρ)]c is a soft open set. This contradicts that Δs{Aρ}P.

    Definition 4.1. [11] Let (Aρ,Δs,P) be a PSTOS. An operator λ():SS(Aρ)SS(Aρ) defined on ΦρSS(Aρ) as λ(Φρ)={aαAρ:ΨρΔs(aα) and [Cl(Ψρ)Φρ]cP} for each soft subset Φρ over Aρ.

    The following theorem includes a number of fundamental truths about the behavior of the operator λ().

    Theorem 4.1. Let (Aρ,Δs,P) be PSTOS, then the below characteristics hold for all Φρ,ΨρSS(Aρ):

    (1) [λ(Φρ)]c=Λ(Φcρ).

    (2) λ(Φρ) is a soft open set.

    (3) If ΦρΨρ, then λ(Φρ)λ(Ψρ).

    (4) λ(ΦρΨρ)=λ(Φρ)λ(Ψρ).

    (5) λ(Φρ)=λ(λ(Φρ)) if and only if Λ(Φcρ)=Λ(Λ(Φcρ)).

    (6) If ΦcρP, then λ(Φρ)=[Λ(Aρ)]c.

    (7) If ΨcρP, then λ(ΦρΨρ)=λ(Φρ).

    (8) If ΨcρP, then λ(ΦρΨρ)=λ(Φρ).

    (9) If [(ΦρΨρ)(ΨρΦρ)]cP, then λ(Φρ)=λ(Ψρ).

    Proof. (1): Let aα[λ(Φρ)]c then aαλ(Φρ). Hence, there exists a soft open set Ψρ containing aα such that Φρ[Cl(Ψρ)]c=[ΦcρCl(Ψρ)]c=[Cl(Ψρ)Φρ]cP. So, aαΛ(Φcρ) and, hence, Λ(Φcρ)[λ(Φρ)]c.

    Conversely, let aαΛ(Φcρ), then there exists a soft open set Ψρ containing aα such that [Φcρ]c[Cl(Ψρ)]c=[Cl(Ψρ)Φρ]cP. So, that aαλ(Φρ) and aα[λ(Φρ)]c. Hence, [λ(Φρ)]c=Λ(Φcρ).

    (2): This derives from item (4) of Theorem 3.1.

    (3): This derives from item (2) of Theorem 3.1.

    (4): It is derived from item (3) that λ(ΦρΨρ)λ(Φρ) and λ(ΦρΨρ)λ(Ψρ) so that λ(ΦρΨρ)λ(Φρ)λ(Ψρ). Now, let aαλ(Φρ)λ(Ψρ), then there exists two soft open sets Iρ and Jρ containing aα such that [Cl(Iρ)Φρ]cP and [Cl(Jρ)Ψρ]cP. Let Υρ=IρJρ, which is soft open set containing aα, [Cl(Υρ)Φρ]cP, and [Cl(Υρ)Ψρ]cP by heredity. Thus, [Cl(Υρ)(ΦρΨρ)]c[Cl(Υρ)Φρ]c[Cl(Υρ)Ψρ]cP by Lemma 2.1, and, hence, aαλ(ΦρΨρ). Therefore, λ(ΦρΨρ)=λ(Φρ)λ(Ψρ).

    (5): It follows from the facts:

    1) [λ(Φρ)]c=Λ(Φcρ).

    2) λ[λ(Φρ)]=[Λ(Λ(Φcρ))]c.

    (6): By Corollary 1, we obtain that Λ(Φcρ)=Λ((Aρ) if ΦcρP, then λ(Φρ)=[Λ(Φcρ]c=[Λ((Aρ)]c.

    (7): This follows from Corollary 1 and λ(ΦρΨρ)=[Λ([ΦρΨρ]c)]c=[Λ(ΦcρΨρ)]c=[Λ(Φcρ]c=λ(Φρ) by item (1).

    (8): This follows by Corollary 1 and λ(ΦρΨρ)=[Λ([ΦρΨρ]c)]c=[Λ(ΦcρΨρ)]c=[Λ(Φcρ]c=λ(Φρ) by item (1).

    (9): Assume that [(ΦρΨρ)(ΨρΦρ)]cP. Let ΦρΨρ=Iρ and ΨρΦρ=Jρ. We observe that Icρ,JcρP. Also, we note that Ψρ=(ΦρIρ)Jρ. Thus, λ(Φρ)=λ(ΦρIρ)=λ((ΦρIρ)Jρ)=λ(Ψρ) by items (7) and (8).

    Corollary 4.1. Let (Aρ,Δs,P) be a PSTOS and Φρ be a soft θ-open set, then Φρλ(Φρ).

    Proof. We know that [λ(Φρ)]c=Λ(Φcρ). Now, Λ(Φcρ)Clθ(Φcρ)=Φcρ, since Φcρ is a soft θ-closed set. Therefore, Φρ=(Φcρ)c[Λ(Φcρ)]c=λ(Φρ).

    Proposition 4.1. Let (Aρ,Δs,P) be a PSTOS ΦρSS(Aρ), then the following hold:

    (1) λ(Φρ)={ΨρΔs:[Cl(Ψρ)Φρ]cP}.

    (2) λ(Φρ){ΨρΔs:[Cl(Ψρ)Φρ]c[ΦρCl(Ψρ)]cP}.

    Proof. (1): This comes logically from the definition of λ-operator.

    (2): Since P is heredity, it is clear that {ΨρΔs:[Cl(Ψρ)Φρ]c[ΦρCl(Ψρ)]cP}{ΨρΔs:[Cl(Ψρ)Φρ]cP}=λ(Φρ) for all ΦρSS(Aρ).

    We will conclude this part with some technical results relating to the idempotents of the primal soft closure operator and the λ-operator.

    Proposition 4.2. Let (Aρ,Δs,P) be a PSTOS, and for all ΦρSS(Aρ), we have

    Λ(Λ(Φρ))Λ(Φρ) if and only if λ(Φcρ)λ(λ(Φcρ)).

    Proof. Let ΦρSS(Aρ), then

    Λ(Λ(Φρ))Λ(Φρ)if and only if [Λ(Φρ)]c[Λ(Λ(Φρ))]cif and only if [Λ((Φcρ)c)]c[Λ([Λ(Φcρ)c]c)c]cif and only if λ(Φcρ)[Λ(λ(Φcρ))c]cif and only if λ(Φcρ)λ[λ(Φcρ)].

    Corollary 4.2. Let (Aρ,Δs,P) be a PSTOS and for all ΦρSS(Aρ), then the following criteria are equivalent:

    (1) Λ(Λ(Φρ))Λ(Φρ).

    (2) λ(Φρ)λ(λ(Φρ)).

    Proposition 4.3. Let (Aρ,Δs,P) be a PSTOS with Δs{Aρ}P. If ΦρBθ and ΦcρP, then λ(Φρ)Intθ(Λ(Φρ))ρ.

