Research article

Stochastic comparisons of extreme order statistic from dependent and heterogeneous lower-truncated Weibull variables under Archimedean copula

  • Received: 13 October 2021 Revised: 31 December 2021 Accepted: 09 January 2022 Published: 26 January 2022
  • MSC : Primary 90B25; Secondary 60E15, 60K10

  • This article studies the stochastic comparisons of order statistics with dependent and heterogeneous lower-truncated Weibull samples under Archimedean copula. To begin, we obtain the usual stochastic and hazard rate orders of the largest and smallest order statistics from heterogeneous and dependent lower-truncated Weibull samples under Archimedean copula. Second, under Archimedean copula, we get the convex transform and the dispersive orders of the largest and smallest order statistics from dependent and heterogeneous lower-truncated Weibull samples. Finally, several numerical examples are given to demonstrate the theoretical conclusions.

    Citation: Xiao Zhang, Rongfang Yan. Stochastic comparisons of extreme order statistic from dependent and heterogeneous lower-truncated Weibull variables under Archimedean copula[J]. AIMS Mathematics, 2022, 7(4): 6852-6875. doi: 10.3934/math.2022381

    Related Papers:

  • This article studies the stochastic comparisons of order statistics with dependent and heterogeneous lower-truncated Weibull samples under Archimedean copula. To begin, we obtain the usual stochastic and hazard rate orders of the largest and smallest order statistics from heterogeneous and dependent lower-truncated Weibull samples under Archimedean copula. Second, under Archimedean copula, we get the convex transform and the dispersive orders of the largest and smallest order statistics from dependent and heterogeneous lower-truncated Weibull samples. Finally, several numerical examples are given to demonstrate the theoretical conclusions.



    加载中


    [1] R. Dykstra, S. Kochar, J. Rojo, Stochastic comparisons of parallel systems of heterogeneous exponential components, J. Stat. Plan. Infer., 65 (1997), 203–211. https://doi.org/10.1016/S0378-3758(97)00058-X doi: 10.1016/S0378-3758(97)00058-X
    [2] P. Zhao, N. Balakrishnan, Some characterization results for parallel systems with two heterogeneous exponential components, Statistics, 45 (2011), 593–604. https://doi.org/10.1080/02331888.2010.485276 doi: 10.1080/02331888.2010.485276
    [3] C. Li, X. Li, Likelihood ratio order of sample minimum from heterogeneous Weibull random variables, Stat. Probabil. Lett., 97 (2015), 46–53. https://doi.org/10.1016/j.spl.2014.10.019 doi: 10.1016/j.spl.2014.10.019
    [4] N. Torrado, S. C. Kochar, Stochastic order relations among parallel systems from Weibull distributions, J. Appl. Probab., 52 (2015), 102–116. https://doi.org/10.1239/jap/1429282609 doi: 10.1239/jap/1429282609
    [5] B. E. Khaledi, S. Kochar, Weibull distribution: Some stochastic comparisons results, J. Stat. Plan. Infer., 136 (2006), 3121–3129. https://doi.org/10.1016/j.jspi.2004.12.013 doi: 10.1016/j.jspi.2004.12.013
    [6] S. Kochar, M. Xu, Stochastic comparisons of parallel systems when components have proportional hazard rates, Probab. Eng. Inform. Sci., 21 (2007), 597–609. https://doi.org/10.1017/S0269964807000344 doi: 10.1017/S0269964807000344
    [7] N. Torrado, Comparisons of smallest order statistics from Weibull distributions with different scale and shape parameters, J. Korean Stat. Soc., 44 (2015), 68–76. https://doi.org/10.1016/j.jkss.2014.05.004 doi: 10.1016/j.jkss.2014.05.004
    [8] S. Kochar, M. Xu, On the skewness of order statistics with applications, Ann. Oper. Res., 212 (2012), 127–138. https://doi.org/10.1007/s10479-012-1212-4 doi: 10.1007/s10479-012-1212-4
    [9] N. Balakrishnan, A. Haidari, K. Masoumifard, Stochastic comparisons of series and parallel systems with generalized exponential components, IEEE T. Reliab., 64 (2015), 333–348. https://doi.org/10.1109/TR.2014.2354192 doi: 10.1109/TR.2014.2354192
    [10] L. Fang, X. Zhang, Stochastic comparisons of parallel systems with exponentiated Weibull components, Stat. Probabil. Lett., 97 (2015), 25–31. https://doi.org/10.1016/j.spl.2014.10.017 doi: 10.1016/j.spl.2014.10.017
    [11] A. Kundu, S. Chowdhury, Ordering properties of order statistics from heterogeneous exponentiated Weibull models, Stat. Probabil. Lett., 114 (2016), 119–127. https://doi.org/10.1016/j.spl.2016.03.017 doi: 10.1016/j.spl.2016.03.017
    [12] N. K. Hazra, M. R. Kuiti, M. Finkelstein, A. K. Nanda, On stochastic comparisons of minimum order statistics from the location-scale family of distributions, Metrika, 81 (2017), 105–123. https://doi.org/10.1007/s00184-017-0636-x doi: 10.1007/s00184-017-0636-x
    [13] N. Balakrishnan, G. Barmalzan, A. Haidari, Modified proportional hazard rates and proportional reversed hazard rates models via marshall olkin distribution and some stochastic comparisons, J. Korean Stat. Soc., 47 (2018), 127–138. https://doi.org/10.1016/j.jkss.2017.10.003 doi: 10.1016/j.jkss.2017.10.003
    [14] G. Barmalzan, S. Kosari, N. Balakrishnan, Usual stochastic and reversed hazard orders of parallel systems with independent heterogeneous components, Commun. Stat.-Theory Methods, 2020, 1–26. https://doi.org/10.1080/03610926.2020.1823415
    [15] G. Barmalzan, S. Ayat, N. Balakrishnan, Stochastic comparisons of series and parallel systems with dependent burr type XII components, Commun. Stat.-Theory Methods, 2020, 1–22. https://doi.org/10.1080/03610926.2020.1772307
    [16] S. Naqvi, W. Ding, P. Zhao, Stochastic comparison of parallel systems with pareto components, Probab. Eng. Inform. Sci., 2021, 1–13. https://doi.org/10.1017/S0269964821000176
    [17] A. Arriaza, A. Di Crescenzo, M. A. Sordo, A. Suárez-Llorens, Shape measures based on the convex transform order, Metrika, 82 (2019), 99–124. https://doi.org/10.1007/s00184-018-0667-y doi: 10.1007/s00184-018-0667-y
    [18] J. Zhang, R. Yan, Stochastic comparison at component level and system level series system with two proportional hazards rate components, J. Quant. Econ., 35 (2018), 91–95. https://doi.org/10.16339/j.cnki.hdjjsx.2018.04.035 doi: 10.16339/j.cnki.hdjjsx.2018.04.035
    [19] G. S. Mudholkar, D. K. Srivastava, Exponentiated Weibull family for analyzing bathtub failure-rate data, IEEE T. Reliab., 42 (1993), 299–302. https://doi.org/10.1109/24.229504 doi: 10.1109/24.229504
    [20] P. Zhao, N. Balakrishnan, New results on comparisons of parallel systems with heterogeneous gamma components, Stat. Probabil. Lett., 81 (2011), 36–44. https://doi.org/10.1016/j.spl.2010.09.016 doi: 10.1016/j.spl.2010.09.016
    [21] B. E. Khaledi, S. Farsinezhad, S. C. Kochar, Stochastic comparisons of order statistics in the scale model, J. Stat. Plan. Infer., 141 (2011), 276–286. https://doi.org/10.1016/j.jspi.2010.06.006 doi: 10.1016/j.jspi.2010.06.006
    [22] N. Misra, A. K. Misra, New results on stochastic comparisons of two-component series and parallel systems, Stat. Probabil. Lett., 82 (2012), 283–290. https://doi.org/10.1016/j.spl.2011.10.010 doi: 10.1016/j.spl.2011.10.010
    [23] N. Balakrishnan, P. Zhao, Hazard rate comparison of parallel systems with heterogeneous gamma components, J. Multivariate Anal., 113 (2013), 153–160. https://doi.org/10.1016/j.jmva.2011.05.001 doi: 10.1016/j.jmva.2011.05.001
    [24] P. Zhao, N. Balakrishnan, Comparisons of largest order statistics from multiple-outlier gamma models, Methodol. Comput. Appl. Probab., 17 (2015), 617–645. https://doi.org/10.1007/s11009-013-9377-0 doi: 10.1007/s11009-013-9377-0
    [25] W. Ding, Y. Zhang, P. Zhao, Comparisons of $k$-out-of-$n $ systems with heterogenous components, Stat. Probabil. Lett., 83 (2013), 493–502. https://doi.org/10.1016/j.spl.2012.10.012 doi: 10.1016/j.spl.2012.10.012
    [26] Z. Guo, J. Zhang, R. Yan, The residual lifetime of surviving components of coherent system under periodical inspections, Mathematics, 8 (2020), 2181. https://doi.org/10.3390/math8122181 doi: 10.3390/math8122181
    [27] S. C. Kochar, N. Torrado, On stochastic comparisons of largest order statistics in the scale model, Commun. Stat.-Theory Methods, 44 (2015), 4132–4143. https://doi.org/10.1080/03610926.2014.985839 doi: 10.1080/03610926.2014.985839
    [28] A. Panja, P. Kundu, B. Pradhan, Variability and skewness ordering of sample extremes from dependent random variables following the proportional odds model, arXiv, 2020. Available from: https://arXiv.org/abs/2006.04454.
    [29] Z. Guo, J. Zhang, R. Yan, On inactivity times of failed components of coherent system under double monitoring, Probab. Eng. Inform. Sci., 2021, 1–18. https://doi.org/10.1017/S0269964821000152
    [30] A. Kundu, S. Chowdhury, A. K. Nanda, N. K. Hazra, Some results on majorization and their applications, J. Comput. Appl. Math., 301 (2016), 161–177. https://doi.org/10.1016/j.cam.2016.01.015 doi: 10.1016/j.cam.2016.01.015
    [31] R. Yan, B. Lu, X. Li, On redundancy allocation to series and parallel systems of two components, Commun. Stat.-Theory Methods, 48 (2019), 4690–4701. https://doi.org/10.1080/03610926.2018.1500603 doi: 10.1080/03610926.2018.1500603
    [32] X. Li, R. Fang, Ordering properties of order statistics from random variables of Archimedean copulas with applications, J. Multivariate Anal., 133 (2015), 304–320. https://doi.org/10.1016/j.jmva.2014.09.016 doi: 10.1016/j.jmva.2014.09.016
    [33] C. Li, R. Fang, X. Li, Stochastic somparisons of order statistics from scaled and interdependent random variables, Metrika, 79 (2016), 553–578. https://doi.org/10.1007/s00184-015-0567-3 doi: 10.1007/s00184-015-0567-3
    [34] R. Fang, C. Li, X. Li, Stochastic comparisons on sample extremes of dependent and heterogenous observations, Statistics, 50 (2016), 930–955. https://doi.org/10.1080/02331888.2015.1119151 doi: 10.1080/02331888.2015.1119151
    [35] Y. Zhang, X. Cai, P. Zhao, H. Wang, Stochastic comparisons of parallel and series systems with heterogeneous resilience-scaled components, Statistics, 53 (2019), 126–147. https://doi.org/10.1080/02331888.2018.1546705 doi: 10.1080/02331888.2018.1546705
    [36] C. Li, X. Li, Hazard rate and reversed hazard rate orders on extremes of heterogeneous and dependent random variables, Stat. Probabil. Lett., 146 (2019), 104–111. https://doi.org/10.1016/j.spl.2018.11.005 doi: 10.1016/j.spl.2018.11.005
    [37] Y. Zhang, X. Cai, P. Zhao, Ordering properties of extreme claim amounts from heterogeneous portfolios, ASTIN Bull., 49 (2019), 525–554. https://doi.org/10.1017/asb.2019.7 doi: 10.1017/asb.2019.7
    [38] G. Barmalzan, S. M. Ayat, N. Balakrishnan, R. Roozegar, Stochastic comparisons of series and parallel systems with dependent heterogeneous extended exponential components under archimedean copula, J. Comput. Appl. Math., 380 (2020), 112965. https://doi.org/10.1016/j.cam.2020.112965 doi: 10.1016/j.cam.2020.112965
    [39] L. Zhang, R. Yan, Stochastic comparisons of series and parallel systems with dependent and heterogeneous topp leone generated components, AIMS Math., 6 (2021), 2031–2047. https://doi.org/10.3934/math.2021124 doi: 10.3934/math.2021124
    [40] M. Zhang, B. Lu, R. Yan, Ordering results of extreme order statistics from dependent and heterogeneous modified proportional (reversed) hazard variables, AIMS Math., 6 (2021), 584–606. https://doi.org/10.3934/math.2021036 doi: 10.3934/math.2021036
    [41] N. Torrado, Comparing the reliability of coherent systems with heterogeneous, dependent and distribution-free components, Qual. Technol. Quant. M., 18 (2021), 740–770. https://doi.org/10.1080/16843703.2021.1963033 doi: 10.1080/16843703.2021.1963033
    [42] E. Amini-Seresht, J. Qiao, Y. Zhang, P. Zhao, On the skewness of order statistics in multiple-outlier PHR models, Metrika, 79 (2016), 817–836. https://doi.org/10.1007/s00184-016-0579-7 doi: 10.1007/s00184-016-0579-7
    [43] B. E. Khaledi, S. Kochar, Dispersive ordering among linear combinations of uniform random variables, J. Stat. Plan. Infer., 100 (2002), 13–21. https://doi.org/10.1016/S0378-3758(01)00091-X doi: 10.1016/S0378-3758(01)00091-X
    [44] J. Jeon, S. Kochar, C. G. Park, Dispersive ordering some applications and examples, Stat. Pap., 47 (2006), 227–247. https://doi.org/10.1007/s00362-005-0285-4 doi: 10.1007/s00362-005-0285-4
    [45] S. Kochar, Stochastic comparisons of order statistics and spacings: A review, Probab. Stat., 2012 (2012), 839473. https://doi.org/10.5402/2012/839473 doi: 10.5402/2012/839473
    [46] W. Ding, J. Yang, X. Ling, On the skewness of extreme order statistics from heterogeneous samples, Commun. Stat.-Theory Methods, 46 (2016), 2315–2331. https://doi.org/10.1080/03610926.2015.1041984 doi: 10.1080/03610926.2015.1041984
    [47] J. Wu, M. Wang, X. Li, Convex transform order of the maximum of independent Weibull random variables, Stat. Probabil. Lett., 156 (2020), 108597. https://doi.org/10.1016/j.spl.2019.108597 doi: 10.1016/j.spl.2019.108597
    [48] R. Yan, J. Wang, Component level versus system level at active redundancies for coherent systems with dependent heterogeneous components, Commun. Stat.-Theory Methods, 2020, 1–21. https://doi.org/10.1080/03610926.2020.1767140
    [49] R. Yan, J. Zhang, Y. Zhang, Optimal allocation of relevations in coherent systems, J. Appl. Probab., 58 (2021), 1152–1169. https://doi.org/10.1017/jpr.2021.23 doi: 10.1017/jpr.2021.23
    [50] T. Lando, I. Arab, P. E. Oliveira, Second-order stochastic comparisons of order statistics, Statistics, 55 (2021), 561–579. https://doi.org/10.1080/02331888.2021.1960527 doi: 10.1080/02331888.2021.1960527
    [51] T. Lando, L. Bertoli-Barsotti, Second-order stochastic dominance for decomposable multiparametric families with applications to order statistics, Stat. Probabil. Lett., 159 (2020), 108691. https://doi.org/10.1016/j.spl.2019.108691 doi: 10.1016/j.spl.2019.108691
    [52] J. Zhang, R. Yan, J. Wang, Reliability optimization of parallel-series and series-parallel systems with statistically dependent components, Appl. Math. Model., 102 (2022), 618–639. https://doi.org/10.1016/j.apm.2021.10.003 doi: 10.1016/j.apm.2021.10.003
    [53] L. Jiao, R. Yan, Stochastic comparisons of lifetimes of series and parallel systems with dependent heterogeneous MOTL-G components under random shocks, Symmetry, 13 (2021), 2248. https://doi.org/10.3390/sym13122248 doi: 10.3390/sym13122248
    [54] B. Lu, J. Zhang, R. Yan, Optimal allocation of a coherent system with statistical dependent subsystems, Probab. Eng. Inform. Sci., 2021, 1–20. https://doi.org/10.1017/S0269964821000437
    [55] S. Blumenthal, A survey of estimating distributional parameters and sample sizes from truncated samples, In: Statistical distributions in scientific work, Springer Netherlands: Dordrecht, 79 (1981), 75–86. https://doi.org/10.1007/978-94-009-8552-0_6
    [56] S. Blumenthal, R. Marcus, Estimating population size with exponential failure, J. Am. Stat. Assoc., 70 (1975), 913–922. https://doi.org/10.2307/2285457 doi: 10.2307/2285457
    [57] L. Fang, J. Ling, N. Balakrishnan, Stochastic comparisons of series and parallel systems with independent heterogeneous lower-truncated Weibull components, Commun. Stat.-Theory Methods, 45 (2015), 540–551. https://doi.org/10.1080/03610926.2015.1099671 doi: 10.1080/03610926.2015.1099671
    [58] F. Famoye, Continuous univariate distributions, Technometrics, 37 (1995), 466. https://doi.org/10.1080/00401706.1995.10484392 doi: 10.1080/00401706.1995.10484392
    [59] D. N. P. Murthy, M. Xie, R. Jiang, Weibull models, Wiley, 2004.
    [60] W. R. Van Zwet, Convex transformations of random variables, Mathematisch Centrum Amsterdam, 1964.
    [61] M. Shaked, J. G. Shanthikumar, Stochastic orders, New York: Springer, 2007. https://doi.org/10.1007/978-0-387-34675-5
    [62] H. Li, X. Li, Stochastic orders in reliability and risk, New York: Springer, 2013. https://doi.org/10.1007/978-1-4614-6892-9
    [63] A. W. Marshall, I. Olkin, B. C. Arnold, Inequalities: Theory of majorization and its applications, Springer, 1979.
    [64] R. B. Nelsen, An introduction to copulas, New York: Springer, 2007. https://doi.org/10.1007/0-387-28678-0
    [65] A. J. McNeil, J. Neslehova, Multivariate Archimedean copulas, $d$-monotone functions and $\ell_{1}$-norm symmetric distributions, Ann. Stat., 37 (2009), 3059–3097. https://doi.org/10.1214/07-AOS556 doi: 10.1214/07-AOS556
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1893) PDF downloads(79) Cited by(1)

Article outline

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog