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1. Introduction

Supported by R, the continuous Shannon entropy (Shannon [14]) of the random variable (RV) X is
given by

S H(X) = −E(ln h(X)) = −

∫
R
h(x) ln h(x)dx, (1.1)

where h(.) is the probability density function (pdf). Lad et al. [5] produced the extropy as a dual
Shannon entropy measure. The extropy of the discrete RV X supported on Q = {x1, ..., xN} and with
corresponding probability vector p = (p1, ..., pN), is

Ex(X) = −

N∑
i=1

(1 − pi) ln(1 − pi). (1.2)
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Moreover, the view of the extropy of the continuous RV X supported on R has been introduced in many
pieces of literature, see for example Raqab and Qiu [11] and Qiu [9], can be shown as follows:

Ex(X) = −
1
2

∫
R
h(x)2dx. (1.3)

The literature has offered several entropy measures and their generalizations. Through the various
uncertainty generalizations, Tsallis [15] presented the Tsallis entropy. The continuous Tsallis (C-Ts)
entropy of the continuous RV X supported on R, 1 , η > 0, is defined as follows:

T Enη(X) =
1

η − 1

(
1 −

∫
R
h
η(x)dx

)
, (1.4)

when η is 1, then limη→1 T Enη(X) = S H(X).
Renyi [12] suggested a model referred to as continuous Renyi (C-Re) entropy of order η of the

continuous RV X with pdf h(x) as

REnη(X) =
1

1 − η
ln

∫ ∞

0
h
η(x)dx, (1.5)

where 1 , η > 0. It’s simple to see that, when η→ 1, REnη(X) tends to S H(X).
The Tsallis and Renyi extropy under the discrete distribution have been presented in the literature.

Xue and Deng [19] suggested the model Tsallis of extropy, the dual of Tsallis entropy function, and
examined its maximum value. Besides, Balakrishnan et al. [2] study the Tsallis of extropy and apply
it to pattern recognition. Liu and Xiao [6] introduced Renyi extropy and looked at the maximum value
of it. Jawa et al. [4] discuss the past and residual of Tsallis and Renyi extropy via the softmax function.

This paper introduces the C-Ts and C-Re extropy under the continuous distribution lifetime.
Moreover, presenting the maximum of both models. The remainder of this article is as follows:
Section 2 discusses the C-Ts extropy model with its properties and their connection to other measures.
Furthermore, examples of the models for different distributions are introduced. Section 3 gives the
maximum C-Ts extropy and some properties depending on it. Section 4 provides the maximum CRe
extropy. Finally, Section 5 ends the article with some non-parametric estimations of C-Ts extropy
applied to simulated and real data and discusses the estimation for the forecasting time series of OECD
pharmaceutical market data.

2. Continuous Tsallis extropy

In this section, we introduce the rendition of the C-Ts extropy based on the continuous distribution
lifetime.

In the same manner, introduced in Lad et al. [5], we can present the extropy of the continuous RV
X supported on R as follows:

Ex(X) = −

∫
R
(1 − h(x)) ln(1 − h(x))dx. (2.1)

In our work, we will deal with both Eqs (1.3) and (2.1) as a representative form of extropy.
Inspired by the idea of discrete Tsallis of extropy, and the continuous distribution lifetime, we

present the C-Ts extropy by the following definition.
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Definition 2.1. Let X be a continuous RV supported in [a, b], −∞ < a < b < ∞, having a pdf h(.).
Before we introduce the concept of C-Ts extropy, we must mention that the value of the expression
(1 − h(x))η can be negative or non-negative according to the value of the pdf h(x) > 1 or h(x) ≤ 1,
respectively. If h(x) ≤ 1, then (1 − h(x))η gives real value for all 1 , η > 0. If h(x) > 1, then (1 − h(x))η

gives real value when η ∈ Z+\{1}. Otherwise, it gives a complex result when η is a non-positive integer.
Then, the C-Ts extropy can be given as

T Exη(X) =
1

η − 1

(∫ b

a
(1 − h(x))dx −

∫ b

a
(1 − h(x))ηdx

)
=

1
η − 1

(
b − a − 1 −

∫ b

a
(1 − h(x))ηdx

)
,

(2.2)

where the conditions on η can be given in two cases:

(1) 1 , η > 0 if h(x) ≤ 1.
(2) η ∈ Z+\{1} if h(x) > 1.

Proposition 2.1. Assume that X is a continuous RV supported in [a, b], −∞ < a < b < ∞. From (2.2),
where 1 , η > 0, if h(x) ≤ 1 then the C-Ts extropy is non-negative.