    Proof. Let ΦρBθ and ΦcρP, then by item (1) of Proposition 3.2, there exists a nun-null soft θ-open set Ψρ such that Φρ=Ψρ [mod P]. By Theorem 3.2 and Proposition 3.1, Ψρ=ΨρAρ=ΨρΛ(Aρ)Λ(ΨρAρ)=Λ(Ψρ). This means that ΨρΛ(Ψρ)=Λ((ΦρJρ)Iρ)=Λ(Φρ), where Jcρ=[ΦρΨρ]c, Icρ=[ΨρΦρ]cP by Corollary 3.1. Since Ψρ is a soft θ-open then, ΨρIntθ(Λ(Φρ)). Also Ψρλ(Ψρ) by Corollary 4.1 and Φρ=Ψρ [mod P] which implies that [(ΦρΨρ)(ΨρΦρ)]cP, hence, Ψρλ(Ψρ)λ(Φρ) by item (9) of Theorem 4.1. Consequently, we obtain Ψρλ(Φρ)Intθ(Λ(Φρ)) and λ(Φρ)Intθ(Λ(Φρ))ρ.

    Theorem 4.2. Let (Aρ,Δs,P) be a PSTOS with Δs{Aρ}P. If every soft open is a soft θ-open set, then, the following statements are equivalent:

    (1) There is ΨρBθ and ΨcρP such that ΨρΦρ;

    (2) λ(Φρ)Intθ(Λ(Φρ))ρ;

    (3) λ(Φρ)Λ(Φρ)ρ;

    (4) λ(Φρ)ρ;

    (5) λ(Φρ)Φρρ;

    (6) There is a non-null soft open Υρ such that [Cl(Υρ)Φρ]cP and [Cl(Υρ)Φρ]cP.

    Proof. (1) (2): Let ΨρBθ and ΨcρP such that ΨρΦρ, then Intθ(Λ(Ψρ))Intθ(Λ(Φρ)) and λ(Ψρ)λ(Φρ) and, hence, Intθ(Λ(Ψρ))λ(Ψρ)Intθ(Λ(Φρ))λ(Φρ). By Proposition 4.3, we have λ(Φρ)Intθ(Λ(Φρ))ρ.

    (2) (3): The evidence is clear.

    (3) (4): The evidence is clear.

    (4) (5): Let λ(Φρ)ρ, then there exists a non-null soft open set Ψρ such that [Cl(Ψρ)Φρ]cP. Since Δs{Aρ}P, then [Cl(Ψρ)]cP and [Cl(Ψρ)]c=[(Cl(Ψρ)Φρ)(Cl(Ψρ)Φρ)]c=[(Cl(Ψρ)Φρ)]c[(Cl(Ψρ)Φρ)]c, and we get that [(Cl(Ψρ)Φρ)]cP. Now, by Theorem 4.1 and Corollary 4.1, we have ρCl(Ψρ)Φρλ(Cl(Ψρ))Φρ=λ[(Cl(Ψρ)Φρ)(Cl(Ψρ)Φρ)]Φρ=λ[Cl(Ψρ)Φρ]Φρλ[Φρ]Φρ. Hence, λ(Φρ)Φρρ.

    (5) (6): Let λ(Φρ)Φρρ, then λ(Φρ)ρ, so there exists a non-null soft open set Υρ , [Cl(Υρ)Φρ]cP and

    [Cl(Υρ)]c=[(Cl(Υρ)Φρ)(Cl(Υρ)Φρ)]c=[Cl(Υρ)Φρ]c[Cl(Υρ)Φρ]c. Since Δs{Aρ}P, then [Cl(Υρ)]cP. This mean that [Cl(Υρ)Φρ]cP.

    (6) (1): Let Ψcρ=[Cl(Υρ)Φρ]cP and Υρ is a non-null soft open set, so [Cl(Υρ)Φρ]cP. Thus, ΨρBθ and ΨcρP. Since [(ΨρCl(Υρ))(Cl(Υρ)Ψρ)]c=[Cl(Υρ)Φρ]cP, [(ΨρCl(Υρ))(Cl(Υρ)Ψρ)]c[(ΨρΥρ)(ΥρΨρ)]c and [Cl(Υρ)]cP such that Ψρ=Υρ[mod P], then there is ΨρBθ and ΨcρP such that ΨρΦρ.

    Now, we introduce a new topology induced by the primal soft closure operator.

    Theorem 4.3. Let (Aρ,Δs,P) be a PSTOS with Δs{Aρ}P and ΦρSS(Aρ), then β={Φρ:Φρλ(Φρ)} is from a soft topology.

    Proof. Let β={ΦρSS(Aρ):Φρλ(Φρ)}. Since AρP, by item (3) of Theorem 3.1, Λ(ρ)=ρ and λ(Aρ)=AρΛ(AρAρ)=AρΛ(ρ)=Aρ. Moreover, λ(ρ)=AρΛ(Aρρ)=AρAρ=ρ by Theorem 3.2. Therefore, we obtain that ρλ(ρ) and Aρλ(Aρ), so ρ,Aρβ.

    Now, if Φρ,Ψρβ, then ΦρΨρλ(Φρ)λ(Ψρ)=λ(ΦρΨρ), so ΦρΨρβ.

    Let {Φρ(α):αI}β, then Φρ(α)λ(Φρ(α))λ(αIΦρ(α)) for all αI, and αIΦρ(α)λ(αIΦρ(α)). Hence, β={Φρ:Φρλ(Φρ)} is from a soft topology.

    The next example elucidates the properties of Theorem 4.3.

    Example 4.1 Let A={x,y,x} with parameter ρ={α}. Consider the following soft sets:

    Φρ(1)=(Φ(1),ρ)={(α,)};

    Φρ(2)=(Φ(2),ρ)={(α,{x})};

    Φρ(3)=(Φ(3),ρ)={(α,{y})};

    Φρ(4)=(Φ(4),ρ)={(α,{z})};

    Φρ(5)=(Φ(5),ρ)={(α,{x,y})};

    Φρ(6)=(Φ(6),ρ)={(α,{x,z})};

    Φρ(7)=(Φ(7),ρ)={(α,{y,z})}; and

    Φρ(8)=(Φ(8),ρ)={(α,{x,y,x})}.

    Thus, Δs={ρ,Φρ(2),Φρ(3),Φρ(5),Φρ(8)} is a soft primal topology and P={ρ,Φρ(2),Φρ(3),Φρ(5)} is a soft primal on A with parameters ρ. It is clear that Δs{Aρ}P and β={Φρ:Φρλ(Φρ)}={ρ,Φρ(4),Φρ(6),Φρ(7),Φρ(8)}, as shown by the following table, and it is clear that the soft primal topologies Δs and β are independent.

    Lemma 4.1. Let (Aρ,Δs,P) be a PSTOS. A soft set ΦρSS(Aρ) is soft closed in (Aρ,β) if and only if Λ(Φρ)Φρ.

    Proof. Φρ is soft closed in (Aρ,β) if and only if Φcρ is soft open in (Aρ,β) if and only if Φcρλ(Φcρ) if and only if Φcρ[Λ([Φcρ]c)]c if and only if Φcρ[Λ(Φρ)]c if and only if Λ(Φρ)Φρ.

    Theorem 4.4. Let (Aρ,Δs,P) be a PSTOS and Λ(Λ(Φρ))Λ(Φρ), then Clβ(Φρ)=ΦρΛ(Φρ) for all ΦρSS(Aρ).

    Proof. Since Λ(ΦρΛ(Φρ))=Λ(Φρ)Λ(Λ(Φρ))=Λ(Φρ)ΦρΛ(Φρ), we have that ΦρΛ(Φρ) is a soft closed set in topology β containing Φρ by Lemma 4.1. Let us prove that ΦρΛ(Φρ) is a minimal soft closed set in topology β containing Φρ. Let aαΛ(Φρ)Φρ. If aαΦρ, then aαClβ(Φρ). If aαΛ(Φρ), then for each soft open set ΨρΔs(aα), Φcρ[Cl(Ψρ)]cP. Since [Clβ(Φρ)]cΦcρ and the property of primal space, we have [Cl(Ψρ)]c[Clβ(Φρ)]cP. Therefore, aαΛ[Clβ(Φρ)], and since Clβ(Φρ) is a soft closed in β, then Λ[Clβ(Φρ)]Clβ(Φρ), and we have aαClβ(Φρ). Hence, Clβ(Φρ)=ΦρΛ(Φρ) for any ΦρSS(Aρ).

    Lemma 4.2. Let (Aρ,Δs,P) be a PSTOS for any Φρ,ΨρSS(Aρ), then Int(Cl(ΦρΨρ))=Int(Cl(Φρ))Int(Cl(Ψρ)).

    Proof. This is the direct result by Lemma 3.5 of [29].

    Theorem 4.5. Let (Aρ,Δs,P) be a PSTOS with Δs{Aρ}P, then the following soft collection set φ={ΦρSS(Aρ):ΦρInt(Cl(λ(Φρ)))} from a soft topology.

    Proof. By item (2) of Theorem 4.1 λ(Φρ) is a soft open set for all ΦρSS(Aρ) so that βφ. Since ρ,Aρβ, then ρ,Aρφ.

    Let Φρ,Ψρφ, then ΦρΨρ=Int(Cl(λ(Φρ)))Int(Cl(λ(Ψρ)))=Int(Cl(λ(Φρ)λ(Ψρ)))=Int(Cl(λ(ΦρΨρ))) by Theorem 4.1 and Lemma 4.2. Therefore, ΦρΨρφ.

    Let Φρ(i)φ:iI, then Φρ(i)Int(Cl(λ(Φρ(i))) for all iI. So, Φρ(i)Int(Cl(λ(Φρ(i)))Int(Cl(λ(iIΦρ(i))) and \sqcup_{i\in I}\Phi_{\rho}(i)\sqsubseteq Int(Cl(\lambda(\sqcup_{i\in I}\Phi_{\rho}(i))) . Hence \sqcup_{i\in I}\Phi_{\rho}(i)\in \varphi and \varphi is from a soft topology.

    Remark 4.1. By Theorem 4.1, we have \beta \sqsubseteq \varphi in general but in Example 4.1, it is clear that the soft primal topologies \beta and \varphi are equal.

    The strict inequality between these two topologies has a required condition,

    Lemma 4.3. Let (\mathcal{A}_{\rho}, \Delta_{s}, \mathcal{P}) be PSTOS . If \beta \sqsubset \varphi , then there exist a soft set \Phi_{\rho} and a point a_{\alpha}\in \Phi_{\rho} such that

    (1) [Cl(\Psi_{\rho})\setminus\Phi_{\rho}]^{c} \in \mathcal{P} , for each \Psi_{\rho}\in \Delta_{s}(a_{\alpha}) and,

    (2) there exist \Omega_{\rho}\in \Delta_{s}(a_{\alpha}) and a soft open \Upsilon_{\rho}\subseteq \Omega_{\rho} such that [Cl(\Upsilon_{\rho})\setminus\Phi_{\rho}]^{c}\notin \mathcal{P} .

    Proof. If \beta \subsetneqq \varphi , then there exists \Phi_{\rho}\in \varphi\setminus \beta . Since \Phi_{\rho}\notin \beta , there exists a_{\alpha}\in \Phi_{\rho} such that

    \begin{align*} a_{\alpha}\notin \lambda(\Phi_{\rho}) \, \, \text{iff} & \, \, \, a_{\alpha}\notin [ \Lambda( \Phi_{\rho}^{c})]^{c}\\ \text{iff} & \, \, \, a_{\alpha}\in \Lambda( \Phi_{\rho}^{c})\\ \text{iff} & \, \, \, \forall \, \, \, \Psi_{\rho}\in \Delta_{s}(a_{\alpha}), \, \, \, [Cl(\Psi_{\rho})]^{c}\cup \Phi_{\rho}\in \mathcal{P}\\ \text{iff} & \, \, \, \forall \, \, \, \Psi_{\rho}\in \Delta_{s}(a_{\alpha}), \, \, \, [Cl(\Psi_{\rho})\cap \Phi_{\rho}^{c}]^{c}\in \mathcal{P}\\ \text{iff} & \, \, \, \forall \, \, \, \Psi_{\rho}\in \Delta_{s}(a_{\alpha}), \, \, \, [Cl(\Psi_{\rho})\setminus \Phi_{\rho}]^{c}\in \mathcal{P}. \end{align*}

    Since \Phi_{\rho}\in \varphi , for each y_{\rho}\in \Phi_{\rho} , we have

    \begin{align*} y_{\rho} \in & \, Int(Cl( \lambda(\Phi_{\rho})))\\ \text{iff} & \, \, \, \exists \, \, I_{\rho} \in \Delta_{s}(y_{\rho}), \, \, \, I_{\rho}\sqsubseteq Cl( \lambda(\Phi_{\rho}))\\ \text{iff}& \, \, \, \exists \, \, I_{\rho} \in \Delta_{s}(y_{\rho}), \, \, \, \forall \, \, \, z_{\rho}\in I_{\rho}, \forall \, \, \, \Omega_{\rho} \in \Delta_{s}(z_{\rho}), \, \, \, \Omega_{\rho}\sqcap \lambda(\Phi_{\rho})\neq \emptyset_{\rho}\\ \text{iff} & \, \, \, \exists \, \, I_{\rho} \in \Delta_{s}(y_{\rho}), \, \, \, \forall \, \, \, \Omega_{\rho}\sqsubseteq I_{\rho}, \, \, \, [\Omega_{\rho} \in \Delta_{s}\Rightarrow \, \, \, \Omega_{\rho}\sqcap \lambda(\Phi_{\rho})\neq \emptyset_{\rho}]\\ \text{iff} & \, \, \, \exists \, \, I_{\rho} \in \Delta_{s}(y_{\rho}), \, \, \, \forall \, \, \, \Omega_{\rho}\sqsubseteq I_{\rho}, \, \, \, [\Omega_{\rho} \in \Delta_{s}\Rightarrow \, \, \, \Omega_{\rho}\sqcap [ \lambda(\Phi_{\rho}^{c})]^{c}\neq \emptyset_{\rho}]\\ \text{iff} & \, \, \, \exists \, \, I_{\rho} \in \Delta_{s}(y_{\rho}), \, \, \, \forall \, \, \, \Omega_{\rho}\sqsubseteq I_{\rho}, \, \, \, [\Omega_{\rho} \in \Delta_{s}\Rightarrow \, \, \, \Omega_{\rho}\setminus \lambda(\Phi_{\rho}^{c})\neq \emptyset_{\rho}]\\ \text{iff} & \, \, \, \exists \, \, I_{\rho} \in\Delta_{s}(y_{\rho}), \, \forall \, \Omega_{\rho}\sqsubseteq I_{\rho}, \, [\Omega_{\rho} \in \Delta_{s}\Rightarrow \, [\, \, \exists \, \, \Upsilon_{\rho}\sqsubseteq \Omega_{\rho}\, \, \, (\Upsilon_{\rho}\in \Delta_{s})\\ & \Rightarrow [Cl(\Upsilon_{\rho})\setminus\Phi_{\rho}]^{c}\notin \mathcal{P})]. \end{align*}

    Definition 5.1. Let (\mathcal{A}_{\rho}, \Delta_{s}, \mathcal{P}) be a PSTOS . We say that a soft topology \Delta_{s} is suitable with the primal \mathcal{P} say primal soft suitable, if for every \Phi_{\rho}\in SS(\mathcal{A}_{\rho}) , and a_{\rho}\in \Phi_{\rho} there exists \Psi_{\rho}\in \Delta_{s}(a_{\rho}) , such that [Cl(\Psi_{\rho})]^{c} \sqcup \Phi_{\rho}^{c}\notin \mathcal{P} , then \Phi_{\rho}^{c}\notin \mathcal{P} .

