Research article

On the nonexistence of some open immersions

  • Received: 20 October 2020 Accepted: 01 December 2020 Published: 07 December 2020
  • MSC : 14A20

  • In this paper, we will prove a sufficient condition for that there does not exist an open immersion between two affine schemes of finite type over a field $k$ with the same dimension. The proof is based on the following fact: the complement of an open affine subset in a noetherian integral separated scheme has pure codimension 1. We will first prove it when $k$ is a finite field, the key to the proof of this part is Lang-Weil estimation. Then we'll prove a general result over an arbitrary field by reducing to the case when $k$ is finite. And the proof of the general result is much more complicated. In order to use the result over a finite field, at some point we must produce a scheme that is defined over $\mathbf{F}_{q}$ and an open immersion, also defined over $\mathbf{F}_{q}$. One important lemma is that a morphism $f:\text{Spec}(B) \longrightarrow \text{Spec}(A)$ between two integral domains with the same quotient field $K$ is an open immersion if and only if $B$ is a birational extension of $A$ in $K$ and $B$ is flat over $A$. According to the general result, the following open immersions do not exist: $SL_{n/k} \hookrightarrow \mathbf{A}_{k}^{n^{2}-1}$, $Sp_{n/k} \hookrightarrow \mathbf{A}_{k}^{2n^{2}+n}$, $SO_{n/k} \hookrightarrow \mathbf{A}_{k}^{\frac{n^{2}-n}{2}}$, $PGL_{n/k} \hookrightarrow \mathbf{A}_{k}^{n^{2}-1}$, where $k$ is an arbitrary field.

    Citation: Dandan Shi. On the nonexistence of some open immersions[J]. AIMS Mathematics, 2021, 6(2): 1991-2002. doi: 10.3934/math.2021121

    Related Papers:

  • In this paper, we will prove a sufficient condition for that there does not exist an open immersion between two affine schemes of finite type over a field $k$ with the same dimension. The proof is based on the following fact: the complement of an open affine subset in a noetherian integral separated scheme has pure codimension 1. We will first prove it when $k$ is a finite field, the key to the proof of this part is Lang-Weil estimation. Then we'll prove a general result over an arbitrary field by reducing to the case when $k$ is finite. And the proof of the general result is much more complicated. In order to use the result over a finite field, at some point we must produce a scheme that is defined over $\mathbf{F}_{q}$ and an open immersion, also defined over $\mathbf{F}_{q}$. One important lemma is that a morphism $f:\text{Spec}(B) \longrightarrow \text{Spec}(A)$ between two integral domains with the same quotient field $K$ is an open immersion if and only if $B$ is a birational extension of $A$ in $K$ and $B$ is flat over $A$. According to the general result, the following open immersions do not exist: $SL_{n/k} \hookrightarrow \mathbf{A}_{k}^{n^{2}-1}$, $Sp_{n/k} \hookrightarrow \mathbf{A}_{k}^{2n^{2}+n}$, $SO_{n/k} \hookrightarrow \mathbf{A}_{k}^{\frac{n^{2}-n}{2}}$, $PGL_{n/k} \hookrightarrow \mathbf{A}_{k}^{n^{2}-1}$, where $k$ is an arbitrary field.


    加载中


    [1] H. Matsumura, Commutative Algebra, second edition, New York: Benjamin Cummings, 1980.
    [2] H. Matsumura, Commutative Ring Theory, New York: Cambridge University Press, 2006.
    [3] J. E. Goodman, Affine Open Subsets of Algebraic Varieties and Ample Divisors, Ann. Math., 89 (1969), 160–183. doi: 10.2307/1970814
    [4] J. MacWilliams, Orthogonal Matrices Over Finite Fields, Amer. Math. Monthly, 76 (1969), 152–164. doi: 10.1080/00029890.1969.12000160
    [5] M. Atiyah, I. Macdonald, Introduction to Commutative Algebra, London: Addison-Wesley Publishing Company Inc, 1969.
    [6] M. Demazure, P. Gabriel, Groupes algébriques, Paris: Masson et Cie, 1970.
    [7] M. Kang, Injective Morphisms of Affine Varieties, Proc. Amer. Math. Soc., 119 (1993), 1–4. doi: 10.1090/S0002-9939-1993-1146862-0
    [8] M. Rosenlicht, Toroidal algebraic groups, Proc. Amer. Math. Soc., 12 (1961), 984–988. doi: 10.1090/S0002-9939-1961-0133328-9
    [9] O. T. O'Meara, Symplectic group, Rhode island: American mathematical society providence, 1978.
    [10] R. Hartshorne, Algebraic Geometry, Graduate Text in Mathematics 52, New York: SpringerVerlag, New York Inc, 1977.
    [11] S. Lang, A. Weil, Number of points of varieties in finite fields, Amer. J. Math., 76 (1954), 819–827. doi: 10.2307/2372655
    [12] S. Oda, On finitely generated birational flat extensions of integral domains, Amer. J. Math., 11 (2004), 35–40.
    [13] J. Dieudonné, A. Grothendieck, Éléments de géométrie algébrique(rédigés avec la collaboration de Jean Dieudonné): IV. Etude locale des schémas et des morphismes de schémas, Troisième partie, tome 28, Publications mathmatiques de lI.H..S, 1966, 5–255.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1750) PDF downloads(193) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog