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Abstract: In this paper, we will prove a sufficient condition for that there does not exist an open
immersion between two affine schemes of finite type over a field k with the same dimension. The
proof is based on the following fact: the complement of an open affine subset in a noetherian integral
separated scheme has pure codimension 1. We will first prove it when k is a finite field, the key to the
proof of this part is Lang-Weil estimation. Then we’ll prove a general result over an arbitrary field by
reducing to the case when k is finite. And the proof of the general result is much more complicated.
In order to use the result over a finite field, at some point we must produce a scheme that is defined
over Fq and an open immersion, also defined over Fq. One important lemma is that a morphism
f : Spec(B) −→ Spec(A) between two integral domains with the same quotient field K is an open
immersion if and only if B is a birational extension of A in K and B is flat over A. According to the
general result, the following open immersions do not exist: S Ln/k ↪→ An2−1

k ,S pn/k ↪→ A2n2+n
k ,S On/k ↪→

A
n2−n

2
k ,PGLn/k ↪→ An2−1

k , where k is an arbitrary field.
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1. Introduction

The topology involved in this paper is the Zariski topology. The closed sets of affine space An
k are

those of the form V(S ) = {x ∈ An
k | f (x) = 0,∀ f ∈ S } where S is any set of polynomials in n variables

over k. A variety is an integral separated scheme of finite type over an algebraically closed field.
It is well-known that GLm/k is an open subset of Am2

k , where k is a field. A natural question is
whether there exists an open immersion φ : S Lm/k ↪→ Am2−1

k . If k is algebraically closed, it is easy
to show that such an open immersion does not exist, by combining two classical results on algebraic
groups. Indeed, if such an immersion exists, then the complement of its image is the zero locus of some
polynomial function f . The restriction of this function to S Lm/k is a regular invertible function on this
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connected algebraic group, and hence a scalar multiple of a character by a result of Rosenlicht(see
[8]). Since every character of S Lm is trivial, f is constant, and hence S Lm/k is an affine space. But this
contradicts the fact that every algebraic group with underlying variety an affine space is unipotent(see
[6]). In this paper we study the nonexistence of some open immersions between affine varieties over
a field k, and we will prove a theorem which can explain the nonexistence of φ in another way. In
addition, there is a result which is similar in spirit: any injective endomorphism of an affine variety is
also surjective(see [7]). The main theorem is Theorem 2.15.

Since an open subset of an irreducible affine scheme is dense, we can reduce to the case where the
open immersion φ : X ↪→ Y is dominant.We first prove the theorem when k is a finite field and then we
prove a more general result by reducing to this case. As a simple application, we have the following

conclusions: open immersions S Ln/k ↪→ An2−1
k ,S pn/k ↪→ A2n2+n

k ,S On/k ↪→ A
n2−n

2
k ,PGLn/k ↪→ An2−1

k do
not exist, and open immersions S Ln/k ×k Ga/k ↪→ An2

k ,S pn/k ↪→ S O2n+1/k,S pn/k ↪→ S Ln/k ×k An2+n+1
k do

not exist either, where k is an arbitrary field.

2. Results

2.1. Result over a finite field

To prove the main result of this subsection, we require the Lang-Weil estimate and some other
lemmas.

Let X be an irreducible scheme defined over a finite field Fq. Assume that X is embedded into a
projective space of fixed dimension n, dim(X) = r, deg(X) = d, then we have universal estimates for
#X(Fqk), in terms of r, d, and qk. More precisely, we show the following:

Lemma 2.1 ([Lang-Weil]). Given nonnegative integers n, d and r, with d > 0, there is a positive
constant A(n, d, r), such that for every finite field k = Fq, and every absolutely irreducible subscheme
X ⊆ Pn

k of dimension r and degree d, we have

|#X(Fqk) − qkr| ≤ (d − 1)(d − 2)qk(r− 1
2 ) + A(n, d, r)qkr−k. (2.1)

Proof. See [11]. �

Lemma 2.2. Given n, d and r as in Lemma 2.1, there is a positive constant A1(n, d, r), such that for
every finite field k = Fq, and every subscheme X ⊆ Pn

k of pure dimension r and degree ≤ d, we have

#X(Fql) ≤ A1(n, d, r)qlr. (2.2)

Proof. See Lemma 1 in [11]. �

If X is allowed to have components of smaller dimension, we still have

Corollary 2.3. If X is an r-dimensional scheme over k = Fq, then there is cX > 0 such that
#X(Fqe) ≤ cXqer for every e ≥ 1.

Proof. The proof is omitted. �

Corollary 2.4. If X is an r-dimensional absolutely irreducible scheme over Fq, then there is cX > 0
such that |#X(Fqe) − qer| ≤ cXqe(r− 1

2 ) for every e ≥ 1.
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Proof. The proof is omitted. �

Lemma 2.5. Let A be an integrally closed noetherian domain. Then

A =
⋂

ht p=1

Ap

where the intersection is taken over all prime ideals of height 1.

Proof. See Theorem 38 in [1]. �

Lemma 2.6. For any noetherian, integral, normal affine scheme X=Spec A,and any nonempty closed
subscheme Z of X with codimension at least 2, X − Z is not an affine scheme.

Proof. If X − Z is affine, then i : X − Z → X is a morphism of affine schemes, hence i is totally
determined by i# : Γ(X,OX)→ Γ(X − Z,OX−Z) = Γ(X − Z,OX). Since X is integral, i# is injective.

Moreover, since Z does not contain any codimension 1 point of X, so for any f ∈ Γ(X − Z,OX), f
is regular at all codimension 1 points.Hence by Lemma 2.5, f is regular on X bexause A is integrally
closed. As a result, i# is surjective.

In sum, i# is both injective and surjective, so it is actualy an isomorphism. Therefore i is an
isomorphism, which means Z is empty and we get a contradiction. �

Corollary 2.7. If X is a noetherian, integral, separated scheme X, U is an affine open subset, then
the complement of U has codimension 1 in X.

Proof. Replace X by its normalization, and U by its preimage inX. Then the codimension of the
complement of U doesn’t change, and so we reduce to the normal case. Intersecting U with the
members of an open affine cover of X, we reduce to the case when X is affine.(X is separated, so the
intersection of two open affines is open affine.)Then Lemma 2.6 applies. �

We can now prove the main result of this subsection.

Theorem 2.8. Assume X and Y are affine n-dimensional schemes over Fq, #X(Fqm) , #Y(Fqm), if∣∣∣#X(Fqm) − #Y(Fqm)
∣∣∣ = o(qm(n−1)) (m → ∞ m ∈ Z), then there does not exist an open immersion

X ↪→ Y.

o(qm(n−1)) represents a polynomial of q, denoted by f , such that lim
m→∞

f (qm)
qm(n−1) = 0.

Proof. Suppose that there exists an open immersion X ↪→ Y . Let Y = SpecR, V = Y \ X which is
associated with an induced scheme structure R/I that is reduced, I ⊂ R is the defining ideal of V .

We denote by VFq
the scheme V ×SpecFq SpecFq.

Let X1, X2, . . . , Xl be the irreducible components of VFq
of maximal dimension r, there is a finite

extention Fqe of Fq such that for some closed subscheme Vi of VFqe , we have Vi ×SpecFqe SpecFq = Xi,
1 ≤ i ≤ l. This implies that each Vi is absolutely irreducible. Note that the dimension of any other
irreducible component of VFqe is smaller than r, and dim(Vi

⋂
V j) < r when i , j.

Combining Corollary 2.3 with Corollary 2.4, we have

|#V(Fqek) − lqekr| ≤ αXqek(r− 1
2 ),
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That is
lqekr − αXqek(r− 1

2 ) ≤ #V(Fqek) ≤ lqekr + αXqek(r− 1
2 ), (2.3)

Then we have
#V(Fqek) ≥ lqekr − αXqek(r− 1

2 ). (2.4)

According to Corollary 2.7, r = n − 1, we obtain

#V(Fqek) ≥ lq(n−1)ek − αXq(n− 3
2 )ek, (2.5)

On the other hand, ∣∣∣#V(Fqek)
∣∣∣ =

∣∣∣#X(Fqek) − #Y(Fqek)
∣∣∣ = o(qek(n−1)) (k → ∞ k ∈ Z) (2.6)

this implies
lq(n−1)ek − αXq(n− 3

2 )ek ≤ o(qek(n−1)), (k → ∞ k ∈ Z)

This contradiction shows that there does not exist an open immersion X ↪→ Y .
�

2.2. Result over an arbitrary field

We need the following four lemmas to prove the main theorem.

Lemma 2.9. Let A ⊆ B be two integral domains. If B is faithfullly flat over A and qf(A)=qf(B). Then
A = B.

qf(A) means the quotient field of A, and qf(B) is similar.

Proof. Take x ∈ B with x = b/a (a, b ∈ A). B is faithfully flat over A, so it follows that b = ax ∈
aB ∩ A = aA (cf.[[1], (4.C)]). Hence x = b/a ∈ A. Therefore A = B. �

Lemma 2.10. Let A be an integral domain with quotient field K and let B be an extension of A. B
is a finitely generated A-algebra. Then the canonical morphism f : Spec(B) −→ Spec(A) is an open
immersion⇐⇒ B is a birational extension of A in K and B is flat over A.

Proof. ⇒ B is flat over A if and only if BP is flat over Ap for every P ∈ B (p = P ∩ A). Since f is an
open immersion, it follows that BP � Ap, and BP is flat Ap. Furthermore f is birational, this implies
that qf(B) = K.
⇐ Any flat morphism that is locally of finite type is open. Next we will show that this map is

injective. Let P, P′ ∈ Spec(B) with P∩A = P′∩A := p, then Ap → BP is flat. As a flat extension of rings
satisfies Going-Down Theorem(cf.[[1], (5.D)]), Spec(BP) → Spec(Ap) is surjective, it follows that BP

is faithfully flat over AP(cf.[[1], (4.D)]). Hence Ap = BP by Lemma 2.9. Similary, Ap = BP′ = BP.
Hence P = P′. So Spec(B) is homeomorphic to an open subset U of Spec(A). Since open sets of the
form D(g) form a base for the topology of Spec(A), take Bg ⊂ U, it is enough to prove Ag � Bg. We

have a surjective homomorphism Bg ⊗Ag Bg
φ
� Bg, since Bg ⊗Ag Bg ⊂ Bg ⊗Ag K = K, φ is also injective,

namely φ is an isomorphism. As Bg is faithfully flat over Ag, we conclude that Ag � Bg. �

AIMS Mathematics Volume 6, Issue 2, 1991–2002.



1995

Lemma 2.11. Let A ⊂ B ⊂ C be rings. Suppose that A is Noetherian, that C is finitely generated as
an A-algebra and that C is either (1) finitely generated as a B-module or (2) integral over B. Then B
is finitely generated as an A-algebra.

Proof. See Proposition 7.8 in [5]. �

Lemma 2.12. Let k be a finitely generated Z-algebra. If k is a field, then k is finite.

Proof. We have a homomorphism Z
f
−→ k, if ker( f )= pZ(p is a prime), then k is a finitely generated

Fp-algebra, so k is a finite algebraic extension of Fp(cf.[[5], (7.9)]), and k is a finite field.
If ker( f )=(0), we have Z ⊂ Q ⊂ k. Since k is a finitely generated Z-algebra, it is a finitely

generated Q-algebra, similarly, k is a finite algebraic extension of Q, hence k is a finitely generated
Q-module, by Lemma 2.11, Q is a finitely generated Z-algebra, a contradiction. Let
Q = Z[c1, . . . , cs], ci = ai

bi
, ai, bi ∈ Z, 1 ≤ i ≤ s, take p such that p and bi are coprime, then

1
p < Z[c1, . . . , cs], this contradiction shows that k is a finite field. �

Suppose S 0 is a scheme, and Aλ are commutative quasi-coherent OS 0-algebras, then A = lim
−→

Aλ is
a quasi-coherent OS 0-algebra. Denote by S λ(resp.S ) the spectrum of the OS 0-algebra Aλ(resp.A ), and
let uλµ : S µ → S λ(for λ ≤ µ) and uλ : S → S λ be respectively the S 0-morphisms corresponding to
homomorphisms ϕµλ : Γ(S 0,Aλ) → Γ(S 0,Aµ) and ϕλ : Γ(S 0,Aλ) → Γ(S 0,A );it is clear that (S λ,uλµ)
is a projective system in the category of S 0-schemes.

Given two S α-schemes Xα,Yα, we define two projective systems of (Xλ,vλµ) and (Yλ,wλµ) by setting
Xλ = Xα×S α

S λ,Yλ = Yα×S α
S λ,vλµ = idXα ×uλµ,wλµ = idYα ×uλµ(for α ≤ λ ≤ µ), whose projective limits

are respectively X = Xα ×S α
S ,Y = Yα ×S α

S , the canonical morphisms vλ : X → Xλ and wλ : Y → Yλ
are respectively equal to idXα × uλ and idYα × uλ. We denote by fλ the morphism Xλ → Yλ, and for
α ≤ λ ≤ µ, we have fµ = fλ × idS µ

: Xλ ×S λ
S µ → Yλ × S µ, f = fλ × idS : Xλ ×S λ

S → Yλ ×S λ
S .

Lemma 2.13. Suppose S 0 is quasi-compact, Xα and Yα are of finite presentation over S α, let fα :
Xα → Yα be an S α − morphism.Then f is an open immersion if and only if there exists λ ≥ α such that
fλ is an open immersion(in which case fµ is also an open immersion for µ ≥ λ).

Proof. See Theorem 8.10.5 in [13]. �

Lemma 2.14. Let X and Y be affine n-dimensional integral schemes of finite type over a field k.

If we have an open immersion X
f
↪→ Y/k, then there exists a finitely generated Z-subalgebra R of k,

affine scheme X ,Y of finite type over S = SpecR, and an open immersion X
fS
↪→ Y /S , such that

X ×S Speck � X, Y ×S Speck � Y, and fS ×S idk = f .

Proof. In order to use Lemma 2.13, we should find a field k
′

,two affine schemes X
′

,Y
′

that are defined
over k

′

,an open immersion f
′

: X
′

→ Y
′

,also defined over k
′

, such that k
′

is the quotient field of a
finitely generated Z-subalgebra R

′

⊂ k, and X = X
′

×Speck′ Speck,Y = Y
′

×Speck′ Speck, f = f
′

× idSpeck :
X
′

×Speck′ Speck → Y
′

×Speck′ Speck, because k
′

= lim
−→

s∈R′ ,s,0

R
′

s.

Write [x] = [x1, . . . , xl], [y] = [y1, . . . , ym], X = Speck[x]/I, Y = Speck[y]/J, where
I = (f1, . . . , fs)k[x] and J = (g1, . . . , gt)k[y] are respectively the defining ideals of X and Y .
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If we have an open immersion X
f
↪→ Y/k, by Lemma 2.10, we have a flat and birational k-morphism

f # : k[y]/J → k[x]/I. So we have an isomorphism qf{k[x]/I}
g
→ qf{k[y]/J}.

Let g0 be the restriction to k[x]/I of g.
Set ϕ = g0 ◦ π, π : k[y]� k[x]/I.
We have a homomorphism

ϕ : k[x] −→ qf{k[y]/J}

xi 7−→
f̄i

ḡi
(2.7)

f̄i, ḡi ∈ k[y]/J, f̄i, ḡi have no non-unit common factor, 1 ≤ i ≤ l.
Set R0 = {the subring of k generated by identity 1, all the coefficients of f1, . . . , fs, g1, . . . , gt}.
Set R1 = {the subring of k generated by S 0, all the coefficients of f̄i,ḡi and their inverses}.
It is noted that R1 is a finitely generated Z-algebra.
Consider the restriction to R1[x] of ϕ

(f1, . . . , fs)R1[x]⋂
0 −→ kerϕ1 −→ R1[x]

ϕ1
−→ qf{k[y]/J}⋂ ⋂

0 −→ (f1, . . . , fs)k[x] −→ k[x]
ϕ
−→ qf{k[y]/J}

R1[x] is noetherian, so kerϕ1 is finitely generated.
Let b1, b2, . . . , b` be the generators of kerϕ1

b1 = P11f1 + · · · + P1sfs, . . . , b` = P`1f1 + · · · + P`sfs (2.8)

Set R2 = {the subring of k generated by R1, all the coefficients of Pi j and their inverses. 1 ≤ i ≤ `,
1 ≤ j ≤ s}

R2 is still a finitely generated Z-algebra.
Consider the restriction to R2[x] of ϕ

0 −→ (b1, . . . , b`)R1[x] −→ R1[x]
ϕ1
−→ qf{k[y]/J}⋂ ⋂ ⋂

0 −→ kerϕ2 −→ R2[x]
ϕ2
−→ qf{k[y]/J}⋂ ⋂ ⋂

0 −→ (f1, . . . , fs)k[x] −→ k[x]
ϕ
−→ qf{k[y]/J}

Clearly we have kerϕ2 ⊃ (f1, . . . , fs)R2[x].
We denote by IM(ϕ1) the image of ϕ1 in qf{k[y]/J}, it is a subring of qf{k[y]/J} generated by R1 and

ϕ1(xi), so we have an exact sequence
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0 −→ (b1, . . . , b`)R1[x] −→ R1[x] −→ IM(ϕ1) −→ 0
(b1, . . . , b`)R1[x] ⊗R1 R2 −→ R1[x] ⊗R1 R2 −→ IM(ϕ1) ⊗R1 R2 −→ 0

IM(ϕ1) ⊗R1 R2 is the subring of qf{k[y]/J} generated by R2 and ϕ1(xi), so kerϕ2 is the image of
(b1, . . . , b`)R1[x] ⊗R1 R2 in R1[x] ⊗R1 R2 � R2[x], namely (b1, . . . , b`)R2[x].

By (2.8) we have
(f1, . . . , fs)R2[x] ⊃ (b1, . . . , b`)R2[x] = kerϕ2.
Hence kerϕ2 = (f1, . . . , fs)R2[x].
On the other hand, we have a homomorphism of rings:
f # : k[y]/J → k[x]/I
Set ψ = f # ◦ ρ, ρ : k[y]� k[y]/J.
We have a homomorphism

ψ : k[y] −→ qf{k[x]/I}

yi 7−→
f̄ ′i
ḡ′i

(2.9)

f̄ ′i , ḡ
′

i ∈ k[x]/I, f̄ ′i , ḡ
′

i have no non-unit common factor, 1 ≤ i ≤ m.
Set R3 = {the subring of k generated by R2 and all the coefficients of f̄ ′i ,ḡ′i and their inverses}.
Consider the restriction to R3[y] of ψ

(g1, . . . , gt)R3[y]⋂
0 −→ kerψ1 −→ R3[y]

ψ1
−→ qf{k[x]/I}⋂

0 −→ (g1, . . . , gt)k[y] −→ k[y]
ψ
−→ qf{k[x]/I}

Let c1, c2, . . . , c`′ be the generators of kerψ1

c1 = Q11g1 + · · · + Q1tgt, . . . , c`′ = Q`
′1g1 + · · · + Q`

′ tgt (2.10)

Qi j ∈ k[y],1 ≤ i ≤ `
′

,1 ≤ j ≤ t.
Set R4 = {the subring of k generated by R3 and all the coefficients of Qi j and their inverses. 1 ≤ i ≤ `

′

,
1 ≤ j ≤ t}

Let ψ2 be the restriction to R4[y] of ψ. Similarly, R4 is a finitely generated Z-algebra and kerψ2 =

(g1, . . . , gt)R4[y].
The restriction to R4[y]/J of f #

f #
R4

: R4[y]/J −→ R4[x]/I.
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is birational according to the construction of R4.
Write k4 = qf(R4). Obviously k4 ⊂ k, the restriction to k4[y]/J of f #

f #
k4

: k4[y]/J −→ k4[x]/I.

is still birational.
We have a commutative diagram

k4[y]/J
f #
k4 //

$$

i1
��

k4[x]/I

i2
��

k[y]/J
f #
// k[x]/I

i1 is flat and f # is flat, so f ◦ i1 = i2 ◦ f #
k4

is flat. As i2 is faithfully flat, f #
k4

is flat.
According Lemma 2.10, fk4 is an open immersion.
Let k

′

= k4, R
′

= R4, X
′

= SpecR
′

[x]/I, Y
′

= SpecR
′

[y]/J, f
′

= fk4 , then Lemma 2.13 applies. �

Theorem 2.15. Assume R is an integral domain which is a finitely generated Z-algebra, S = SpecR,
ξ ∈ S is the generic point. X and Y are affine integral S -schemes of finite type, such that Xξ and Yξ are
n-dimensional affine schemes. If for a sufficiently general closed point t ∈ S , #Xt(κ(t)m) , #Yt(κ(t)m),
and |#Xt(κ(t)m) − #Yt(κ(t)m)| = o(|κ(t)|m(n−1)) (m → ∞ m ∈ Z), then there does not exist an open
immersion Xξ ↪→ Yξ(”sufficiently general” is made precise in the proof).

Proof. κ(t)) is the residue field of the point t, because t is a closed point of S , κ(t)) is a finitely generated
Z-algebra. According to Lemma 2.12, κ(t)) is a finite field. Set κ(t) = Fq, κ(t)m = Fqm . So #Xt(κ(t)m) =

#(X ×S κ(t)m) makes sense, so does #Yt(κ(t)m).
Write [x] = [x1, . . . , xl], [y] = [y1, . . . , ym], X = SpecR[x]/I, Y = SpecR[y]/J, where

I = (f1, . . . , fs)R[x] and J = (g1, . . . , gt)R[y] are respectively the defining ideals of X and Y .

Suppose there is an open immersion Xξ

fξ
↪→ Yξ/κ(ξ), by Lemma 2.14, there exists a finitely generated

Z-subalgebra R
′

of κ(ξ), an open immersion

SpecR
′

[x]/I
fR′
↪→ SpecR

′

[y]/J,

such that SpecR
′

[x]/I×SpecR′ Specκ(ξ) � Xξ, SpecR
′

[y]/J×SpecR′ Specκ(ξ) � Yξ, and fR′×SpecR′ idκ(ξ) = fξ.
Set R

′′

= {the subring of κ(ξ) generated by R and R
′

}, then SpecR
′′

[x]/I ×SpecR′ Specκ(ξ) � Xξ,

SpecR
′′

[y]/J×SpecR′ Specκ(ξ) � Yξ, SpecR
′′

[x]/I
fR′′
↪→ SpecR

′

[y]/J is an open immersion, and fR′′ ×SpecR′′

idκ(ξ) = fξ.
SpecR

′′

⊂ SpecR is a dense open subset, for a sufficiently general closed point t ∈ SpecR, we have
t ∈ SpecR

′′

.
Let P ⊂ R

′′

be the maximal ideal corresponding to t ∈ S , we have

f̄ #
R′′ : R

′′

/P ⊗R′′ R
′′

[y]/J −→ R
′′

/P ⊗R′′ R
′′

[x]/I.

The property of being an open immersion is stable under base change, so f̄R′′ is an open immersion.
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R
′′

/P is a finitely generated Z-algebra which is a field, according to 2.12, it is a finite field, set
R
′′

/P � Fq.
Namely there exists an open immersion Xt/κ(t) ↪→ Yt/κ(t).
|#Xt(κ(t)m) − #Yt(κ(t)m)| = o(|κ(t)|m(n−1))(m→ ∞ m ∈ Z) implies∣∣∣#Xt/κ(t)(Fqm) − #Yt/κ(t)(Fqm)

∣∣∣ = o(qm(n−1))(m→ ∞ m ∈ Z),

by Theorem 2.8, this can not happen. This contradiction shows that there does not exist an open
immersion Xξ ↪→ Yξ. �

Remark 2.16. If it happens that #Xt/κ(t) > #Yt/κ(t), there does not exist an open immersion X ↪→ Y .

Remark 2.17. Denote |#Xt(κ(t)m) − #Yt(κ(t)m)| by fm, if deg fm , m(dimX − 1)(∀m ∈ Z) , there does
not exist an open immersion X ↪→ Y .

Remark 2.18. Given X and Y as in Theorem 2.15, if Y is quasi-projective, there does not exist an
open immersion X ↪→ Y . Regard X as an affine open subscheme of Y , for any affine open subscheme
U ⊂ Y , U ∩ X is still affine because Y is separated over S . Then we come to the conclusion.

Corollary 2.19. Let X and Y be affine n-dimensional integral schemes of finite type over a field
k. If there exists a finitely generated Z-subalgebra R of k and affine schemes X ,Y of finite type over
S = SpecR, such that X ×S Speck � X,Y ×S Speck � Y,and for a sufficiently general closed point
t ∈ S , #Xt(κ(t)m) , #Yt(κ(t)m) and |#Xt(κ(t)m) − #Yt(κ(t)m)| = o(|κ(t)|m(n−1)) (m → ∞ m ∈ Z), then

there does not exist an open immersion X
f
↪→ Y/k.

Proof. Write [x] = [x1, . . . , xl], [y] = [y1, . . . , ym], X = Speck[x]/I, Y = Speck[y]/J, where I =

(f1, . . . , fs)k[x] and J = (g1, . . . , gt)k[y] are respectively the defining ideals of X and Y .

Assume there is an open immersion X
f
↪→ Y/k, by Lemma 2.14, there exists a finitely generated

Z-subalgebra R
′

of k, an open immersion

SpecR
′

[x]/I
fR′
↪→ SpecR

′

[y]/J,

such that SpecR
′

[x]/I ×SpecR′ Speck � X, SpecR
′

[y]/J ×SpecR′ Speck � Y , and fR′ ×SpecR′ idk = f .
Set R

′′

= {the subring of k generated by R and R
′

}, we have SpecR
′′

[x]/I ×SpecR′ Speck � X,

SpecR
′′

[y]/J ×SpecR′ Speck � Y , SpecR
′′

[x]/I
fR′′
↪→ SpecR

′

[y]/J is an open immersion, and
fR′′ ×SpecR′′ idκ(ξ) = fξ.

It is noted that SpecR
′′

⊂ SpecR, then we come to the conclusion according to Theorem 2.15. �

3. Examples

Example 3.1. Since

#S Ln/Fq(Fqm) = (qmn − 1)(qmn − qm) · · · (qmn − qmn−2m)qmn−m

#An2−1
Fq

(Fqm) = qmn2−m
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2000∣∣∣∣#S Ln/Fq(Fqm) − #An2−1
Fq

(Fqm)
∣∣∣∣

= qmn2−m − (qmn − 1) · · · (qmn − qmn−2m)qmn−m

= qm(n2−3) + lower-degree terms + . . .

We have dimS Ln/Fq = dimAn2−1
Fq

= n2 − 1, so for an arbitrary field k, there does not exist an open

immersion S Ln/k ↪→ An2−1
k .

Example 3.2. Since

#S pn/Fq(Fqm) = (q2mn − 1)(q2mn−2m − 1) · · · (q2m − 1)qmn2

= q2mn2+mn − q2mn2+mn−2m + lower-degree terms + . . .

#A2n2+n
Fq

(Fqm) = q2mn2+mn

∣∣∣∣#S pn/Fq(Fqm) − #A2n2+n
Fq

(Fqm)
∣∣∣∣

= qm(2n2+n−2) + lower-degree terms + . . .

We have dimS pn/Fq = A2n2+n
Fq

= 2n2 + n, so for an arbitrary field k, there does not exist an open

immersion S pn/k ↪→ A2n2+n
k .

Example 3.3. Since

#S O2t+1/Fq(Fqm) = qmt
t−1∏
i=0

(q2mt − q2mi) p = 2 (3.1)

#S O2t/Fq(Fqm) = qmt
t−1∏
i=1

(q2mt − q2mi) p = 2 (3.2)

#S O2t+1/Fq(Fqm) = qmt
t−1∏
i=0

(q2mt − q2mi) p > 2 (3.3)

#S O2t/Fq(Fqm) = (qmt − 1)
t−1∏
i=1

(q2mt − q2mi) (3.4)

(p > 2 and -1 is a square in Fq)

#S O2t/Fq(Fqm) = (qmt + (−1)t+1)
t−1∏
i=1

(q2mt − q2mi) (3.5)

(p > 2 and -1 is a nonsquare in Fq)

We have dimS On/Fq = n2−n
2 , for n > 2, so for an arbitrary field k, there does not exist an open

immersion S On/k ↪→ A
n2−n

2
k .

Example 3.4. Since

#PGLn/Fq(Fqm) = (qmn − 1)(qmn − qm) · · · (qmn − qmn−2m)qmn−m

= qm(n2−1) − qm(n2−3) + lower-degree terms + . . .
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We have dimPGLn/Fq = n2 − 1, so there does not exist an open immersion PGLn/k ↪→ An2−1
k for an

arbitrary field k.

Example 3.5. Since

#S Ln/Fq ×Ga/Fq(Fqm) = (qmn − 1)(qmn − qm) · · · (qmn − qmn−2m)qmn

#An2

Fq
(Fqm) = qmn2

∣∣∣∣#S Ln/Fq ×Ga/Fq(Fqm) − #An2−1
Fq

(Fqm)
∣∣∣∣

= qmn2−m − (qmn − 1) · · · (qmn − qmn−2m)qmn

= qm(n2−2) + lower-degree terms + . . .

We have dimS Ln/Fq ×Ga/Fq = dimAn2

Fq
= n2, so for an arbitrary field k, there does not exist an open

immersion S Ln/k ×k Ga/k ↪→ An2

k , and Example 1 is a corollary of this.

Example 3.6. We have dimS pn/Fq = dimS O2n+1/Fq = 2n2 + n, #S O2n+1/Fq > #S pn/Fq for n > 2, so
when n > 2, there does not exist an open immersion S pn/k ↪→ S O2n+1/k for an arbitrary field k.

Example 3.7. There does not exist an open immersion S pn/k ↪→ S Ln/k ×k An2+n+1
k for any field k.
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