    Remark 5.1. Let (\mathcal{A}_{\rho}, \Delta_{s}, \mathcal{P}) be a PSTOS , then we have the following:

    (1) If a soft primal on \mathcal{A} is SS(\mathcal{A}_{\rho})\setminus\mathcal{A}_{\rho} with the family of all soft sets over \mathcal{A} with parameters \rho , then soft topological and primal soft topological spaces are an identical.

    (2) If a parameter \rho is singleton, then primal topological and primal soft topological spaces are identical.

    (3) If a soft primal on \mathcal{A} is SS(\mathcal{A}_{\rho})\setminus\mathcal{A}_{\rho} and a parameter \rho is singleton, then a topological space and primal soft topological space are equivalent. So, primal soft suitable space and suitable space in classical topology are equivalent if a soft primal on \mathcal{A} is SS(\mathcal{A}_{\rho})\setminus\mathcal{A}_{\rho} and a parameter \rho is singleton.

    We now give some equivalent descriptions of this definition.

    Theorem 5.1. Let (\mathcal{A}_{\rho}, \Delta_{s}, \mathcal{P}) be a PSTOS . The subsequent properties are equivalent for primal soft suitable:

    (1) \Delta_{s} is primal soft suitable with the primal \mathcal{P} .

    (2) If a subset \Phi_{\rho}\in SS(\mathcal{A}_{\rho}) includes a cover of soft open sets, each with its own soft closure union with \Phi_{\rho}^{c} is not in \mathcal{P} , then \Phi_{\rho}^{c}\notin \mathcal{P} .

    (3) For every \Phi_{\rho}\in SS(\mathcal{A}_{\rho}) , \Phi_{\rho}\cap \Lambda(\Phi_{\rho}) = \emptyset_{\rho} implies that \Phi_{\rho}^{c}\notin \mathcal{P} .

    (4) For every \Phi_{\rho}\in SS(\mathcal{A}_{\rho}) , [\Phi_{\rho}\setminus \Lambda(\Phi_{\rho})]^{c}\notin \mathcal{P} .

    (5) For every \Phi_{\rho}\in SS(\mathcal{A}_{\rho}) , if there is non-null subset \Psi_{\rho}\sqsubseteq \Phi_{\rho} with \Psi_{\rho}\sqsubseteq \Lambda(\Psi_{\rho}) then, \Phi_{\rho}^{c}\notin \mathcal{P} .

    Proof. (1) \Rightarrow (2): It is obvious to prove.

    (2) \Rightarrow (3): Let a_{\alpha}\in\Phi_{\rho}\in SS(\mathcal{A}_{\rho}) . Since \Phi_{\rho}\sqcap \Lambda(\Phi_{\rho}) = \emptyset_{\rho} then, a_{\alpha}\notin \Lambda(\Phi_{\rho}) and there exists \Psi_{\rho}(a_{\alpha})\in \Delta_{s}(a_{\alpha}) , \ni [Cl(\Psi_{\rho}(a_{\alpha}))]^{c}\cup \Phi_{\rho}^{c} \notin \mathcal{P} . So, we have \Phi_{\rho}\subseteq \sqcup\{\Psi_{\rho}(a_{\alpha}): a_{\alpha}\in \Phi_{\rho}\} and \Psi_{\rho}(a_{\alpha})\in \Delta_{s}(a_{\alpha}) , and by item (2), \Phi_{\rho}^{c}\notin \mathcal{P} .

    (3) \Rightarrow (4): For any \Phi_{\rho}\in SS(\mathcal{A}_{\rho}) , \Phi_{\rho}\setminus \Lambda(\Phi_{\rho})\sqsubseteq \Phi_{\rho} and (\Phi_{\rho}\setminus \Lambda(\Phi_{\rho}))\sqcap \Lambda(\Phi_{\rho}\setminus \Lambda(\Phi_{\rho}))\sqsubseteq (\Phi_{\rho}\setminus \Lambda(\Phi_{\rho}))\sqcap \Lambda(\Phi_{\rho}) = \emptyset_{\rho} . By item (3), (\Phi_{\rho}\setminus \Lambda(\Phi_{\rho}))^{c}\notin \mathcal{P} .

    (4) \Rightarrow (5): By item (4), for every \Phi_{\rho}\in SS(\mathcal{A}_{\rho}) , [\Phi_{\rho}\setminus \Lambda(\Phi_{\rho})]^{c}\notin \mathcal{P} . Let \Phi_{\rho}\setminus \Lambda(\Phi_{\rho}) = J_{\rho}\notin \mathcal{P} , then \Phi_{\rho} = J_{\rho}\sqcup (\Phi_{\rho}\cap \Lambda(\Phi_{\rho})) and by items (3) and (6) of Theorem 3.1, \Lambda(\Phi_{\rho}) = \Lambda(J_{\rho})\sqcup \Lambda(\Phi_{\rho}\sqcap \Lambda(\Phi_{\rho})) = \Lambda(\Phi_{\rho}\cap \Lambda(\Phi_{\rho})) . Therefore, we have \Psi_{\rho} = \Phi_{\rho}\sqcap \Lambda(\Phi_{\rho}) = \Phi_{\rho}\sqcap \Lambda(\Phi_{\rho}\sqcap \Lambda(A))\sqsubseteq \Lambda(\Phi_{\rho}\sqcap \Lambda(\Phi_{\rho})) = \Lambda(\Psi_{\rho}) and \Psi_{\rho} = \Phi_{\rho}\sqcap \Lambda(\Phi_{\rho})\sqsubseteq \Phi_{\rho} . By the assumption \Phi_{\rho}\sqcap \Lambda(\Phi_{\rho}) = \emptyset_\rho , (\Phi_{\rho}\setminus \Lambda(\Phi_{\rho}))^{c} = \Phi_{\rho}^{c}\notin \mathcal{P} .

    (5) \Rightarrow (1): Let \Phi_{\rho}\in SS(\mathcal{A}_{\rho}) and assume that for every a_{\alpha}\in \Phi_{\rho} , there exists \Upsilon\in \Delta_{s}(a_{\alpha}) such that [Cl(\Upsilon)]^{c}\sqcup \Phi_{\rho}^{c }\notin \mathcal{P} . Thus, \Phi_{\rho}\sqcap \Lambda(\Phi_{\rho}) = \emptyset_{\rho} (if a_{\alpha}\in \Phi_{\rho}\sqcap \Lambda(\Phi_{\rho}) , then for every \Upsilon\in \Delta_{s}(a_{\alpha}) , we have [Cl(\Upsilon)]^{c}\sqcup \Phi_{\rho}^{c }\in \mathcal{P} , which is a contradiction). Suppose that \Phi_{\rho} contains \Psi_{\rho} such that \Psi_{\rho} \sqsubseteq \Lambda (\Psi_{\rho}) , then \Psi_{\rho} = \Psi_{\rho}\sqcap \Lambda (\Psi_{\rho}) \sqsubseteq \Phi_{\rho}\sqcap \Lambda(\Phi_{\rho}) = \emptyset_{\rho} . Therefore, \Phi_{\rho} contains a non-null subset \Psi_{\rho} with \Psi_{\rho} \sqsubseteq \Lambda (\Psi_{\rho}) . Hence, \Phi_{\rho}^{c}\notin \mathcal{P} , and \Delta_{s} is primal soft suitable with the primal \mathcal{P} .

    The next example elucidates the properties of Theorem 5.1.

    Example 5.1. Take a soft primal topology \Delta_{s} = \{\emptyset_{\rho}, \Phi_{\rho}(2), \Phi_{\rho}(3), \Phi_{\rho}(5), \Phi_{\rho}(8)\} and soft primal \mathcal{P} = \{\emptyset_{\rho}, \Phi_{\rho}(2), \Phi_{\rho}(3), \Phi_{\rho}(5)\} on \mathcal{A} with parameters \rho , which are displayed in Example 4.1. It is clear that \Delta_{s}\setminus\{\mathcal{A}_{\rho}\}\sqsubseteq \mathcal{P} and \Delta_{s} is primal soft suitable with the primal \mathcal{P} , as shown by the following table.

    Theorem 5.2. Let (\mathcal{A}_{\rho}, \Delta_{s}, \mathcal{P}) be a PSTOS. If \Delta_{s} is primal soft suitable with the primal \mathcal{P}, then for all \Phi_{\rho}\in SS(\mathcal{A}_{\rho}) , the subsequent are equivalent:

    (1) \Phi_{\rho}\sqcap \Lambda(\Phi_{\rho}) = \emptyset_{\rho} implies that \Lambda(\Phi_{\rho}) = \emptyset_{\rho} ;

    (2) \Lambda(\Phi_{\rho}\setminus \Lambda(\Phi_{\rho})) = \emptyset_{\rho} ;

    (3) \Lambda(\Phi_{\rho}\sqcap \Lambda(\Phi_{\rho})) = \Lambda(\Phi_{\rho}) .

    Proof. First, we demonstrate that (1) holds if \Delta_{s} is primal soft suitable with the primal \mathcal{P} . Let \Phi_{\rho}\in SS(\mathcal{A}_{\rho}) and \Phi_{\rho}\sqcap \Lambda(\Phi_{\rho}) = \emptyset_{\rho} , then by Theorem 5.1, \Phi_{\rho}^{c}\notin \mathcal{P} , and by Theorem 3.1 (3), \Lambda(\Phi_{\rho}) = \emptyset_{\rho} .

    (1) \Rightarrow (2): Assume that for every \Phi_{\rho}\in SS(\mathcal{A}_{\rho}) , \Phi_{\rho}\sqcap \Lambda(\Phi_{\rho}) = \emptyset_{\rho} implies that \Lambda(\Phi_{\rho}) = \emptyset_{\rho} . Let \Psi_{\rho} = \Phi_{\rho}\setminus \Lambda(\Phi_{\rho}) , then

    \begin{align*} \Psi_{\rho}\sqcap \Lambda(\Psi_{\rho}) & = (\Phi_{\rho}\setminus \Lambda(\Phi_{\rho}))\sqcap \Lambda(\Phi_{\rho}\setminus \Lambda(\Phi_{\rho}))\\ & = (\Phi_{\rho}\sqcap [ \Lambda(\Phi_{\rho})]^{c})\sqcap \Lambda(\Phi_{\rho}\sqcap [ \Lambda(\Phi_{\rho})]^{c})\\ &\sqsubseteq (\Phi_{\rho}\sqcap [ \Lambda(\Phi_{\rho})]^{c})\sqcap [ \Lambda(\Phi_{\rho})\sqcap ( \Lambda[ \Lambda(\Phi_{\rho})]^{c})] = \emptyset_{\rho}. \end{align*}

    By item (1), we have \Lambda(\Psi_{\rho}) = \emptyset_{\rho} . Hence, \Lambda(\Phi_{\rho}\setminus \Lambda(\Phi_{\rho})) = \emptyset .

    (2) \Rightarrow (3): Assume for every \Phi_{\rho}\in SS(\mathcal{A}_{\rho}) , \Lambda(\Phi_{\rho}\setminus \Lambda(\Phi_{\rho})) = \emptyset_{\rho} .

    \begin{align*} \Phi_{\rho} & = (\Phi_{\rho}\setminus \Lambda(\Phi_{\rho}))\sqcup (\Phi_{\rho}\sqcap \Lambda(\Phi_{\rho}))\\ \Lambda(\Phi_{\rho})& = \Lambda[(\Phi_{\rho}\setminus \Lambda(\Phi_{\rho}))\sqcup (\Phi_{\rho}\sqcap \Lambda(\Phi_{\rho}))]\\ & = \Lambda(\Phi_{\rho}\setminus \Lambda(\Phi_{\rho}))\sqcup \Lambda(\Phi_{\rho}\sqcap \Lambda(\Phi_{\rho}))\\ & = \Lambda(\Phi_{\rho}\sqcap \Lambda(\Phi_{\rho})). \end{align*}

    (3) \Rightarrow (1): Assume for every \Phi_{\rho}\in SS(\mathcal{A}_{\rho}) , \Lambda(\Phi_{\rho})\sqcap\Phi_{\rho} = \emptyset_{\rho} and \Lambda(\Lambda(\Phi_{\rho})\sqcap \Phi_{\rho}) = \Lambda(\Phi_{\rho}) . This implies that \emptyset_{\rho} = \Lambda(\emptyset_{\rho}) = \Lambda(\Phi_{\rho}) .

    Theorem 5.3. Let (\mathcal{A}_{\rho}, \Delta_{s}, \mathcal{P}) be a PSTOS. If \Delta_{s} is primal soft suitable with the primal \mathcal{P}, then, for every soft \theta -open \Phi_{\rho} and any subset \Psi_{\rho}\in SS(\mathcal{A}_{\rho}) , we have Cl(\Lambda(\Phi_{\rho}\sqcap \Psi_{\rho})) = \Lambda(\Phi_{\rho}\sqcap \Psi_{\rho})\sqsubseteq \Lambda(\Phi_{\rho}\sqcap \Lambda(\Psi_{\rho}))\sqsubseteq Cl_{\theta}(\Phi_{\rho}\sqcap \Lambda(\Psi_{\rho})) .

    Proof. By Theorem 3.1 and Theorem 5.2 (3), we have \Lambda(\Psi_{\rho}\sqcap \Phi_{\rho}) = \Lambda((\Psi_{\rho}\sqcap \Phi_{\rho})\sqcap \Lambda(\Psi_{\rho}\sqcap \Phi_{\rho}))\sqsubseteq \Lambda(\Phi_{\rho}\sqcap \Lambda(\Psi_{\rho})) . Moreover, again by Theorem 3.1, Cl(\Lambda(\Phi_{\rho}\cap \Psi_{\rho})) = \Lambda(\Phi_{\rho}\sqcap \Psi_{\rho})\sqsubseteq \Lambda(\Phi_{\rho}\sqcap \Lambda(\Psi_{\rho}))\sqsubseteq Cl_{\theta}(\Phi_{\rho}\sqcap \Lambda(\Psi_{\rho})) .

    Theorem 5.4. Let (\mathcal{A}_{\rho}, \Delta_{s}, \mathcal{P}) be a PSTOS , then \Delta_{s} is a primal soft suitable with the primal \mathcal{P} if and only if [\Lambda(\Phi_{\rho})\setminus \Phi_{\rho}]^{c} \notin \mathcal{P} for every \Phi_{\rho}\in SS(\mathcal{A}_{\rho}) .

    Proof. Necessity. Assume \Delta_{s} is primal soft suitable with the primal \mathcal{P} and let \Phi_{\rho}\in SS(\mathcal{A}_{\rho}) . Observe that a_{\alpha}\in \lambda(\Phi_{\rho})\setminus\Phi_{\rho} if and only if a_{\alpha}\notin \Phi_{\rho}, and a_{\alpha}\notin \Lambda(\Phi_{\rho}^{c}) if and only if a_{\alpha}\notin \Phi_{\rho} and there exists \Psi_{\rho}\in \Delta_{s}(a_{\alpha}) \ni [Cl(\Psi_{\rho})\setminus \Phi_{\rho}]^{c} = [Cl(\Psi_{\rho})]^{c}\sqcup \Phi_{\rho}\notin \mathcal{P} (since \Delta_{s} is primal soft suitable with the primal \mathcal{P} then \Phi_{\rho}\notin \mathcal{P} ) if and only if there exists \Psi_{\rho}\in \Delta_{s}(a_{\alpha}) \ni a_{\alpha}\in [Cl(\Psi_{\rho})\setminus\Phi_{\rho}]^{c}\notin \mathcal{P} . Now, for each a_{\alpha}\in \lambda(\Phi_{\rho})\setminus\Phi_{\rho} and \Psi_{\rho}\in \Delta_{s}(a_{\alpha}) , [Cl(\Psi_{\rho})\sqcap (\lambda(\Phi_{\rho})\setminus\Phi_{\rho})]^{c} = [Cl(\Psi_{\rho})]^{c}\sqcup [(\lambda(\Phi_{\rho})\setminus\Phi_{\rho})]^{c}\notin \mathcal{P} by heredity and, hence, [\lambda(\Phi_{\rho})\setminus\Phi_{\rho}]^{c} \notin \mathcal{P} by assumption that \Delta_{s} is primal soft suitable with the primal \mathcal{P} .

    Sufficiency. Let \Phi_{\rho}\in SS(\mathcal{A}_{\rho}) and assume that for each a_{\alpha}\in \Phi_{\rho} , there exists \Psi_{\rho}\in \Delta_{s}(a_{\alpha}) \ni Cl(\Psi_{\rho})]^{c}\cup \Phi_{\rho}^{c}\notin \mathcal{P} . Observe that \lambda(\Phi_{\rho}^{c})\setminus(\Phi_{\rho}^{c}) = \Phi_{\rho}\setminus \Lambda(\Phi_{\rho}) = \{a_{\alpha}: there exists \Psi_{\rho}\in \Delta_{s}(a_{\alpha}) such that a_{\alpha}\in [Cl(\Psi_{\rho})]^{c} \sqcup \Phi_{\rho}^{c} \notin \mathcal{P}\} . Thus, we have [\Phi_{\rho}\setminus \Lambda(\Phi_{\rho})]^{c} = [\lambda(\Phi_{\rho}^{c})\setminus(\Phi_{\rho}^{c})]^{c}\notin \mathcal{P} and, hence, \Delta_{s} is primal soft suitable with the primal \mathcal{P} .

    Theorem 5.5. Let (\mathcal{A}_{\rho}, \Delta_{s}, \mathcal{P}) be a PSTOS such that \Delta_{s} is primal soft suitable with the primal \mathcal{P}, then \beta = \{ \lambda(\Phi_{\rho})\setminus \Psi_{\rho}: \Phi_{\rho}, \Psi_{\rho}\in SS(\mathcal{A}_{\rho}), \, \, \Psi_{\rho}^{c}\notin \mathcal{P}\}

    Proof. By Corollary 4.2, we have that \lambda(\Phi_{\rho})\setminus\Psi_{\rho}\sqsubseteq \lambda(\Phi_{\rho}) \sqsubseteq \lambda[\lambda(\Phi_{\rho})] = \lambda[\lambda(\Phi_{\rho})\setminus\Psi_{\rho}] by item (7) Theorem 4.1. So each set of the form \lambda(\Phi_{\rho})\setminus\Psi_{\rho} is in \beta by Theorem 4.3.

    Let \Phi_{\rho}\in \beta . Therefore, \Phi_{\rho}\sqsubseteq \lambda(\Phi_{\rho}) but from \Delta_{s} is primal soft suitable with the primal \mathcal{P} . By Theorem 5.4, we have [\lambda(\Phi_{\rho})\setminus\Phi_{\rho}]^{c}\notin \mathcal{P} , that is, there exists \Psi_{\rho}\in SS(\mathcal{A}_{\rho}) such that \Psi_{\rho} = \lambda(\Phi_{\rho})\setminus\Phi_{\rho} . Hence, \Phi_{\rho} = \lambda(\Phi_{\rho})\setminus\Psi_{\rho} and \Psi_{\rho}^{c}\notin \mathcal{P} . So, \Phi_{\rho}\in \{ \lambda(\Phi_{\rho})\setminus\Psi_{\rho} : \Phi_{\rho}\in SS(\mathcal{A}_{\rho}), \, \, \Psi_{\rho}^{c}\notin \mathcal{P}\} = \beta .

    Proposition 5.1. Let (\mathcal{A}_{\rho}, \Delta_{s}, \mathcal{P}) be a PSTOS and \Delta_{s} be primal soft suitable with the primal \mathcal{P} and \Phi_{\rho}\in SS(\mathcal{A}_{\rho}) . If \Psi_{\rho}\sqsubseteq \Lambda(\Phi_{\rho})\sqcup \lambda(\Phi_{\rho}) and \Psi_{\rho} is non-null soft open, then [\Psi_{\rho}\setminus\Phi_{\rho}]^{c}\notin \mathcal{P} and [Cl(\Psi_{\rho})]^{c}\sqcup \Phi_{\rho}^{c}\in \mathcal{P} .

    Proof. If \Psi_{\rho}\sqsubseteq \Lambda(\Phi_{\rho})\sqcap \lambda(\Phi_{\rho}) , then [\lambda(\Phi_{\rho})\setminus\Phi_{\rho}]^{c}\sqsubseteq[\Psi_{\rho}\setminus\Phi_{\rho}]^{c} by Theorem 5.4 and hence [\Psi_{\rho}\setminus\Phi_{\rho}]^{c}\notin \mathcal{P} by heredity. Since \Psi_{\rho} is non-null soft open and \Psi_{\rho}\sqsubseteq \Lambda(\Phi_{\rho}) , we have [Cl(\Psi_{\rho})]^{c}\sqcup \Phi_{\rho}^{c} \in \mathcal{P} by the definition of \Lambda(\Phi_{\rho}) .

    By Theorem 4.1 (9), we have that if \Phi_{\rho} = \Psi_{\rho} [mod \mathcal{P} ], then \lambda(\Phi_{\rho}) = \lambda(\Psi_{\rho}) .

    Lemma 5.1. Let (\mathcal{A}_{\rho}, \Delta_{s}, \mathcal{P}) be a PSTOS and \Delta_{s} be primal soft suitable with the primal \mathcal{P} . If \Phi_{\rho} and \Psi_{\rho} are soft \theta -open and \lambda(\Phi_{\rho}) = \lambda(\Psi_{\rho}), then \Phi_{\rho} = \Psi_{\rho} [mod \mathcal{P} ].

    Proof. Since \Phi_{\rho} is a soft \theta -open, by Corollary 4.1, we have \Phi_{\rho}\sqsubseteq \lambda(\Phi_{\rho}) , and, hence, \Phi_{\rho}\setminus \Psi_{\rho}\sqsubseteq \lambda(\Phi_{\rho})\setminus \Psi_{\rho} = \lambda(\Psi_{\rho})\setminus \Psi_{\rho} and [\lambda(\Psi_{\rho})\setminus \Psi_{\rho}]^{c}\notin \mathcal{P} by Theorem 5.4. Therefore, [\Phi_{\rho}\setminus\Psi_{\rho}]^{c}\notin \mathcal{P} . Similarly, [\Psi_{\rho}\setminus\Phi_{\rho}]^{c}\notin \mathcal{P} . Now, (\Phi_{\rho}\setminus\Psi_{\rho})^{c}\sqcap (\Psi_{\rho}\setminus\Phi_{\rho})^{c} = [(\Phi_{\rho}\setminus\Psi_{\rho})\sqcup (\Psi_{\rho}\setminus\Phi_{\rho})]^{c} \notin \mathcal{P} by additivity. Hence, \Phi_{\rho} = \Psi_{\rho} [mod \mathcal{P} ].

    Theorem 5.6. Let (\mathcal{A}_{\rho}, \Delta_{s}, \mathcal{P}) be a PSTOS and \Delta_{s} be primal soft suitable with the primal \mathcal{P} . If \Phi_{\rho}, \Psi_{\rho}\in \mathcal{B}_{\theta} and \lambda(\Phi_{\rho}) = \lambda(\Psi_{\rho}), then \Phi_{\rho} = \Psi_{\rho} [mod \mathcal{P} ].

    Proof. Let \Phi_{\rho}, \Psi_{\rho}\in \mathcal{B}_{\theta} , then there is a soft \theta -open \Upsilon_{\rho} and \Omega_{\rho} such that \Phi_{\rho} = \Upsilon_{\rho} [mod \mathcal{P} ] and \Psi_{\rho} = \Omega_{\rho} [mod \mathcal{P} ]. Now, \lambda(\Phi_{\rho}) = \lambda(\Upsilon_{\rho}) and \lambda(\Psi_{\rho}) = \lambda(\Omega_{\rho}) by item (9) of Theorem 4.1. Since \lambda(\Phi_{\rho}) = \lambda(\Psi_{\rho}) implies that \lambda(\Upsilon_{\rho}) = \lambda(\Omega_{\rho}) , then \Upsilon_{\rho} = \Omega_{\rho} [mod \mathcal{P} ] by Lemma 4.1. Hence, \Phi_{\rho} = \Psi_{\rho} [mod \mathcal{P} ] by transitivity.

    Theorem 5.7. Let (\mathcal{A}_{\rho}, \Delta_{s}, \mathcal{P}) be a PSTOS with \Delta_{s}\setminus\{\mathcal{A}_{\rho}\}\sqsubseteq \mathcal{P} and \Delta_{s} be primal soft suitable with the primal \mathcal{P} , then for any \Psi_{\rho}\in SS(\mathcal{A}_{\rho}) , we have \lambda(\Psi_{\rho})\sqsubseteq \Lambda(\Psi_{\rho}) .

    Proof. Suppose that a_{\alpha}\in \lambda(\Psi_{\rho}) and a_{\alpha}\notin \Lambda(\Psi_{\rho}) , then there exists a non-null soft open set \Phi_{\rho} \ni [Cl(\Phi_{\rho})\sqcap \Psi_{\rho}]^{c} \notin \mathcal{P} . Since a_{\alpha}\in \lambda(\Psi_{\rho}) , by Proposition 4.1, a_{\alpha}\in \sqcup \{\Phi_{\rho}\in \Delta_{s} : [Cl(\Phi_{\rho})\setminus\Psi_{\rho}]^{c}\notin \mathcal{P}\} , and there exists a soft open set \Upsilon_{\rho}\in \Delta_{s}(a_{\alpha}) , and [Cl(\Upsilon_{\rho})\setminus\Psi_{\rho}]^{c}\notin \mathcal{P} . Now, we have \Phi_{\rho}\sqcap \Upsilon_{\rho}\in \Delta_{s}(a_{\alpha}) , [Cl(\Phi_{\rho}\sqcap\Upsilon_{\rho}) \sqcap \Psi_{\rho}]^{c}\notin \mathcal{P} , and [Cl(\Phi_{\rho}\sqcap \Upsilon_{\rho}) \setminus \Psi_{\rho}]^{c}\notin \mathcal{P} by heredity. Hence, by finite additivity, we get [Cl(\Phi_{\rho}\sqcap \Upsilon_{\rho})]^{c} = [Cl(\Phi_{\rho}\sqcap \Upsilon_{\rho}) \sqcap \Psi_{\rho}]^{c}\sqcap [Cl(\Phi_{\rho}\sqcap \Upsilon_{\rho})\setminus \Psi_{\rho}]^{c}\notin \mathcal{P} . Since [Cl(\Phi_{\rho}\sqcap \Upsilon_{\rho})]^{c}\in \Delta_{s}(a_{\alpha}) , this is in opposition to \Delta_{s}\setminus\{\mathcal{A}_{\rho}\}\sqsubseteq \mathcal{P} . So, a_{\alpha}\in \Lambda(\Psi_{\rho}) . This means that \lambda(\Psi_{\rho})\sqsubseteq \Lambda(\Psi_{\rho}) .

    Shabir and Naz [4] and Çaǧman et al. [24] have introduced a soft topology on a universal set, extending the conventional (crisp) topology. This topological generalization has proved to be an intriguing field of research. The literature has several ways of creating soft topologies. Acharjee et al. [16] and Al-Omari et al. [17,18] have introduced the primal topology, which builds on the conventional (crisp) topology. The study of topological generalization is gaining popularity. Al-shami et al. [11] has contributed to a primal soft topological space that combines a soft topological space with a soft primal. Our investigation focused on some operators for soft primal space and we have introduced a new topology induced by the primal soft closure operator. Several simple procedures on primal spaces were described. This research has focused on soft primal, a companion concept to soft grills, and covers fundamental operations on them. Our findings in this work are early, and further research into the features of the primal soft topology may provide more insights. This study aims to contribute to the trend of merging soft primal structures with rough approximation spaces in both classical and soft contexts.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors are highly grateful to editors and referees for their valuable comments and suggestions for improving the paper.

    The authors declare that they have no conflict of interest.



    [1] D. Molodtsov, Soft set theory first results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5
    [2] O. Dalkiliç, N. Demirtaş, Algorithms for COVID-19 outbreak using soft set theory: Estimation and application, Soft Comput., 27 (2023), 3203–3211. https://doi.org/10.1007/s00500-022-07519-5 doi: 10.1007/s00500-022-07519-5
    [3] Z. A. Ameen, R. A. Mohammed, T. M. Al-shami, B. A. Asaad, Novel fuzzy topologies formed by fuzzy primal, J. Intell. Fuzzy Syst., 2024, 1–10.
    [4] M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl., 61 (2011), 1786–1799. https://doi.org/10.1016/j.camwa.2011.02.006 doi: 10.1016/j.camwa.2011.02.006
    [5] S. Al Ghour, Z. A. Ameen, On soft submaximal spaces, Heliyon, 8 (2022), e10574. https://doi.org/10.1016/j.heliyon.2022.e10574 doi: 10.1016/j.heliyon.2022.e10574
    [6] T. M. Al-shami, New soft structure: Infra soft topological spaces, Math. Probl. Eng., 2021 (2021), 3361604. https://doi.org/10.1155/2021/3361604 doi: 10.1155/2021/3361604
    [7] Z. A. Ameen, B. A. Asaad, T. M. Al-shami, Soft somewhat continuous and soft somewhat open functions, TWMS J. Pure Appl. Math., 13 (2023), 792–806. https://doi.org/10.48550/arXiv.2112.15201 doi: 10.48550/arXiv.2112.15201
    [8] A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh, A. M. A. El-latif, Soft ideal theory soft local function and generated soft topological spaces, Appl. Math. Inf. Sci., 8 (2014), 1595–1603. https://doi.org/10.12785/amis/080413 doi: 10.12785/amis/080413
    [9] R. A. Mahmoud, Remarks on soft topological spaces with soft grill, Far East J. Math. Sci., 86 (2014), 111–128.
    [10] Z. A. Ameen, M. H. Alqahtani, Baire category soft sets and their symmetric local properties, Symmetry, 15 (2023), 1810. https://doi.org/10.3390/sym15101810 doi: 10.3390/sym15101810
    [11] T. M. Al-shami, Z. A. Ameen, R. Abu-Gdairi, A. Mhemdi, On primal soft topology, Mathematics, 11 (2023), 2329. https://doi.org/10.3390/math11102329 doi: 10.3390/math11102329
    [12] Z. A. Ameen, M. H. Alqahtani, Congruence representations via soft ideals in soft topological spaces, Axioms, 12 (2023), 1015. https://doi.org/10.3390/axioms12111015 doi: 10.3390/axioms12111015
    [13] Z. A. Ameen, M. H. Alqahtani, Some classes of soft functions defined by soft open sets modulo soft sets of the first category, Mathematics, 11 (2023), 4368. https://doi.org/10.3390/math11204368 doi: 10.3390/math11204368
    [14] M. Terepeta, On separating axioms and similarity of soft topological spaces, Soft Comput., 23 (2019), 1049–1057. https://doi.org/10.1007/s00500-017-2824-z doi: 10.1007/s00500-017-2824-z
    [15] T. M. Al-shami, L. D. Kocinac, The equivalence between the enriched and extended soft topologies, Appl. Comput. Math., 18 (2019), 149–162.
    [16] S. Acharjee, M. Özkoç, F. Y. Issaka, Primal topological spaces, arXiv preprint, 2022.
    [17] A. Al-Omari, S. Acharjee, M. Özkoç, A new operator of primal topological spaces, Mathematica, 65 (2023), 175–183. https://doi.org/10.24193/mathcluj.2023.2.03 doi: 10.24193/mathcluj.2023.2.03
    [18] A. Al-Omari, M. Özkoç, S. Acharjee, Primal-proximity spaces, arXiv preprint, 2023.
    [19] H. Al-Saadi, H. Al-Malki, Generalized primal topological spaces, AIMS Math., 8 (2023), 24162–24175. http://dx.doi.org/10.3934/math.20231232 doi: 10.3934/math.20231232
    [20] M. I. Ali, F. Feng, X. Liu, W. K. Min, M. Shabir, On some new operations in soft set theory, Comput. Math. Appl., 57 (2009), 1547–1553. https://doi.org/10.1016/j.camwa.2008.11.009 doi: 10.1016/j.camwa.2008.11.009
    [21] A. Allam, T. H. Ismail, R. Muhammed, A new approach to soft belonging, J. Ann. Fuzzy Math. Inform., 13 (2017), 145–152. https://doi.org/10.30948/afmi.2017.13.1.145 doi: 10.30948/afmi.2017.13.1.145
    [22] N. Xie, Soft points and the structure of soft topological spaces, Ann. Fuzzy Math. Inform., 10 (2015), 309–322.
    [23] A. Aygünoğlu, H. Aygün, Some notes on soft topological spaces, Neural Comput. Appl., 21 (2012), 113–119. https://doi.org/10.1007/s00521-011-0722-3 doi: 10.1007/s00521-011-0722-3
    [24] N. Çağman, S. Karataş, S. Enginoglu, Soft topology, Comput. Math. Appl., 62 (2011), 351–358. https://doi.org/10.1016/j.camwa.2011.05.016 doi: 10.1016/j.camwa.2011.05.016
    [25] S. Nazmul, S. Samanta, Neighbourhood properties of soft topological spaces, Ann. Fuzzy Math. Inform., 6 (2013), 1–15. https://doi.org/10.1186/2251-7456-6-66 doi: 10.1186/2251-7456-6-66
    [26] R. Sahin, A. Kuçuk, Soft filters and their convergence properties, Ann. Fuzzy Math. Inform., 6 (2013), 529–543.
    [27] A. Bashir, H. Sabir, On some structures of soft topology, Math. Sci., 6 (2012), 64. https://doi.org/10.1186/2251-7456-6-64 doi: 10.1186/2251-7456-6-64
    [28] A. A. Azzam, Z. A. Ameen, T. M. Al-shami, M. E. El-Shafei, Generating soft topologies via soft set operators, Symmetry, 14 (2022), 914. https://doi.org/10.3390/sym14050914 doi: 10.3390/sym14050914
    [29] T. Noiri, On \alpha-continuous functions, Casopis Pest. Mat., 109 (1984), 118–126. https://doi.org/10.21136/CPM.1984.108508 doi: 10.21136/CPM.1984.108508
    [30] Z. A. Ameen, S. Al Ghour, Cluster soft sets and cluster soft topologies, Comp. Appl. Math., 42 (2023), 337. https://doi.org/10.1007/s40314-023-02476-7 doi: 10.1007/s40314-023-02476-7
    [31] D. N. Georgiou, A. C. Megaritis, V. I. Petropoulos, On soft topological spaces, Appl. Math. Inf. Sci., 7 (2013), 1889–1901. https://doi.org/10.12785/amis/070527 doi: 10.12785/amis/070527
  • This article has been cited by:

    1. Ohud Alghamdi, Ahmad Al-Omari, Mesfer H. Alqahtani, Novel operators in the frame of primal topological spaces, 2024, 9, 2473-6988, 25792, 10.3934/math.20241260
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1047) PDF downloads(81) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog