Citation: Hong Yan Xu, Zu Xing Xuan, Jun Luo, Si Min Liu. On the entire solutions for several partial differential difference equations (systems) of Fermat type in $\mathbb{C}^2$[J]. AIMS Mathematics, 2021, 6(2): 2003-2017. doi: 10.3934/math.2021122
[1] | M. Ablowitz, R. G. Halburd, B. Herbst, On the extension of Painlevé property to difference equations, Nonlinearty, 13 (2000), 889–905. |
[2] | T. B. Cao, R. J. Korhonen, A new version of the second main theorem for meromorphic mappings intersecting hyperplanes in several complex variables, J. Math. Anal. Appl., 444 (2016), 1114–1132. |
[3] | T. B. Cao, L. Xu, Logarithmic difference lemma in several complex variables and partial difference equations, Annali di Matematica, (2019), arXiv: 1806.05423v2. |
[4] | Z. X. Chen, On growth, zeros and poles of meromorphic solutions of linear and nonlinear difference equations, Sci. China Math., 54 (2011), 2123–2133. |
[5] | Z. X. Chen, Complex differences and difference equations, Science Press, Beijing, 2014. |
[6] | Y. M. Chiang, S. J. Feng, On the Nevanlinna characteristic of f (z + η) and difference equations in the complex plane, Ramanujan J., 16 (2008), 105–129. |
[7] | L. Y. Gao, Entire solutions of two types of systems of complex differential-difference equations, Acta Math. Sinica Chin. Ser., 59 (2016), 677–684. |
[8] | R. G. Halburd, R. J. Korhonen, Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl., 314 (2006), 477–487. |
[9] | R. G. Halburd, R. J. Korhonen, Finite-order meromorphic solutions and the discrete Painlevé equations, Proc. London Math. Soc., 94 (2007), 443–474. |
[10] | R. G. Halburd, R. J. Korhonen, Nevanlinna theory for the difference operator, Annales Academiae Scientiarum Fennicae. Mathematica, 31 (2006), 463–478. |
[11] | R. G. Halburd, R. J. Korhonen, Growth of meromorphic solutions of delay differential equations, Proc. Amer. Math. Soc., 145 (2017), 2513–2526. |
[12] | W. K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford, 1964. |
[13] | P. C. Hu, P. Li, C. C. Yang, Unicity of Meromorphic Mappings, Advances in Complex Analysis and its Applications, vol. 1. Kluwer Academic Publishers, Dordrecht, Boston, London, 2003. |
[14] | R. J. Korhonen, A difference Picard theorem for meromorphic functions of several variables, Comput. Methods Funct. Theory, 12 (2012), 343–361. |
[15] | I. Laine, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin, 1993. |
[16] | I. Laine, J. Rieppo, H. Silvennoinen, Remarks on complex difference equations, Comput. Methods Funct. Theory, 5 (2005), 77–88. |
[17] | I. Laine, C. C. Yang, Clunie theorems for difference and q-difference polynomials, J. London. Math. Soc., 76 (2007), 556–566. |
[18] | K. Liu, Meromorphic functions sharing a set with applications to difference equations, J. Math. Anal. Appl., 359 (2009), 384–393. |
[19] | K. Liu, T. B. Cao, Entire solutions of Fermat type difference differential equations, Electron. J. Diff. Equ., 2013 (2013), 1–10. |
[20] | K. Liu, T. B. Cao, H. Z. Cao, Entire solutions of Fermat type differential-difference equations, Arch. Math., 99 (2012), 147–155. |
[21] | K. Liu, I. Laine, A note on value distribution of difference polynomials, Bull. Aust. Math. Soc., 81 (2010), 353–360. |
[22] | F. Lü, Z. Li, Meromorphic solutions of Fermat type partial differential equations, J. Math. Anal. Appl., 478 (2019), 864–873. |
[23] | G. Pólya, On an integral function of an integral function, J. Lond. Math. Soc., 1 (1926), 12–15. |
[24] | X. G. Qi, Y. Liu, L. Z. Yang, A note on solutions of some differential-difference equations, J. Contemp. Math. Anal., 52 (2017), 128–133. |
[25] | L. I. Ronkin, Introduction to the Theory of Entire Functions of Several Variables, Moscow: Nauka 1971 (Russian). American Mathematical Society, Providence, 1974. |
[26] | W. Stoll, Holomorphic Functions of Finite Order in Several Complex Variables, American Mathematical Society, Providence, 1974. |
[27] | Z. T. Wen, Finite order solutions of meromorphic equations and difference Painlevé equations IV, Proc. Amer. Math. Soc., 144 (2016), 4247–4260. |
[28] | H. Y. Xu, S. Y. Liu, Q. P. Li, Entire solutions for several systems of nonlinear difference and partial differential-difference equations of Fermat-type, J. Math. Anal. Appl., 483 (2020), no. 123641. |
[29] | L. Xu, T. B. Cao, Solutions of complex Fermat-type partial difference and differential-difference equations, Mediterr. J. Math., 15 (2018), 1–14. |
[30] | L. Xu, T. B. Cao, Correction to: Solutions of complex Fermat-type partial difference and differential-difference equations, Mediterr. J. Math., 17 (2020), 1–4. |
[31] | L. Yang, Value distribution theory, Springer-Verlag, Berlin, 1993. |
[32] | H. X. Yi, C. C. Yang, Uniqueness theory of meromorphic functions, Kluwer Academic Publishers, Dordrecht, 2003; Chinese original: Science Press, Beijing, 1995. |
[33] | J. L. Zhang, L. Z. Yang, Meromorphic solutions of Painlevé III difference equations, Acta Math. Sinica Chin. ser., 57 (2014), 181–188. |
[34] | R. R. Zhang, Z. B. Huang, Entire solutions of delay differential equations of Malmquist type, Math. CV, arXiv: 1710.01505v1. |
[35] | X. M. Zheng, J. Tu, Growth of meromorphic solutions of linear difference equations, J. Math. Anal. Appl., 384 (2011), 349–356. |