Proof. From (2.2), the C-Ts extropy can be rewritten as

T Exη(X) =
1

η − 1

(∫ b

a
(1 − h(x))dx −

∫ b

a
(1 − h(x))ηdx

)
=

1
η − 1

(∫ b

a
(1 − h(x))

(
1 − (1 − h(x))η−1

)
dx

)
.

(2.3)

Provided that h(x) ≤ 1, when η > 1, the function z(y) = yη−1 is increasing, y > 0, therefore 1 − (1 −
h(x))η−1≥ 0. While, when 0 < η < 1, the function z(y) = yη−1 is decreasing, y > 0, therefore 1 − (1 −
h(x))η−1≤ 0. Then, the C-Ts extropy is non-negative. �

Example 2.1. Assume that the continuous RV X has a continuous uniform distribution over [a, b],
−∞ < a < b < ∞ symbolize by U(a, b) with pdf h(x) = 1

b−a . Then, from (2.2), the C-Ts extropy is given
by

T Exη(X) =
1

η − 1

(
b − a − 1 −

(b − a − 1)η

(b − a)η−1

)
, (2.4)

where 1 , η > 0 if h(x) ≤ 1 and η ∈ Z+\{1} if h(x) > 1. In particular, the C-Ts extropy equals zero if
b − a = 1.

Example 2.2. Consider that the continuous RV X has power function distribution with pdf given by

h(x) =
θx(θ−1)

λθ
, 0 ≤ x ≤ λ, and θ, λ > 0.

Then, from (2.2), the C-Ts extropy is given by

T Exη(X) =
1

η − 1

(
λ − 1 −

∫ λ

0

(
1 −

θx(θ−1)

λθ

)η
dx

)
,
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where 1 , η > 0 if h(x) ≤ 1 and η ∈ Z+\{1} if h(x) > 1. Figure 1 shows the C-Ts extropy of power
function distribution with different values of θ and λ. Furthermore, we can see that when the difference
between θ and λ increases, the C-Ts extropy increases.

Figure 1. C-Ts extropy of power function distribution.

In view of Figure 1, we can see that all the given values of θ and λ of the power function distribution
satisfy the condition h(x) ≤ 1 in Eq (2.2) and C-Ts extropy exist where 1 , η > 0. For example,
Figure 2 shows the plot of h(x) ≤ 1 when θ = 5 and 0 < λ ≤ 7. In contrast, Figure 2 shows that h(x)
has the values h(x) ≤ 1 and h(x) > 1, for values like θ = 6 and 0 < λ ≤ 4. As a result, the value of C-Ts
extropy will only exist under the conditions described in Definition 2.1.

Figure 2. The pdf of power function distribution when θ = 5 and 0 < λ ≤ 7 (left panel) and
θ = 6 and 0 < λ ≤ 4 (right panel).
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The next proposition discuss the C-Ts extropy when η tends to 1.

Proposition 2.2. Providing that X is a continuous RV supported in [a, b], −∞ < a < b < ∞. Then,
from (2.1) and (2.2), we have

lim
η→1

T Exη(X) = Ex(X), (2.5)

which is valid only for 1 , η > 0 and h(x) ≤ 1.

Proof. From (2.2), with applying L′Hôpital′s rule, we get

lim
η→1

T Exη(X) = lim
η→1

1
η − 1

(
b − a − 1 −

∫ b

a
(1 − h(x))ηdx

)
= lim

η→1
−

∫ b

a
(1 − h(x))η ln(1 − h(x))dx

= −

∫ b

a
(1 − h(x)) ln(1 − h(x))dx

= Ex(X).

If h(x) ≥ 1, then η ∈ Z+\{1} = {2, 3, ...}, which can’t be tends to 1. Thus, limη→1 T Exη(X) = Ex(X)
only when 1 , η > 0 and h(x) ≤ 1 �

In the next, we will obtain some significant results of C-Ts extropy when the parameter η = 2 is
selected.

Remark 2.1. From Definition 2.1, when the parameter η = 2 is selected, then the C-Ts extropy is valid
for h(x) ≤ 1 or h(x) > 1.

Proposition 2.3. Assume that X is a continuous RV supported in [a, b], −∞ < a < b < ∞. Then,
from (1.3), (1.4), Definition 2.1 and Remark 2.1, we have

T Ex2(X) = T En2(X) = 1 + 2Ex(X).

Proof. From (2.2), at η = 2, we have

T Ex2(X) =
1

2 − 1

(
b − a − 1 −

∫ b

a
(1 − h(x))2dx

)
= b − a − 1 −

(
b − a − 2 +

∫ b

a
h

2(x)dx
)

= 1 −
∫ b

a
h

2(x)dx = T En2(X) = 1 + 2Ex(X).

�

Definition 2.2. (Shaked and Shanthikumar [13]) Provided that X and Y be RV’s with pdf’s h and g,
cdf’s H and G, respectively. In the dispersive order, it is said that X is smaller than Y, symbolized by
X ≤DIS Y, if G−1(H(x)) − x is increasing in x ≥ 0.

Lemma 2.1. If X ≤DIS Y, then T Ex2(X) ≤ T Ex2(Y).
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Proof. From Definition 2.1 and Remark 2.1, at η = 2, we have

T Ex2(X) = 1 −
∫ b

a
h

2(x)dx = 1 −
∫ b

a
h(x)dH(x) = 1 −

∫ 1

0
h(H−1(u))du.

If X ≤DIS Y , thus, by (2.2), we have h(H−1(u)) ≥ g(G−1(u)), ∀u ∈ (0, 1). Therefore,

T Ex2(X) = 1 −
∫ 1

0
h(H−1(u))du ≤ 1 −

∫ 1

0
g(G−1(u))du = T Ex2(Y).

�

Based on the independent and identically distributed observations (iid) X1, X2, ..., Xn and
Y1,Y2, ...,Yn. If X ≤DIS Y , then we have

(1) Xi:n ≤DIS Yi:n (see Theorem 3.B.26 in Shaked and Shanthikumar [13]), i = 1, 2, ..., n.
(2) PX

n ≤DIS PY
n (see Belzunce et al. [3]).

Where Xi:n and Yi:n, i = 1, 2, ..., n, are the ith order statistics of X1, X2, ..., Xn and Y1,Y2, ...,Yn,
respectively, and PX

n and PY
n are the nth upper records of X and Y, respectively. Thus, we can conclude

with the following results.

Proposition 2.4. If X ≤DIS Y, thus

(1) T Ex2(Xi:n) ≤ T Ex2(Yi:n) , i = 1, 2, ..., n.
(2) T Ex2(PX

n ) ≤ T Ex2(PY
n ).

The pdf of the jth order statistics X j:n in a sample of size n is

h j:n(x) =
H j−1(x)H

n− j
(x)h(x)

B( j, n − j + 1)
, (2.6)

where B( j, n− j+1) is the beta function, H(.) = 1−H(.) and H(.) is the cumulative distribution function
(cdf). In the following example, based on U(a, b) distribution, we will obtain the C-Ts extropy of the
jth order statistics X j:n as follows.

Example 2.3. Provided that X is a continuous RV supported in [a, b], −∞ < a < b < ∞. Thus,
from (2.6), Definition 2.1 and Remark 2.1, the C-Ts extropy of the jth order statistics X j:n of the U(a, b)
distribution is given by

T Exη(X j:n) =
1

η − 1

(
b − a − 1 −

∫ b

a
(1 − h j:n(x))ηdx

)
=

1
η − 1

b − a − 1 −
∫ b

a

1 − H j−1(x)H
n− j

(x)h(x)
B( j, n − j + 1)


η

dx


=

1
η − 1

b − a − 1 −
η∑

i=0

(
η
i

)
(−1)i

(B( j, n − j + 1))i(b − a)in

∫ b

a
(x − a)i j−i(b − x)in−i jdx


=

1
η − 1

b − a − 1 −
η∑

i=0

(
η
i

)
(−1)i(b − a)1−iB(i j − i + 1, in − i j + 1)

(B( j, n − j + 1))i

 .
AIMS Mathematics Volume 8, Issue 10, 24176–24195.
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Based on the jth order statistics X j:n, we will obtain some significant results of C-Ts extropy when
the choice of η = 2.

Proposition 2.5. Provided that X is a continuous RV supported in [a, b], −∞ < a < b < ∞. Then,
from (1.3), (1.4), (2.6), Definition 2.1 and Remark 2.1, we have

T Ex2(X j:n) = T En2(X j:n) = 1 + 2Ex(X j:n).

Proposition 2.6. Let X and Y be two continuous RV’s with cdf’s H and G, respectively. Moreover, X
and Y supports in [a, b1] and [a, b2], respectively, where −∞ < a < b1 < ∞ and −∞ < a < b2 < ∞.
Provided that

∫ b1

a
dx and

∫ b2

a
dy exists, then, for a fixed j (1 ≤ j ≤ n), X and Y have a common

distribution iff T Ex2(X j:n) = T Ex2(Y j:n).

Proof. Proof of sufficiency is sufficient. Suppose that T Ex2(X j:n) = T Ex2(Y j:n), then, from (2.6), we
have

∫ b1

a

1 − H j−1(x)H
n− j

(x)h(x)
B( j, n − j + 1)


2

dx =

∫ b2

a

1 − G j−1(x)G
n− j

(x)g(x)
B( j, n − j + 1)


2

dx,

after simplification, we get∫ b1

a
H

2 j−2(x)H
2n−2 j

(x)h2(x)dx =

∫ b2

a
G

2 j−2(x)G
2n−2 j

(x)g2(x)dx,

which is equivalent to∫ b1

a
H

2 j−2(x)H
2n−2 j

(x)τX(x)dH
2
(x) =

∫ b2

a
G

2 j−2(x)G
2n−2 j

(x)τY(x)dG
2
(x),

where τX(x) =
h(x)
H(x)

and τY(x) =
g(x)
G(x)

. Setting w = H
2
(x) or w = G

2
(x), thus, we have

∫ 1

0
(1 −

√
w)2 j−2wn− jτX(H−1(1 −

√
w))dw =

∫ 1

0
(1 −

√
w)2 j−2wn− jτY(G−1(1 −

√
w))dw.

Equivalently∫ 1

0
(1 −

√
w)2 j−2

[
τX(H−1(1 −

√
w)) − τY(G−1(1 −

√
w))

]
wrdw = 0, r = n − j ≥ 0. (2.7)

From Stone-Weierstrass Theorem and its corollary (Aliprantis and Burkinshaw [1]): If χ is a
continuous function on (0, 1) such that

∫ 1

0
xnχ(x)dx = 0 ∀n ≥ 0, then χ(x) = 0, x ∈ (0, 1). Thus,

from (2.7), we have τX(H−1(1 −
√

w)) = τY(G−1(1 −
√

w)), w ∈ [0, 1]. Put 1 −
√

w = u, then we have
H−1(u) = G−1(u), u ∈ (0, 1), and the result follows. �
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3. The maximum C-Ts extropy

In this section, we will present the maximum C-Ts extropy by the following theorem.

Theorem 3.1. Provided that X is a continuous RV supported in [a, b], −∞ < a < b < ∞. Thus,
from (2.2), X has the maximum C-Ts extropy iff it follows the continuous uniform distribution,
where 1 , η > 0 if h(x) ≤ 1 and η ∈ Z+\{1} if h(x) > 1.

Proof. From Definition 2.1, we have

T Exη(X) =
1

η − 1

(∫ b

a
(1 − h(x))dx −

∫ b

a
(1 − h(x))ηdx

)
,

subject to ∫ b

a
h(x)dx = 1. (3.1)

We can obtain the maximization of T Exη(X), using Lagrange multipliers method as follows:

L(X) =
1

η − 1

(∫ b

a
(1 − h(x))dx −

∫ b

a
(1 − h(x))ηdx

)
+ µ

(∫ b

a
h(x)dx − 1

)
.

Differentiating L(X) with respect to h(x) then equating to zero, we obtain

dL(X)
dh(x)

= 0 =
1

η − 1

(
−1 + η(1 − h(x))η−1

)
+ µ,

therefore, we get

h(x) = 1 −
(
1
η

+
1 − η
η

µ

) 1
η−1

. (3.2)

To find the value of µ, we substitute (3.2) in the constrain (3.1), thus

µ =
η

1 − η

(1 − 1
b − a

)η−1

−
1
η

 . (3.3)

Substituting (3.3) in (3.2), it holds h(x) = 1
b−a is the pdf of the continuous U(a, b) distribution. �

Proposition 3.1. Provided that X is a continuous RV supported in [a, b], −∞ < a < b < ∞, provided
that b − a ≥ 2. Then, from (1.4) and Definition 2.1, we have

(1) T Exη(X) ≤ T Enη(X), if 0 < η < 2.
(2) T Exη(X) ≥ T Enη(X), if η > 2.

Proof. From (1.4) and Definition 2.1, we have

T Enη(X) − T Exη(X) =
1

α − 1

(
2 − (b − a) −

∫ b

a
h
η(x)dx +

∫ b

a
(1 − h(x)ηdx

)
.
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Therefore, the Lagrange function (L(X)) is given by

L(X) = T Enη(X) − T Exη(X) + µ

(∫ b

a
h(x)dx − 1

)
.

Then, the derivative with respect to h(x) is

dL(X)
dh(x)

=
−η

η − 1

(
h
η−1(x) + (1 − h(x))η−1

)
+ µ,

thus, we can note the vanishing equation

h
η−1(x) + (1 − h(x))η−1 = k, k is a constant,

and the rest of the proof will be in the same manner given in Balakrishnan et al. [2]. �

Figure 3 shows the comparison between T Exη(X) and T Enη(X) according to Proposition 3.1 of
uniform and power function distributions.

Figure 3. T Exη(X) and T Enη(X) of uniform distribution U(5, 2) (left panel), and power
function distribution (θ = 5, λ = 7) (right panel).

Theorem 3.2. Provided that X is a continuous RV supported in [a, b], −∞ < a < b < ∞. Then, from
Definition 2.1, The C-Ts extropy is less than or equal to 1.

Proof. We can see that the C-Ts extropy of the continuous uniform distribution increases to 1 as (b−a)
increases. From (2.4), assume the function

T (b − a) = T (Z) = Z − 1 −
(Z − 1)η

Zη−1 ,

then, its derivative is given by

T ′(Z) =
Zη − (Z − 1)η−1(η + Z − 1)

Zη
,

its sign, by mean value theorem, is given by η(Z−1+ε)η−1−η(Z−1)η−1, for some ε ∈ (0, 1). Therefore,
we can see that T (Z) increases for η > 1 and decreases for 0 < η < 1. Moreover, as Z tends to ∞, we
have the limit of uniform C-Ts extropy as follows:

lim
Z→+∞

T Exη(X) = lim
Z→+∞

Z − 1
η − 1

1 − (
1 −

1
Z

)η−1 = lim
Z→+∞

Z − 1
Z

= 1.

AIMS Mathematics Volume 8, Issue 10, 24176–24195.
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From the maximum C-Ts extropy given in Theorem 3.1, C-Ts extropy is less than or equal to 1. Or,
we can implement the proof simply by using Bernoulli’s inequality, as follows:

T Exη(X) =
1

η − 1

(
b − a − 1 −

∫ b

a
(1 − h(x))ηdx

)
≤

1
η − 1

(
b − a − 1 −

∫ b

a
(1 − ηh(x))dx

)
≤

1
η − 1

(b − a − 1 − (b − a − η))

≤ 1.

�

4. Continuous Renyi extropy

Inspired by the idea of the discrete Renyi extropy introduced by Liu and Xiao [6], we presented the
C-Re extropy in this section. Let X be a continuous RV supported in [a, b], −∞ < a < b < ∞, having
a pdf h(.). It is obvious from the logarithmic function that its domain is (o,∞). Therefore, the C-Re
extropy exists only when h(x) ≤ 1 and b−a > 1. Otherwise, it will return to a complex result or vanish.
Then, the C-Re extropy, 1 , η > 0, is given by

RExη(X) =
1

1 − η

(
−(b − a − 1) ln(b − a − 1) + (b − a − 1) ln

∫ b

a
(1 − h(x))ηdx

)
, (4.1)

where h(x) ≤ 1 and b − a > 1.

Proposition 4.1. Provided that X is a continuous RV supported in [a, b], −∞ < a < b < ∞. Then,
from (2.1) and (4.1), we have

lim
η→1

RExη(X) = Ex(X). (4.2)

Proof. From (4.1), with applying L′Hôpital′s rule, we get

lim
η→1

RExη(X) = lim
η→1

1
1 − η

(
−(b − a − 1) ln(b − a − 1) + (b − a − 1) ln

∫ b

a
(1 − h(x))ηdx

)

= lim
η→1

1
−1

 (b − a − 1)
∫ b

a
(1 − h(x))η ln(1 − h(x))dx∫ b

a
(1 − h(x))ηdx


= −

∫ b

a
(1 − h(x)) ln(1 − h(x))dx

= Ex(X).

�

Example 4.1. Suppose that the continuous RV X has U(a, b) distribution, provided that b − a , 1.
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Then, the C-Re extropy is given by

RExη(X) =
1

1 − η

(
−(b − a − 1) ln(b − a − 1) + (b − a − 1) ln

∫ b

a
(1 − h(x))ηdx

)
=

1
1 − η

(
−(b − a − 1) ln(b − a − 1) + (b − a − 1) ln

∫ b

a

(
1 −

1
b − a

)η
dx

)
= (b − a − 1) ln

b − a
b − a − 1

,

(4.3)

where b − a , 1.

4.1. The maximum C-Re extropy

In this subsection, we will present the maximum C-Re extropy by the following theorem.

Theorem 4.1. Provided that X is a continuous RV supported in [a, b], −∞ < a < b < ∞. Thus,
from (4.1), X has the maximum C-Re extropy iff it follows the continuous uniform distribution.

Proof. From (4.1), we have

RExη(X) =
1

1 − η

(
−(b − a − 1) ln(b − a − 1) + (b − a − 1) ln

∫ b

a
(1 − h(x))ηdx

)
,

subject to ∫ b

a
h(x)dx = 1. (4.4)

We can obtain the maximization of RExη(X), using Lagrange multipliers method as follows:

L(X) =
1

1 − η

(
−(b − a − 1) ln(b − a − 1) + (b − a − 1) ln

∫ b

a
(1 − h(x))ηdx

)
+ µ

(∫ b

a
h(x)dx − 1

)
.

Differentiating L(X) with respect to h(x) then equating to zero, we obtain

dL(X)
dh(x)

= 0 =
1

1 − η

−η(b − a − 1)(1 − h(x))η−1∫ b

a
(1 − h(x))ηdx

 + µ,

therefore, we get

h(x) = 1 −
(

µ(1 − η)
η(b − a − 1)

∫ b

a
(1 − h(x))ηdx

) 1
η−1

. (4.5)

To find the value of µ, we substitute (4.5) in the constrain (4.4), thus

µ =
η(b − a − 1)

(1 − η)
∫ b

a
(1 − h(x))ηdx

(
1 −

1
b − a

)η−1

. (4.6)

Substituting (4.6) in (4.5), it holds h(x) = 1
b−a is the pdf of the continuous U(a, b) distribution. �
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5. Non-parametric estimation

The non-parametric estimation is used in many works to estimate the extropy and its related
measures. The non-parametric kernel density estimation is a common procedure used in many works
of literature as a smoothed estimator, see, for example, Qiu and Jia [5], Noughabi and Jarrahiferiz [10]
and Jahanshahi et al. [12]. In this section, we present the empirical estimator of the pdf to estimate the
C-Ts extropy using the kernel non-parametric estimator. Let the sequence {X j, 1 ≤ j ≤ n} be a random
sample drawn from a population with pdf h(.). From Definition 2.1, the empirical Tsallis extropy is
defined as

T Exη(hn) =
1

η − 1

(∫ b

a
(1 − hn(x))

(
1 − (1 − hn(x))η−1

)
dx

)
=

1
η − 1

 n−1∑
j=1

∫ X j+1:n

X j:n

(1 − hn(x))
(
1 − (1 − hn(x))η−1

)
dx


=

1
η − 1

 n−1∑
j=1

(X j+1:n − X j:n)(1 − hn(X j:n))
(
1 − (1 − hn(X j:n))η−1

) ,
(5.1)

where X1:n ≤ X2:n ≤ ... ≤ Xn:n is the order statistic of the random sample. Furthermore, hn(.) is the
density kernel estimator of h(.) defined by (see, Parzen [8])

hn(x) =
1

nB

n∑
i=1

kr
( x − Xi

B

)
,

where kr(x) is the kernel function (we use the Gaussian kernel) and B is the bandwidths. To choose
the bandwidths, we use different methods like plug-in selectors (includes rule-of-thumb BRT and direct
plug-in BDPI) and cross-validation selectors (includes unbiased cross-validation BUCV and biased cross-
validation BBCV). Figure 4 shows the Gaussian kernel density estimator rule-of-thumb bandwidth
(BRT−Gaussian) compared with different bandwidths selection. Tables 1 and 2 show the Tsallis extropy
estimator with different values of η and sample size n = 10, 20, 30, 70, 90, 100, 150, 200, and we can
conclude the following:

(1) For fixed η and n increases, Tsallis extropy decreases.
(2) For fixed n and η increases, Tsallis extropy decreases.
(3) The Tsallis extropy under the bandwidths BRT gives a large value than the other bandwidths

selections.

Figure 4. Compared bandwidths selection.
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Table 1. Tsallis extropy estimator with η = 0.1, 0.9.
n Bandwidths with η = 0.1 Bandwidths with η = 0.9

BRT BDPI BUCV BBCV BRT BDPI BUCV BBCV

10 0.01568894 0.01225054 0.0129823 0.012995 0.01529039 0.01200904 0.01271073 0.01272289
20 0.00648184 0.007448753 0.006082191 0.006076309 0.006403521 0.00734512 0.006013289 0.006007541
30 0.004392641 0.004579266 0.004121339 0.004128011 0.004352873 0.004536029 0.004086354 0.004092911
70 0.003419211 0.003454668 0.00345291 0.003452436 0.003409897 0.003445159 0.00344341 0.00344294
90 0.001635452 0.001550102 0.001539633 0.001540461 0.001629029 0.001544334 0.001533942 0.001534764
100 0.001509869 0.001433574 0.001422614 0.001420712 0.001504396 0.001428641 0.001417757 0.001415868
150 0.001472468 0.001406587 0.00141964 0.00141884 0.001469182 0.001403589 0.001416586 0.001415789
200 0.001071068 0.001004348 0.001027615 0.001027698 0.001069151 0.001002663 0.001025851 0.001025934

Table 2. Tsallis extropy estimator with η = 3, 6.
n Bandwidths with η = 3 Bandwidths with η = 6

BRT BDPI BUCV BBCV BRT BDPI BUCV BBCV

10 0.01430656 0.01140461 0.01203303 0.01204388 0.01304385 0.01061012 0.01114672 0.01115594
20 0.006203853 0.007082083 0.005837306 0.005831896 0.005932838 0.006727799 0.00559768 0.005592718
30 0.004250744 0.004425095 0.003996382 0.00400265 0.004110336 0.004272832 0.003872394 0.00387827
70 0.003385607 0.003420364 0.003418641 0.003418176 0.003351307 0.003385354 0.003383666 0.003383211
90 0.001612328 0.001529326 0.001519136 0.001519943 0.001588865 0.001508223 0.001498314 0.001499099
100 0.001490156 0.001415801 0.001405111 0.001403256 0.001470123 0.001397723 0.001387306 0.001385498
150 0.001460602 0.001395758 0.00140861 0.001407822 0.001448461 0.001384673 0.001397319 0.001396544
200 0.001064142 0.00099825760.001021239 0.001021322 0.00105704 0.000992009 0.001014699 0.001014781

5.1. Pharmaceutical market dataset

In this subsection, we illustrate a dataset that compares sales and consumption across several
countries in the pharmaceutical business. From Figures 5 and 6, this study focuses on the
OECD countries which contain 8 countries in the pharmaceutical market variables (Antidepressants;
Anxiolytics; Drugs used in diabetes; Respiratory system) from 2010 to 2021 (Defined daily dosage
per 1000 inhabitants per day), see [7]. Table 3 shows the Tsallis extropy estimator with different values
of η and we can conclude the following:

(1) When η increases, Tsallis extropy decreases.
(2) The Tsallis extropy under the bandwidths BDPI gives a large value than the other bandwidths

selections.

AIMS Mathematics Volume 8, Issue 10, 24176–24195.



24189

Figure 5. Pharmaceutical market variables.
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Figure 6. Pharmaceutical market country.

Table 3. Tsallis extropy estimator of OECD pharmaceutical market.

η Bandwidths
BRT BDPI BUCV BBCV

0.1 0.0004175204 0.0006107105 4.314579 ×10−6 0.000392944
0.9 0.0004175065 0.0006106806 4.314578 ×10−6 0.0003929316
3 0.0004174699 0.0006106023 4.314574 ×10−6 0.0003928992
6 0.0004174176 0.0006104904 4.314568 ×10−6 0.0003928529
9 0.000417313 0.0006102668 4.314557 ×10−6 0.0003927603
12 0.0004171737 0.0006099688 4.314542 ×10−6 0.0003926369

5.1.1. Forecasting time series

In this part, we study the forecasting time series of Austria pharmaceutical market from 2021
to 2030 for the two variables, anxiolytics and drugs used in diabetes. Then, we obtain the Tsallis
extropy estimator of the obtained results. Figures 7 and 8 show the fitted model to the anxiolytics and
drugs used in diabetes variables which both fitted to ARIMA(0, 1, 0) with (AIC=54.09, BIC=54.39 and
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p-value 0.74) and (AIC=14.13, BIC=14.44 and p-value 0.505), respectively.

Figure 7. Fitted anxiolytics variable of Austria pharmaceutical market.

Figure 8. Fitted drugs used in diabetes variable of Austria pharmaceutical market.

Figure 9 shows the time series and its forecasting of Austria pharmaceutical market from 2021
to 2030 for the two variables Anxiolytics and Drugs used in diabetes. Tables 4 and 5 show the Tsallis
extropy estimator of 80% and 95% forecasting interval of anxiolytics and drugs used in diabetes of
Austria pharmaceutical market, respectively, and we can conclude the following:
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(1) When η increases, Tsallis extropy decreases.
(2) The Tsallis extropy under the bandwidths BRT gives a large value than the other bandwidths

selections.

Figure 9. Forecasting time series of Austria pharmaceutical market.

Table 4. Tsallis extropy estimator of anxiolytics in Austria pharmaceutical market.
η Bandwidths (80% forecasting interval) Bandwidths (95% forecasting interval)

BRT BDPI BUCV BBCV BRT BDPI BUCV BBCV

0.1 [0.01278551,
0.02367084]

[0.0118221,
0.02306017]

[0.01200616,
0.02319374]

[0.01199755,
0.02318694]

[0.01282185,
0.02371729]

[0.01184626,
0.02310411]

[0.01203778,
0.02323823]

[0.01202923,
0.02323139]

0.9 [0.01203026,
0.02267522]

[0.01117969,
0.02211642]

[0.01134294,
0.02223877]

[0.01133531,
0.02223254]

[0.01233652,
0.02307425]

[0.01143332,
0.02249436]

[0.01161111,
0.02262128]

[0.01160317,
0.02261481]

3 [0.0103122,
0.02031479]

[0.009701415,
0.0198728]

[0.009820118,
0.01996984]

[0.009814586,
0.0199649]

[0.01117408,
0.02149344]

[0.01043706,
0.02099279]

[0.01058318,
0.02110254]

[0.01057667,
0.02109695]

6 [0.008393795,
0.01748806]

[0.008018444,
0.01717329]

[0.008092826,
0.01724268]

[0.008089374,
0.01723915]

[0.009757514,
0.01947896]

[0.009207808,
0.0190735]

[0.009317947,
0.01916259]

[0.009313052,
0.01915805]

9 [0.006945648,
0.01518132]

[0.006720525,
0.01495867]

[0.00676616,
0.01500796]

[0.006764053,
0.01500546]

[0.008578555,
0.01771483]

[0.008170232,
0.01738691]

[0.008252944,
0.01745914]

[0.008249277,
0.01745546]

12 [0.005838708,
0.01328733]

[0.005708993,
0.01313129]

[0.005736063,
0.013166]

[0.005734821,
0.01316424]

[0.007592507,
0.01616612]

[0.007290802,
0.01590135]

[0.007352628,
0.01595982]

[0.007349894,
0.01595684]
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Table 5. Tsallis extropy estimator of drugs used in diabetes in Austria pharmaceutical
market.

η Bandwidths (80% forecasting interval) Bandwidths (95% forecasting interval)
BRT BDPI BUCV BBCV BRT BDPI BUCV BBCV

0.1 [0.01287194,
0.02378289]

[0.01188874,
0.02316626]

[0.0120817,
0.02330113]

[0.01207308,
0.02329425]

[0.01287625,
0.02378862]

[0.01189883,
0.02317169]

[0.01208585,
0.02330662]

[0.01207643,
0.02329974]

0.9 [0.01277373,
0.02365185]

[0.01180502,
0.02304195]

[0.01199523,
0.02317536]

[0.01198674,
0.02316856]

[0.01281218,
0.02370307]

[0.01184414,
0.02309053]

[0.01202942,
0.02322451]

[0.01202009,
0.02321768]

3 [0.01252066,
0.02331242]

[0.01158896,
0.02271983]

[0.01177214,
0.02284949]

[0.01176396,
0.02284288]

[0.012646,
0.02348046]

[0.01170216,
0.02287929]

[0.01188297,
0.02301081]

[0.01187386,
0.0230041]

6 [0.01217064,
0.02283873]

[0.01128939,
0.02227002]

[0.01146296,
0.02239451]

[0.01145521,
0.02238816]

[0.01241357,
0.02316725]

[0.01150326,
0.02258196]

[0.01167784,
0.02271004]

[0.01166905,
0.02270352]

9 [0.01183364,
0.02237785]

[0.01100012,
0.02183207]

[0.01116459,
0.02195159]

[0.01115725,
0.0219455]

[0.01218683,
0.02285961]

[0.01130886,
0.02228979]

[0.01147744,
0.02241452]

[0.01146895,
0.02240816]

12 [0.01150912,
0.0219294]

[0.01072077,
0.02140563]

[0.01087661,
0.02152038]

[0.01086966,
0.02151453]

[0.01196562,
0.02255743]

[0.01111885,
0.02200266]

[0.01128163,
0.02212413]

[0.01127343,
0.02211794]

6. Conclusions

In this consideration, we have discussed the C-Ts and C-Re extropy under the continuous case,
and discuss the conditions when the continuous distributions can be valid to apply in C-Ts and C-
Re extropy. We have illustrated some properties of the presented models with examples of some
distributions like uniform and power function distributions. Besides, our models with the other
uncertainty measures and order statistics are compared. Moreover, we have discussed the condition
of the maximum C-Ts and C-Re extropy, which both returned to the uniform distribution. A non-
parametric estimation has been introduced of the Tsallis extropy and we see that its increases depend
on the values of n, η and the selection of the bandwidth. In comparing C-Ts and C-Re extropy with the
original version of entropy, we can see that no constraints are held on the pdf of the entropy measures.
Moreover, we must have some restrictions on the pdf in C-Ts and C-Re extropy. Furthermore, when
the Tsallis entropy parameter η approaches 1, it converges to the classical Shannon entropy. In contrast,
the C-Ts extropy converges to the extropy measure when η tends to 1, only at h(x) ≤ 1. The choice of
the non-extensive parameter η can significantly impact the behavior and interpretation of the entropy
measure; therefore, when η = 2, the C-Ts extropy and entropy coincide, which means that the two
models have the same performance in evaluating uncertain information. In future work, some relative
works of entropy, e.g., Quantum X-entropy in generalized quantum evidence theory (Xiao [16]); On the
maximum entropy negation of a complex-valued distribution (Xiao [17]); Evidential fuzzy multicriteria
decision making based on belief entropy (Xiao [18]) can be implemented in extropy and its related
measures.
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