In this paper, we study a class of second order impulsive vibration equation containing fractional derivatives. By using monotone iterative technique, some new results on the multiplicity for solutions of the equations under nonlinear boundary conditions are obtained, and the properties of the solutions are discussed. Finally, the practicability of our results is discussed through a concrete example.
Citation: Xue Wang, Xiping Liu, Mei Jia. A class of impulsive vibration equation with fractional derivatives[J]. AIMS Mathematics, 2021, 6(2): 1965-1990. doi: 10.3934/math.2021120
[1] | M. Mossa Al-Sawalha, Azzh Saad Alshehry, Kamsing Nonlaopon, Rasool Shah, Osama Y. Ababneh . Approximate analytical solution of time-fractional vibration equation via reliable numerical algorithm. AIMS Mathematics, 2022, 7(11): 19739-19757. doi: 10.3934/math.20221082 |
[2] | Said Mesloub, Hassan Altayeb Gadain, Lotfi Kasmi . On the well posedness of a mathematical model for a singular nonlinear fractional pseudo-hyperbolic system with nonlocal boundary conditions and frictional damping terms. AIMS Mathematics, 2024, 9(2): 2964-2992. doi: 10.3934/math.2024146 |
[3] | Hui Huang, Kaihong Zhao, Xiuduo Liu . On solvability of BVP for a coupled Hadamard fractional systems involving fractional derivative impulses. AIMS Mathematics, 2022, 7(10): 19221-19236. doi: 10.3934/math.20221055 |
[4] | Ravi Agarwal, Snezhana Hristova, Donal O'Regan . Integral presentations of the solution of a boundary value problem for impulsive fractional integro-differential equations with Riemann-Liouville derivatives. AIMS Mathematics, 2022, 7(2): 2973-2988. doi: 10.3934/math.2022164 |
[5] | Muneerah Al Nuwairan, Ahmed Gamal Ibrahim . Solutions and anti-periodic solutions for impulsive differential equations and inclusions containing Atangana-Baleanu fractional derivative of order $ \zeta \in (1, 2) $ in infinite dimensional Banach spaces. AIMS Mathematics, 2024, 9(4): 10386-10415. doi: 10.3934/math.2024508 |
[6] | Weerawat Sudsutad, Wicharn Lewkeeratiyutkul, Chatthai Thaiprayoon, Jutarat Kongson . Existence and stability results for impulsive $ (k, \psi) $-Hilfer fractional double integro-differential equation with mixed nonlocal conditions. AIMS Mathematics, 2023, 8(9): 20437-20476. doi: 10.3934/math.20231042 |
[7] | Reny George, Sina Etemad, Ivanka Stamova, Raaid Alubady . Existence of solutions for $ [\mathtt{p},\mathtt{q}] $-difference initial value problems: application to the $ [\mathtt{p},\mathtt{q}] $-based model of vibrating eardrums. AIMS Mathematics, 2025, 10(2): 2321-2346. doi: 10.3934/math.2025108 |
[8] | Thabet Abdeljawad, Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Eman Al-Sarairah, Artion Kashuri, Kamsing Nonlaopon . Some novel existence and uniqueness results for the Hilfer fractional integro-differential equations with non-instantaneous impulsive multi-point boundary conditions and their application. AIMS Mathematics, 2023, 8(2): 3469-3483. doi: 10.3934/math.2023177 |
[9] | Pinghua Yang, Caixia Yang . The new general solution for a class of fractional-order impulsive differential equations involving the Riemann-Liouville type Hadamard fractional derivative. AIMS Mathematics, 2023, 8(5): 11837-11850. doi: 10.3934/math.2023599 |
[10] | Abdelatif Boutiara, Mohammed S. Abdo, Manar A. Alqudah, Thabet Abdeljawad . On a class of Langevin equations in the frame of Caputo function-dependent-kernel fractional derivatives with antiperiodic boundary conditions. AIMS Mathematics, 2021, 6(6): 5518-5534. doi: 10.3934/math.2021327 |
In this paper, we study a class of second order impulsive vibration equation containing fractional derivatives. By using monotone iterative technique, some new results on the multiplicity for solutions of the equations under nonlinear boundary conditions are obtained, and the properties of the solutions are discussed. Finally, the practicability of our results is discussed through a concrete example.
As we all know, the vibration equation is one of the important research topics in mechanics, physics and other disciplines. In the recent decades, researchers have been paying more and more attentions to the fractional differential equations due to its wide applications on mechanics, physical science, biological sciences and engineering disciplines, etc., see [3,6,7,12,13,17,18,19,20,25] and the references therein. The development of fractional differential equations provides some new theoretical bases for the study of vibration problems. In [22], the vibration equations with fractional derivatives are used to describe the vibration behavior of viscoelastic polymers and good results are obtained. The theoretical study of vibration equations with fractional derivative has also been widely concerned. These studies include the mechanical properties, dynamic characteristics of the system and the correlation functions with various influences for the vibration equations with fractional derivatives, and so on see[15,16,21,22]. In addition, mutation often occurs in vibration system. These abrupt changes can be simulated by the impulsive vibration equation. And this simulation are effective in describing the behavior of real system. There have been a large number of references for the study of fractional impulsive differential equations, see [1,4,5,9,11,23,24,26].
In this paper, we study a class of second order impulsive vibration equation containing fractional derivatives under the nonlinear boundary conditions
{x″(t)−λcDα0+x(t)=f(t,x(t),x′(t)),t∈J′,Δx(t)|t=tk=Ik(x(tk)),k=1,2,⋯,m,Δx′(t)|t=tk=Qk(x(tk)),k=1,2,⋯,m,g0(x(0),x(1))=0,g1(x′(0),x′(1))=0, | (1.1) |
where 0<α<1, λ>0 and cDα0+ is the Caputo derivative, 0=t0<t1<⋯<tm<tm+1=1. Set J=[0,1],J′=J∖{t1,t2,⋯,tm},J0=[0,t1],Jk=(tk,tk+1],k=1,2,⋯,m. Δx(tk)=x(t+k)−x(t−k),Δx′(tk)=x′(t+k)−x′(t−k). x(t−k),x(t+k) denote the left limit and the right limit of x(t) at t=tk. x′(t−k),x′(t+k) denote the left limit and the right limit of x′(t) at t=tk. Let x(tk)=x(t−k). f∈C(J×R2,R),Ik,Qk∈C(R,R),k=1,2,⋯, m. g0,g1∈C(R2,R) are given nonlinear functions. By using monotone iterative technique, some new results on multiplicity of boundary value problems are obtained, and the properties of the solutions are discussed. Finally, an example is given out to illustrate the applicability of our main results.
In this section, we present some basic definitions and lemmas, which will be used to prove our main results.
Definition 2.1. (See[8], P67) Let α,β>0. The function Eα,β is defined by
Eα,β(z)=∞∑j=0zjΓ(jα+β), |
whenever the series converge is called the two parameters Mittag-Leffler function with parameters α and β.
Lemma 2.1. (See[8], P68) Consider the two parameters Mittag-Leffler function Eα,β for some α,β>0. The power series defining Eα,β is convergent for all z∈C. In other words, Eα,β is an entire function.
Lemma 2.2. Let α,β>0,k=0,1,2,⋯,z∈R. Then
E(k)α,β(z)=∞∑j=0zjΓ(k+j+1)Γ(j+1)Γ(α(k+j)+β). |
Proof. By Definition 2.1 and Lemma 2.1, we get
E(k)α,β(z)=dkdzkEα,β(z)=∞∑j=0dkdzk(zjΓ(jα+β))=∞∑j=kΓ(j+1)zj−kΓ(j−k+1)Γ(αj+β)=∞∑j=0zjΓ(k+j+1)Γ(j+1)Γ(α(k+j)+β). |
Lemma 2.3. (See[14], P314) Let 0<α<β,n−1<α≤n,l−1<β≤l(n,l∈N,n≤l,λ∈R). Then
cDβ0+x(t)−λcDα0+x(t)=0(t>0) |
has its linearly independent solutions given by
xj(t)=tjEβ−α,j+1(λtβ−α)−λtβ−α+jEβ−α,β−α+j+1(λtβ−α)(j=0,1,⋯,n−1), | (2.1) |
xj(t)=tjEβ−α,j+1(λtβ−α)(j=n,⋯,l−1). | (2.2) |
Lemma 2.4. (See[14], P324) Let l−1<β≤l(l∈N),0<α<β be such that β−l+1≥α, λ∈R, and h(t) be a given real function defined on R+. The general solution to the nonhomogeneous linear differential equation
cDβ0+x(t)−λcDα0+x(t)=h(t)(t>0) |
is given by
x(t)=∫t0(t−s)β−1Eβ−α,β(λ(t−s)β−α)h(s)ds+l−1∑j=0cjxj(t), |
where xj(t) are given by (2.1) and (2.2), cj are arbitrary real constants (j=0,1,⋯,l−1).
Lemma 2.5. Let L[0,1] denote the space of Lebesgue integrable functions on [0, 1], h∈L[0,1] and 0<α<1, then the Cauchy problem of the second order vibration equation with fractional derivative
{x″(t)−λcDα0+x(t)=h(t),t∈J,x(ξ)=x0,x′(ξ)=x1,ξ∈J |
has a unique solution, which is given by
x(t)=∫t0(t−s)E2−α,2(λ(t−s)2−α)h(s)ds−∫ξ0(ξ−s)E2−α,2(λ(ξ−s)2−α)h(s)ds+x0+tE2−α,2(λt2−α)−ξE2−α,2(λξ2−α)E2−α,1(λξ2−α)(x1−∫ξ0E2−α,1(λ(ξ−s)2−α)h(s)ds), | (2.3) |
and x(t) is derivable while its derivative is given by
x′(t)=∫t0E2−α,1(λ(t−s)2−α)h(s)ds+E2−α,1(λt2−α)E2−α,1(λξ2−α)(x1−∫ξ0E2−α,1(λ(ξ−s)2−α)h(s)ds). | (2.4) |
Proof. In view of Lemma 2.4, for β=2,0<α<1, the general solution of the equation
x″(t)−λcDα0+x(t)=h(t) |
is given by
x(t)=∫t0(t−s)E2−α,2(λ(t−s)2−α)h(s)ds+c1tE2−α,2(λt2−α)+c0, |
where c0,c1∈R, and
x′(t)=∫t0E2−α,1(λ(t−s)2−α)h(s)ds+c1E2−α,1(λt2−α). |
Therefore,
x(ξ)=∫ξ0(ξ−s)E2−α,2(λ(ξ−s)2−α)h(s)ds+c1ξE2−α,2(λξ2−α)+c0=x0,x′(ξ)=∫ξ0E2−α,1(λ(ξ−s)2−α)h(s)ds+c1E2−α,1(λξ2−α)=x1. |
We get
c1=1E2−α,1(λξ2−α)(x1−∫ξ0E2−α,1(λ(ξ−s)2−α)h(s)ds),c0=x0−∫ξ0(ξ−s)E2−α,2(λ(ξ−s)2−α)h(s)ds−c1ξE2−α,2(λξ2−α). |
So
x(t)=∫t0(t−s)E2−α,2(λ(t−s)2−α)h(s)ds−∫ξ0(ξ−s)E2−α,2(λ(ξ−s)2−α)h(s)ds+x0+c1(tE2−α,2(λt2−α)−ξE2−α,2(λξ2−α))=∫t0(t−s)E2−α,2(λ(t−s)2−α)h(s)ds−∫ξ0(ξ−s)E2−α,2(λ(ξ−s)2−α)h(s)ds+x0+tE2−α,2(λt2−α)−ξE2−α,2(λξ2−α)E2−α,1(λξ2−α)(x1−∫ξ0E2−α,1(λ(ξ−s)2−α)h(s)ds), |
and
x′(t)=∫t0E2−α,1(λ(t−s)2−α)h(s)ds+E2−α,1(λt2−α)E2−α,1(λξ2−α)(x1−∫ξ0E2−α,1(λ(ξ−s)2−α)h(s)ds). |
The proof is completed.
Let PC1(J)={x:J→R|x,x′∈C(J′,R),x(t+k),x(t−k),x′(t+k),x′(t−k)exist,andx(tk)=x(t−k),k=1,2,⋯,m} and endowed with the normal ‖x‖=max{supt∈[0,1]|x(t)|,supt∈[0,1]|x′(t)|}. Then PC1(J) is a Banach space.
For x∈PC1(J), by the Lagrange mean value theorem, there exists ξk∈[tk−ε,tk] such that
x(tk)−x(tk−ε)=x′(ξk)ε, |
and
x′−(tk)=limε→0+x(tk)−x(tk−ε)ε=limε→0+x′(ξk)εε=x′(t−k),k=1,2,⋯,m. |
Thus, for x∈PC1(J), we denote
x′(tk)=x′−(tk)=x′(t−k),k=1,2,⋯,m. | (2.5) |
Let P={x∈PC1(J)|x(t)≥0,x′(t)≥0,t∈J}. It is obvious that P⊂PC1(J) is a normal solid cone. We denote x≺_y∈PC1(J) if and only if x(t)≤y(t) and x′(t)≤y′(t) on t∈[0,1], i.e. y−x∈P. We denote x≺y if x≺_y∈PC1(J) and x≠y, and x≺≺y if y−x∈˚P.
Lemma 2.6. (See[10], P220, [2], P666) Let E be a Banach space, and P⊂E be a normal solid cone. Suppose that there exist α1,β1,α2,β2∈E with α1≺β1≺α2≺β2 and A:[α1,β2]→E is a completely continuous strongly increasing operator such that
α1≺_Aα1,Aβ1≺β1,α2≺Aα2,Aβ2≺_β2. |
Then the operator A has at least three distinct fixed points x1,x2,x3 on [α1,β2] such that
\alpha _1 \underline \prec x_1 \prec \prec \beta _1 , \;\;\alpha _2 \prec \prec x_2 \underline \prec \beta _2 , \;\alpha _2 \underline {\not \prec } x_3 \underline {\not \prec } \beta _1. |
In this section, we obtain the solution of the linear impulsive vibration equation and discuss the properties of its kernel function.
Lemma 3.1. For any p_k, \; q_k \in\mathbb{R} (k = 1, \; 2, \; \cdots, m) , m_i, \; n_i \in\mathbb{R} (i = 1, \; 2) and h\in L[0, 1] , the following boundary value problem of the second order impulsive vibration equation with fractional derivative
\begin{equation} \left\{ \begin{array}{l} x''(t) - \lambda {}^cD_{0^ + }^\alpha x(t) = h(t), \;t \in J', \; \\ \Delta x(t)|_{t = t_k } = p_k , \;k = 1, \;2, \cdots , \;m, \\ \Delta x'(t)|_{t = t_k } = q_k , \;k = 1, \;2, \cdots , \;m, \\ m_1 x(0) + m_2 x(1) = \gamma _0 , \;n_1 x'(0) + n_2 x'(1) = \gamma _1 \; \\ \end{array} \right. \end{equation} | (3.1) |
has a unique solution, which is given by
\begin{equation} x(t) = \int_0^1 {G(t, s)h(s){\rm{d}}s} + \varphi (t) + \Big(\frac{{tE_{2 - \alpha , 2} (\lambda t^{2 - \alpha } )}}{{n_1 + n_2 E_{2 - \alpha , 1} (\lambda )}} - \frac{{m_2 E_{2 - \alpha , 2} (\lambda )}}{{(m_1 + m_2 )(n_1 + n_2 E_{2 - \alpha , 1} (\lambda ))}}\Big)\gamma _1 + \frac{{\gamma _0 }}{{m_1 + m_2 }}, \;t\in J, \end{equation} | (3.2) |
where
\begin{align} G(t, s) = \left\{ \begin{array}{l} (t - s)E_{2 - \alpha , 2} \big(\lambda (t - s)^{2 - \alpha } \big) - \frac{{n_2 tE_{2 - \alpha , 2} (\lambda t^{2 - \alpha } )E_{2 - \alpha , 1} \big(\lambda (1 - s)^{2 - \alpha } \big)}}{{n_1 + n_2 E_{2 - \alpha , 1} (\lambda )}} \\ \;\;\;\; + \frac{{m_2 n_2 E_{2 - \alpha , 2} (\lambda )E_{2 - \alpha , 1} \big(\lambda (1 - s)^{2 - \alpha } \big)}}{{(m_1 + m_2 )(n_1 + n_2 E_{2 - \alpha , 1} (\lambda ))}} - \frac{{m_2 (1 - s)E_{2 - \alpha , 2} \big(\lambda (1 - s)^{2 - \alpha } \big)}}{{m_1 + m_2 }}, \;0 \le s \le t \le 1, \\ \frac{{m_2 n_2 E_{2 - \alpha , 2} (\lambda )E_{2 - \alpha , 1} \big(\lambda (1 - s)^{2 - \alpha } \big)}}{{(m_1 + m_2 )(n_1 + n_2 E_{2 - \alpha , 1} (\lambda ))}} - \frac{{n_2 tE_{2 - \alpha , 2} (\lambda t^{2 - \alpha } )E_{2 - \alpha , 1} \big(\lambda (1 - s)^{2 - \alpha } \big)}}{{n_1 + n_2 E_{2 - \alpha , 1} (\lambda )}} \\ \;\;\;\; - \frac{{m_2 (1 - s)E_{2 - \alpha , 2} \big(\lambda (1 - s)^{2 - \alpha } \big)}}{{m_1 + m_2 }}, \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;0 \le t < s \le 1, \end{array} \right. \end{align} | (3.3) |
\begin{align} \varphi (t) = & \sum\limits_{0 < t_i < t}^{} {p_i } - \frac{{m_2 }}{{m_1 + m_2 }}\sum\limits_{i = 1}^m {p_i } + \sum\limits_{0 < t_i < t} {\frac{{tE_{2 - \alpha , 2} (\lambda t^{2 - \alpha } ) - t_i E_{2 - \alpha , 2} (\lambda t_i ^{2 - \alpha } )}}{{E_{2 - \alpha , 1} (\lambda t_i ^{2 - \alpha } )}}} q_i\\ &+ \sum\limits_{i = 1}^m {\Big(\frac{{m_2 n_2 E_{2 - \alpha , 2} (\lambda )E_{2 - \alpha , 1} (\lambda )}}{{(m_1 + m_2 )\big(n_1 + n_2 E_{2 - \alpha , 1} (\lambda )\big)E_{2 - \alpha , 1} (\lambda t_i ^{2 - \alpha } )}} - \frac{{m_2 \big(E_{2 - \alpha , 2} (\lambda ) - t_i E_{2 - \alpha , 2} (\lambda t_i^{2 - \alpha } )\big)}}{{(m_1 + m_2 )E_{2 - \alpha , 1} (\lambda t_i ^{2 - \alpha } )}}}\\ &- \frac{{n_2 E_{2 - \alpha , 1} (\lambda )tE_{2 - \alpha , 2} (\lambda t^{2 - \alpha } )}}{{\big(n_1 + n_2 E_{2 - \alpha , 1} (\lambda )\big)E_{2 - \alpha , 1} (\lambda t_i^{2 - \alpha } )}}\Big)q_i, \;t\in J. \end{align} | (3.4) |
Furthermore,
\begin{align} x'(t) = \int_0^1 {G'_t (t, s)h(s)} {\rm{d}}s + \varphi '(t) + \frac{{E_{2 - \alpha , 1} (\lambda t^{2 - \alpha } )}}{{n_1 + n_2 E_{2 - \alpha , 1} (\lambda )}}\gamma _1, \;t\in J, \end{align} | (3.5) |
\begin{align} &G'_t (t, s) = \left\{ \begin{array}{l} E_{2 - \alpha , 1} \big(\lambda (t - s)^{2 - \alpha } \big) - \frac{{n_2 E_{2 - \alpha , 1} (\lambda t^{2 - \alpha } )E_{2 - \alpha , 1} \big(\lambda (1 - s)^{2 - \alpha } \big)}}{{n_1 + n_2 E_{2 - \alpha , 1} (\lambda )}}, \;0 \le s \le t \le 1, \\ - \frac{{n_2 E_{2 - \alpha , 1} (\lambda t^{2 - \alpha } )E_{2 - \alpha , 1} \big(\lambda (1 - s)^{2 - \alpha } \big)}}{{n_1 + n_2 E_{2 - \alpha , 1} (\lambda )}}, \;0 \le t < s \le 1, \\ \end{array} \right. \end{align} | (3.6) |
and
\begin{align} \varphi '(t) = \sum\limits_{0 < t_i < t} {\frac{{E_{2 - \alpha , 1} (\lambda t^{2 - \alpha } )}}{{E_{2 - \alpha , 1} (\lambda t_i ^{2 - \alpha } )}}} q_i - \sum\limits_{i = 1}^m {\frac{{n_2 E_{2 - \alpha , 1} (\lambda )E_{2 - \alpha , 1} (\lambda t^{2 - \alpha } )}}{{\big(n_1 + n_2 E_{2 - \alpha , 1} (\lambda )\big)E_{2 - \alpha , 1} (\lambda t_i^{2 - \alpha } )}}q_i }, \;t\in J. \end{align} | (3.7) |
Proof. For t \in [0, t_1] , let \xi {\rm{ = }}0, \; x(0) = c_0, \; x'(0) = c_1 , by Lemma 2.5, Cauchy problem
\left\{ \begin{array}{l} x''(t) - \lambda {}^cD_{0^ + }^\alpha x(t) = h(t), \\ x(0) = c_0 , \;x'(0) = c_1 \\ \end{array} \right. |
has a unique solution
x(t) = \int_0^t {(t - s)E_{2 - \alpha , 2} \big(\lambda (t - s)^{2 - \alpha } \big)h(s){\rm{d}}s} + c_1 tE_{2 - \alpha , 2} (\lambda t^{2 - \alpha } ) + c_0, |
and
x'(t) = \int_0^t {E_{2 - \alpha , 1} \big(\lambda (t - s)^{2 - \alpha } \big)h(s){\rm{d}}s} + c_1 E_{2 - \alpha , 1} (\lambda t^{2 - \alpha } ), \;c_0 , \;c_1 \in \mathbb{R}. |
So
\begin{align*} &x(t_1^ - ) = \int_0^{t_1 } {(t_1 - s)E_{2 - \alpha , 2} \big(\lambda (t_1 - s)^{2 - \alpha } \big)h(s){\rm{d}}s} + c_1 t_1 E_{2 - \alpha , 2} (\lambda t_1 ^{2 - \alpha } ) + c_0, \\ &x'(t_1^ - ) = \int_0^{t_1 } {E_{2 - \alpha , 1} \big(\lambda (t_1 - s)^{2 - \alpha } \big)h(s){\rm{d}}s} + c_1 E_{2 - \alpha , 1} (\lambda t_1 ^{2 - \alpha } ). \end{align*} |
For t \in (t_1, t_2] , let \xi = t_1, \; x(t_1^ +) = x(t_1^ -) + p_1, \; x'(t_1^ +) = x'(t_1^ -) + q_1 . By Lemma 2.5, we can obtain that
\begin{align*} x(t) = & \int_0^t {(t - s)E_{2 - \alpha , 2} \big(\lambda (t - s)^{2 - \alpha } \big)h(s){\rm{d}}s} - \int_0^{t_1 } {(t_1 - s)E_{2 - \alpha , 2} \big(\lambda (t_1 - s)^{2 - \alpha } \big)h(s){\rm{d}}s} + x(t_1^ + )\\ &+ \frac{{tE_{2 - \alpha , 2} (\lambda t^{2 - \alpha } ) - t_1 E_{2 - \alpha , 2} (\lambda t_1 ^{2 - \alpha } )}}{{E_{2 - \alpha , 1} (\lambda t_1 ^{2 - \alpha } )}}\Big(x'(t_1^ + ) - \int_0^{t_1 } {E_{2 - \alpha , 1} \big(\lambda (t_1 - s)^{2 - \alpha } \big)h(s)} {\rm{d}}s\Big)\\ = &\int_0^t {(t - s)E_{2 - \alpha , 2} \big(\lambda (t - s)^{2 - \alpha } \big)h(s){\rm{d}}s} - \int_0^{t_1 } {(t_1 - s)E_{2 - \alpha , 2} (\lambda (t_1 - s)^{2 - \alpha } )h(s){\rm{d}}s}\\ &+ x(t_1 ^ - ) + p_1 + \frac{{tE_{2 - \alpha , 2} (\lambda t^{2 - \alpha } ) - t_1 E_{2 - \alpha , 2} (\lambda t_1 ^{2 - \alpha } )}}{{E_{2 - \alpha , 1} (\lambda t_1 ^{2 - \alpha } )}}\Big(x'(t_1^ - ) + q_1 - \int_0^{t_1 } {E_{2 - \alpha , 1} \big(\lambda (t_1 - s)^{2 - \alpha } \big)h(s)} {\rm{d}}s\Big)\\ = & \int_0^t {(t - s)E_{2 - \alpha , 2} \big(\lambda (t - s)^{2 - \alpha } \big)h(s){\rm{d}}s} - \int_0^{t_1 } {(t_1 - s)E_{2 - \alpha , 2} (\lambda (t_1 - s)^{2 - \alpha } )h(s){\rm{d}}s} + p_1\\ &+ \int_0^{t_1 } {(t_1 - s)E_{2 - \alpha , 2} \big(\lambda (t_1 - s)^{2 - \alpha } \big)h(s){\rm{d}}s} + c_1 t_1 E_{2 - \alpha , 2} (\lambda t_1 ^{2 - \alpha } ) + c_0\\ &+ \frac{{tE_{2 - \alpha , 2} (\lambda t^{2 - \alpha } ) - t_1 E_{2 - \alpha , 2} (\lambda t_1 ^{2 - \alpha } )}}{{E_{2 - \alpha , 1} (\lambda t_1 ^{2 - \alpha } )}}\Big(\int_0^{t_1 } {E_{2 - \alpha , 1} \big(\lambda (t_1 - s)^{2 - \alpha } \big)h(s){\rm{d}}s} + c_1 E_{2 - \alpha , 1} (\lambda t_1 ^{2 - \alpha } )\\ &+ q_1 - \int_0^{t_1 } {E_{2 - \alpha , 1} \big(\lambda (t_1 - s)^{2 - \alpha } \big)h(s)} {\rm{d}}s\Big)\\ = &\int_0^t {(t - s)E_{2 - \alpha , 2} \big(\lambda (t - s)^{2 - \alpha } \big)h(s){\rm{d}}s} + tE_{2 - \alpha , 2} (\lambda t^{2 - \alpha } )c_1 + c_0 + p_1\\ &+ \frac{{tE_{2 - \alpha , 2} (\lambda t^{2 - \alpha } ) - t_1 E_{2 - \alpha , 2} (\lambda t_1 ^{2 - \alpha } )}}{{E_{2 - \alpha , 1} (\lambda t_1 ^{2 - \alpha } )}}q_1, \end{align*} |
and
\begin{align*} x'(t) = &\int_0^t {E_{2 - \alpha , 1} \big(\lambda (t - s)^{2 - \alpha } \big)h(s)} {\rm{d}}s + \frac{{E_{2 - \alpha , 1} (\lambda t^{2 - \alpha } )}}{{E_{2 - \alpha , 1} (\lambda t_1 ^{2 - \alpha } )}}\Big(x'(t_1^ - ) + q_1\\ &- \int_0^{t_1 } {E_{2 - \alpha , 1} \big(\lambda (t_1 - s)^{2 - \alpha } \big)h(s)} {\rm{d}}s\Big)\\ = &\int_0^t {E_{2 - \alpha , 1} \big(\lambda (t - s)^{2 - \alpha } \big)h(s)} {\rm{d}}s + E_{2 - \alpha , 1} (\lambda t^{2 - \alpha } )c_1 + \frac{{E_{2 - \alpha , 1} (\lambda t^{2 - \alpha } )}}{{E_{2 - \alpha , 1} (\lambda t_1 ^{2 - \alpha } )}}q_1. \end{align*} |
For t \in (t_k, t_{k + 1}] , let \xi = t_k, \; x(t_k^ +) = x(t_k^ -) + p_k, \; x'(t_k^ +) = x'(t_k^ -) + q_k, \; k = 2, 3, \cdots, m . In the same way, we have
\begin{align*} x(t) = & \int_0^t {(t - s)E_{2 - \alpha , 2} \big(\lambda (t - s)^{2 - \alpha } \big)h(s){\rm{d}}s} + tE_{2 - \alpha , 2} (\lambda t^{2 - \alpha } )c_1 + c_0 + \sum\limits_{0 < t_i < t}^{} {p_i }\\ &+ \sum\limits_{0 < t_i < t}^{} {\frac{{tE_{2 - \alpha , 2} (\lambda t^{2 - \alpha } ) - t_i E_{2 - \alpha , 2} (\lambda t_i ^{2 - \alpha } )}}{{E_{2 - \alpha , 1} (\lambda t_i ^{2 - \alpha } )}}} q_i, \end{align*} |
and
x'(t) = \int_0^t {E_{2 - \alpha , 1} \big(\lambda (t - s)^{2 - \alpha } \big)h(s){\rm{d}}s} + E_{2 - \alpha , 1} (\lambda t^{2 - \alpha } )c_1 + \sum\limits_{0 < t_i < t}^{} {\frac{{E_{2 - \alpha , 1} (\lambda t^{2 - \alpha } )}}{{E_{2 - \alpha , 1} (\lambda t_i ^{2 - \alpha } )}}q_i }. |
Hence,
\begin{align*} x(1) = &\int_0^1 {(1 - s)E_{2 - \alpha , 2} \big(\lambda (1 - s)^{2 - \alpha } \big)h(s){\rm{d}}s + } E_{2 - \alpha , 2} (\lambda )c_1 + c_0 + \sum\limits_{i = 1}^m {p_i }\\ &+ \sum\limits_{i = 1}^m {\frac{{E_{2 - \alpha , 2} (\lambda ) - t_i E_{2 - \alpha , 2} (\lambda t_i^{2 - \alpha } )}}{{E_{2 - \alpha , 1} (\lambda t_i^{2 - \alpha } )}}} q_i, \\ x'(1) = &\int_0^1 {E_{2 - \alpha , 1} \big(\lambda (1 - s)^{2 - \alpha } \big)h(s){\rm{d}}s + } E_{2 - \alpha , 1} (\lambda )c_1 + \sum\limits_{i = 1}^m {\frac{{E_{2 - \alpha , 1} (\lambda )}}{{E_{2 - \alpha , 1} (\lambda t_i^{2 - \alpha } )}}q_i }. \end{align*} |
By the boundary conditions m_1 x(0) + m_2 x(1) = \gamma _0, \; n_1 x'(0) + n_2 x'(1) = \gamma _1 , we can get that
\begin{align*} \left\{ \begin{array}{l} - (m_1 + m_2 )c_0 - m_2 E_{2 - \alpha , 2} (\lambda )c_1 = m_2 \int_0^1 {(1 - s)E_{2 - \alpha , 2} \big(\lambda (1 - s)^{2 - \alpha } \big)h(s){\rm{d}}s} + m_2 \sum\limits_{i = 1}^m {p_i } \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;+ m_2 \sum\limits_{i = 1}^m {\frac{{E_{2 - \alpha , 2} (\lambda ) - t_i E_{2 - \alpha , 2} (\lambda t_i^{2 - \alpha } )}}{{E_{2 - \alpha , 1} (\lambda t_i^{2 - \alpha } )}}q_i } - \gamma _0, \\ - (n_1 + n_2 E_{2 - \alpha , 1} (\lambda ))c_1 = n_2 \int_0^1 {E_{2 - \alpha , 1} \big(\lambda (1 - s)^{2 - \alpha } \big)h(s){\rm{d}}s} + \sum\limits_{i = 1}^m {\frac{{n_2 E_{2 - \alpha , 1} (\lambda )}}{{E_{2 - \alpha , 1} (\lambda t_i^{2 - \alpha } )}}q_i } - \gamma _1. \\ \end{array} \right. \end{align*} |
So
\begin{align*} c_0 = &\int_0^1 {\Big( - \frac{{m_2 (1 - s)E_{2 - \alpha , 2} \big(\lambda (1 - s)^{2 - \alpha } \big)}}{{m_1 + m_2 }} + \frac{{m_2 n_2 E_{2 - \alpha , 2} (\lambda )E_{2 - \alpha , 1} \big(\lambda (1 - s)^{2 - \alpha } \big)}}{{(m_1 + m_2 )\big(n_1 + n_2 E_{2 - \alpha , 1} (\lambda )\big)}}\Big)h(s){\rm{d}}s} \\ & - \frac{{m_2 }}{{m_1 + m_2 }}\sum\limits_{i = 1}^m {p_i } + \sum\limits_{i = 1}^m {\Big(\frac{{m_2 n_2 E_{2 - \alpha , 2} (\lambda )E_{2 - \alpha , 1} (\lambda )}}{{(m_1 + m_2 )\big(n_1 + n_2 E_{2 - \alpha , 1} (\lambda )\big)E_{2 - \alpha , 1} (\lambda t_i^{2 - \alpha } )}}} \\ & - \frac{{m_2 \big(E_{2 - \alpha , 2} (\lambda ) - t_i E_{2 - \alpha , 2} (\lambda t_i^{2 - \alpha } )\big)}}{{(m_1 + m_2 )E_{2 - \alpha , 1} (\lambda t_i^{2 - \alpha } )}}\Big)q_i - \frac{{m_2 E_{2 - \alpha , 2} (\lambda )\gamma _1 }}{{(m_1 + m_2 )\big(n_1 + n_2 E_{2 - \alpha , 1} (\lambda )\big)}} + \frac{{\gamma _0 }}{{m_1 + m_2 }}, \end{align*} |
c_1 = - \frac{{n_2 }}{{n_1 + n_2 E_{2 - \alpha , 1} (\lambda )}}\Big(\int_0^1 {E_{2 - \alpha , 1} \big(\lambda (1 - s)^{2 - \alpha } \big)h(s)} {\rm{d}}s + \sum\limits_{i = 1}^m {\frac{{E_{2 - \alpha , 1} (\lambda )}}{{E_{2 - \alpha , 1} (\lambda t_i^{2 - \alpha } )}}} q_i \Big) + \frac{{\gamma _1 }}{{n_1 + n_2 E_{2 - \alpha , 1} (\lambda )}}. |
Therefore,
\begin{align*} x(t) = & \int_0^t {(t - s)E_{2 - \alpha , 2} \big(\lambda (t - s)^{2 - \alpha } \big)h(s){\rm{d}}s} + \int_0^1 {\Big(\frac{{m_2 n_2 E_{2 - \alpha , 2} (\lambda )E_{2 - \alpha , 1} \big(\lambda (1 - s)^{2 - \alpha } \big)}}{{(m_1 + m_2 )\big(n_1 + n_2 E_{2 - \alpha , 1} (\lambda )\big)}}}\\ &- \frac{{n_2 tE_{2 - \alpha , 2} (\lambda t^{2 - \alpha } )E_{2 - \alpha , 1} \big(\lambda (1 - s)^{2 - \alpha } \big)}}{{n_1 + n_2 E_{2 - \alpha , 1} (\lambda )}} - \frac{{m_2 (1 - s)E_{2 - \alpha , 2} \big(\lambda (1 - s)^{2 - \alpha } \big)}}{{m_1 + m_2 }}\Big)h(s){\rm{d}}s\\ &+ \sum\limits_{0 < t_i < t}^{} {p_i } - \frac{{m_2 }}{{m_1 + m_2 }}\sum\limits_{i = 1}^m {p_i } + \sum\limits_{0 < t_i < t} {\frac{{tE_{2 - \alpha , 2} (\lambda t^{2 - \alpha } ) - t_i E_{2 - \alpha , 2} (\lambda t_i ^{2 - \alpha } )}}{{E_{2 - \alpha , 1} (\lambda t_i ^{2 - \alpha } )}}} q_i\\ & + \sum\limits_{i = 1}^m {\Big(\frac{{m_2 n_2 E_{2 - \alpha , 2} (\lambda )E_{2 - \alpha , 1} (\lambda )}}{{(m_1 + m_2 )\big(n_1 + n_2 E_{2 - \alpha , 1} (\lambda )\big)E_{2 - \alpha , 1} (\lambda t_i ^{2 - \alpha } )}} - \frac{{m_2 \big(E_{2 - \alpha , 2} (\lambda ) - t_i E_{2 - \alpha , 2} (\lambda t_i ^{2 - \alpha } )\big)}}{{(m_1 + m_2 )E_{2 - \alpha , 1} (\lambda t_i ^{2 - \alpha } )}}}\\ & - \frac{{n_2 E_{2 - \alpha , 1} (\lambda )tE_{2 - \alpha , 2} (\lambda t^{2 - \alpha } )}}{{\big(n_1 + n_2 E_{2 - \alpha , 1} (\lambda )\big)E_{2 - \alpha , 1} (\lambda t_i^{2 - \alpha } )}}\Big)q_i + \frac{{\gamma _0 }}{{m_1 + m_2 }}\\ & + \Big(\frac{{tE_{2 - \alpha , 2} (\lambda t^{2 - \alpha } )}}{{n_1 + n_2 E_{2 - \alpha , 1} (\lambda )}} - \frac{{m_2 E_{2 - \alpha , 2} (\lambda )}}{{(m_1 + m_2 )\big(n_1 + n_2 E_{2 - \alpha , 1} (\lambda )\big)}}\Big)\gamma _1\\ = &\int_0^1 {G(t, s)h(s){\rm{d}}s + \varphi (t)} + \Big(\frac{{tE_{2 - \alpha , 2} (\lambda t^{2 - \alpha } )}}{{n_1 + n_2 E_{2 - \alpha , 1} (\lambda )}} - \frac{{m_2 E_{2 - \alpha , 2} (\lambda )}}{{(m_1 + m_2 )\big(n_1 + n_2 E_{2 - \alpha , 1} (\lambda )\big)}}\Big)\gamma _1 + \frac{{\gamma _0 }}{{m_1 + m_2 }}, \;t \in [0, 1]. \end{align*} |
And
\begin{align*} x'(t) = & \int_0^t {E_{2{\rm{ - }}\alpha , 1} \big(\lambda (t - s)^{2 - \alpha } \big)h(s){\rm{d}}s - \int_0^1 {\frac{{n_2 E_{2 - \alpha , 1} (\lambda t^{2 - \alpha } )E_{2 - \alpha , 1} (\lambda (1 - s)^{2 - \alpha } )}}{{n_1 + n_2 E_{2 - \alpha , 1} (\lambda )}}h(s)} {\rm{d}}s}\\ &+ \sum\limits_{0 < t_i < t} {\frac{{E_{2 - \alpha , 1} (\lambda t^{2 - \alpha } )}}{{E_{2 - \alpha , 1} (\lambda t_i ^{2 - \alpha } )}}q_i } - \sum\limits_{i = 1}^m {\frac{{n_2 E_{2 - \alpha , 1} (\lambda )E_{2 - \alpha , 1} (\lambda t^{2 - \alpha } )}}{{\big(n_1 + n_2 E_{2 - \alpha , 1} (\lambda )\big)E_{2 - \alpha , 1} (\lambda t_i ^{2 - \alpha } )}}} q_i + \frac{{E_{2 - \alpha , 1} (\lambda t^{2 - \alpha } )}}{{n_1 + n_2 E_{2 - \alpha , 1} (\lambda )}}\gamma _1\\ = & \int_0^1 G'_t (t, s)h(s){\rm{d}} s + \varphi '(t) + \frac{{E_{2 - \alpha , 1} (\lambda t^{2 - \alpha } )}}{{n_1 + n_2 E_{2 - \alpha , 1} (\lambda )}}\gamma _1, \;t \in [0, 1]. \end{align*} |
Therefore, boundary value problem (3.1) has a unique solution x = x(t) which is given by (3.2), and G(t, s), \; \varphi(t) are given by (3.3) and (3.4), respectively. Furthermore, x'(t) is also established.
For convenience, we give out the following hypothesis:
(H1) The constants m_i, \; n_i \in \mathbb{R}(i = 1, 2) satisfy m_2 (m_1 + m_2) < 0 and n_2 \big(n_1 + n_2 E_{2 - \alpha, 1} (\lambda)\big) < 0 .
Lemma 3.2. Suppose that (H1) holds. Then functions G and \varphi defined by (3.3) and (3.4) satisfy the following properties:
(1) G(t, s) is continuous for t, \; s \in [0, 1].
(2) G(t, s) > 0 for t, s \in [0, 1] and \mathop {\max }\limits_{t \in [0, 1]} G(t, s) = G(1, s), \; \mathop {\min }\limits_{t \in [0, 1]} G(t, s) = G(0, s) .
(3) G'_t(t, s) > 0 for t, s \in [0, 1] and \mathop {\max }\limits_{t \in [0, 1]} G'_t (t, s) = G'_t (1, s), \; \mathop {\min }\limits_{t \in [0, 1]} G'_t (t, s) = G'_t (0, s) .
(4) If p_k \ge 0, \; q_k \ge 0, k = 1, \; 2, \; \cdots, \; m, then \varphi (t) \ge 0, \; \varphi '(t) \ge 0, for t \in J_k .
Proof. (1) By the definition of G(t, s), \; G\in C([0, 1] \times [0, 1]) is obvious.
(2) By (H1), for 0 \le s \le t \le 1 ,
G'_t (t, s) = \frac{{\partial G(t, s)}}{{\partial t}} = E_{2 - \alpha , 1} \big(\lambda (t - s)^{2 - \alpha } \big) - \frac{{n_2 E_{2 - \alpha , 1} (\lambda t^{2 - \alpha } )E_{2 - \alpha , 1} \big(\lambda (1 - s)^{2 - \alpha } \big)}}{{n_1 + n_2 E_{2 - \alpha , 1} (\lambda )}} > 0. |
Then G(s, s) \le G(t, s) \le G(1, s) , for s \in [0, 1] and t \in [s, 1] . And
\begin{align*} G(s, s) = &\frac{{m_2 n_2 E_{2 - \alpha , 2} (\lambda )E_{2 - \alpha , 1} \big(\lambda (1 - s)^{2 - \alpha } \big)}}{{(m_1 + m_2 )\big(n_1 + n_2 E_{2 - \alpha , 1} (\lambda )\big)}} - \frac{{n_2 sE_{2 - \alpha , 2} (\lambda s^{2 - \alpha } )E_{2 - \alpha , 1} \big(\lambda (1 - s)^{2 - \alpha } \big)}}{{n_1 + n_2 E_{2 - \alpha , 1} (\lambda )}} \\ &- \frac{{m_2 (1 - s)E_{2 - \alpha , 2} \big(\lambda (1 - s)^{2 - \alpha } \big)}}{{m_1 + m_2 }} > 0. \end{align*} |
Hence, G(t, s) > 0 for 0 \le s \le t \le 1 and G(t, s) \le G(1, s) for t \in [s, 1] .
For 0 \le t < s \le 1 ,
\frac{{\partial G(t, s)}}{{\partial t}} = - \frac{{n_2 E_{2 - \alpha , 1} (\lambda t^{2 - \alpha } )E_{2 - \alpha , 1} \big(\lambda (1 - s)^{2 - \alpha } \big)}}{{n_1 - n_2 E_{2 - \alpha , 1} (\lambda )}} > 0, |
we can get that G(0, s) \le G(t, s) < G(s, s) , for s \in [0, 1] and t \in [0, s) . And
G(0, s) = \frac{{m_2 n_2 E_{2 - \alpha , 2} (\lambda )E_{2 - \alpha , 1} \big(\lambda (1 - s)^{2 - \alpha } \big)}}{{(m_1 + m_2 )\big(n_1 + n_2 E_{2 - \alpha , 1} (\lambda )\big)}} - \frac{{m_2 (1 - s)E_{2 - \alpha , 2}\big(\lambda (1 - s)^{2 - \alpha }\big)}}{{m_1 + m_2 }} > 0. |
Hence, G(t, s) > 0 for 0 \le t < s \le 1 and G(t, s) < G(s, s) for t \in [0, s) .
Therefore, G(t, s) > 0 for any t, s \in [0, 1] . And G(t, s) is monotone increasing with respect to t \in [0, 1] , so \mathop {\max }\limits_{t \in [0, 1]} G(t, s) = G(1, s), \; \mathop {\min }\limits_{t \in [0, 1]} G(t, s) = G(0, s) .
(3) Since
\big(E_{2 - \alpha , 1} (\lambda t^{2 - \alpha } )\big)' = \Big(\sum\limits_{k = 0}^\infty {\frac{{(\lambda t^{2 - \alpha } )^k }}{{\Gamma \big((2 - \alpha )k + 1\big)}}}\Big)' = \sum\limits_{k = 1}^\infty {\frac{{(2 - \alpha )k\lambda ^k t^{(2 - \alpha )k - 1} }}{{\Gamma \big((2 - \alpha )k + 1\big)}}} \ge 0, \;t \in [0, 1]. |
By (H1), for 0 \le s \le t \le 1 ,
\frac{{\partial ^2 G(t, s)}}{{\partial t^2 }} = \Big(E_{2 - \alpha , 1} \big(\lambda (t - s)^{2 - \alpha } \big)\Big)' - \frac{{n_2 E_{2 - \alpha , 1} \big(\lambda (1 - s)^{2 - \alpha } \big)\big(E_{2 - \alpha , 1} (\lambda t^{2 - \alpha } )\big)'}}{{n_1 + n_2 E_{2 - \alpha , 1} (\lambda )}} \ge 0. |
Then G'_t (s, s) \le G'_t (t, s) \le G'_t (1, s) , for any s \in [0, 1], \; t \in [s, 1] . Because
G'_t (s, s) = 1 - \frac{{n_2 E_{2 - \alpha , 1} (\lambda s^{2 - \alpha } )E_{2 - \alpha , 1} \big(\lambda (1 - s)^{2 - \alpha } \big)}}{{n_1 + n_2 E_{2 - \alpha , 1} (\lambda )}} > 0, |
we can get that G'_t (t, s) > 0 for 0 \le s \le t \le 1 .
For 0 \le t < s \le 1 ,
\frac{{\partial G^2 (t, s)}}{{\partial t^2 }} = - \frac{{n_2 E_{2 - \alpha , 1} \big(\lambda (1 - s)^{2 - \alpha } \big)\big(E_{2 - \alpha , 1} (\lambda t^{2 - \alpha } )\big)'}}{{n_1 - n_2 E_{2 - \alpha , 1} (\lambda )}} \ge 0, |
we can get that G'_t(0, s)\le G'_t(t, s)\le G'_t(s, s) for any s \in [0, 1] and t\in [0, s) . Since
G'_t (0, s) = - \frac{{n_2 E_{2 - \alpha , 1} \big(\lambda (1 - s)^{2 - \alpha } \big)}}{{n_1 - n_2 E_{2 - \alpha , 1} (\lambda )}} > 0, |
we have G'_t (t, s) > 0 for 0 \le t < s \le 1 .
Therefore, G'_t (t, s) > 0 for any t, s \in [0, 1] and \mathop {\max }\limits_{t \in [0, 1]} G'_t (t, s) = G'_t (1, s), \; \mathop {\min }\limits_{t \in [0, 1]} G'_t (t, s) = G'_t (0, s) .
(4) If p_k, q_k \ge 0 , k = 1, 2, \cdots, m , by (H1), (3.4) and (3.7), we can easily get that
\;\varphi (t) \ge 0, \;\;\varphi '(t) \ge 0, \;t\in J_k. |
The proof is completed.
In this section, we will establish the existence results of the solutions for the boundary value problem (1.1).
For any u \in PC^1 (J), we consider the following boundary value problem
\begin{equation} \left\{ \begin{array}{l} x''(t) - \lambda {}^cD_{0^ + }^\alpha x(t) = f\big(t, u(t), u'(t)\big), \;t \in J', \; \\ \Delta x(t)|_{t = t_k } = I_k \big(u(t_k )\big), \;k = 1, \;2, \cdots , \;m, \\ \Delta x'(t)|_{t = t_k } = Q_k \big(u(t_k )\big), \;k = 1, \;2, \cdots , \;m, \\ m_1 x(0) + m_2 x(1) = g_0 \big(u(0), u(1)\big) + m_1 u(0) + m_2 u(1): = \gamma _{u, 0} , \; \\ n_1 x'(0) + n_2 x'(1) = g_1 \big(u'(0), u'(1)\big) + n_1 u'(0) + n_2 u'(1): = \gamma _{u, 1} . \\ \end{array} \right. \end{equation} | (4.1) |
By Lemma 3.1, we can get that boundary value (4.1) is equivalent to the following integral equation
\begin{align*} x(t) = &\int_0^1 {G(t, s)f\big(s, u(s), u'(s)\big){\rm{d}}s} + \varphi _u (t)\\ &+ \Big(\frac{{tE_{2 - \alpha , 2} (\lambda t^{2 - \alpha } )}}{{n_1 + n_2 E_{2 - \alpha , 1} (\lambda )}} - \frac{{m_2 E_{2 - \alpha , 2} (\lambda )}}{{(m_1 + m_2 )\big(n_1 + n_2 E_{2 - \alpha , 1} (\lambda )\big)}}\Big)\gamma _{u, 1} + \frac{{\gamma _{u, 0} }}{{m_1 + m_2 }}, \;t\in J, \end{align*} |
and
x'(t) = \int_0^1 {G'_t (t, s)f\big(s, u(s), u'(s)\big)} {\rm{d}}s + \varphi '_u (t) + \frac{{E_{2 - \alpha , 1} (\lambda t^{2 - \alpha } )}}{{n_1 + n_2 E_{2 - \alpha , 1} (\lambda )}}\gamma _{u, 1}, \;t\in J, |
where
\begin{align} \varphi _u (t) = & \sum\limits_{0 < t_i < t}^{} {I_i \big(u(t_i )\big)} - \frac{{m_2 }}{{m_1 + m_2 }}\sum\limits_{i = 1}^m {I_i \big(u(t_i )\big)} + \sum\limits_{0 < t_i < t} {\frac{{tE_{2 - \alpha , 2} (\lambda t^{2 - \alpha } ) - t_i E_{2 - \alpha , 2} (\lambda t_i ^{2 - \alpha } )}}{{E_{2 - \alpha , 1} (\lambda t_i ^{2 - \alpha } )}}} Q_i \big(u(t_i )\big)\\ &+ \sum\limits_{i = 1}^m {\Big(\frac{{m_2 n_2 E_{2 - \alpha , 2} (\lambda )E_{2 - \alpha , 1} (\lambda )}}{{(m_1 + m_2 )\big(n_1 + n_2 E_{2 - \alpha , 1} (\lambda )\big)E_{2 - \alpha , 1} (\lambda t_i ^{2 - \alpha } )}} - \frac{{m_2 \big(E_{2 - \alpha , 2} (\lambda ) - t_i E_{2 - \alpha , 2} (\lambda t_i^{2 - \alpha } )\big)}}{{(m_1 + m_2 )E_{2 - \alpha , 1} (\lambda t_i ^{2 - \alpha } )}}}\\ &- \frac{{n_2 E_{2 - \alpha , 1} (\lambda )tE_{2 - \alpha , 2} (\lambda t^{2 - \alpha } )}}{{\big(n_1 + n_2 E_{2 - \alpha , 1} (\lambda )\big)E_{2 - \alpha , 1} (\lambda t_i^{2 - \alpha } )}}\Big)Q_i \big(u(t_i )\big), \;t\in J \end{align} | (4.2) |
and
\begin{align} \varphi '_u (t) = \sum\limits_{0 < t_i < t} {\frac{{E_{2 - \alpha , 1} (\lambda t^{2 - \alpha } )}}{{E_{2 - \alpha , 1} (\lambda t_i ^{2 - \alpha } )}}} Q_i \big(u(t_i )\big) - \sum\limits_{i = 1}^m {\frac{{n_2 E_{2 - \alpha , 1} (\lambda )E_{2 - \alpha , 1} (\lambda t^{2 - \alpha } )}}{{\big(n_1 + n_2 E_{2 - \alpha , 1} (\lambda )\big)E_{2 - \alpha , 1} (\lambda t_i^{2 - \alpha } )}}Q_i } \big(u(t_i )\big), \;t\in J. \end{align} | (4.3) |
We define an operator T:PC^1 (J) \to PC^1 (J) by
\begin{align*} Tu(t) = &\int_0^1 {G(t, s)f\big(s, u(s), u'(s)\big){\rm{d}}s} + \varphi _u (t)\nonumber\\ &+ \Big(\frac{{tE_{2 - \alpha , 2} (\lambda t^{2 - \alpha } )}}{{n_1 + n_2 E_{2 - \alpha , 1} (\lambda )}} - \frac{{m_2 E_{2 - \alpha , 2} (\lambda )}}{{(m_1 + m_2 )\big(n_1 + n_2 E_{2 - \alpha , 1} (\lambda )\big)}}\Big)\gamma _{u, 1} + \frac{{\gamma _{u, 0} }}{{m_1 + m_2 }}, \;t\in J. \end{align*} |
By Lemma 3.1 and (3.5),
\begin{align*} (Tu)'(t) = \int_0^1 {G'_t (t, s)f\big(s, u(s), u'(s)\big)} {\rm{d}}s + \varphi '_u (t) + \frac{{E_{2 - \alpha , 1} (\lambda t^{2 - \alpha } )}}{{n_1 + n_2 E_{2 - \alpha , 1} (\lambda )}}\gamma _{u, 1}. \end{align*} |
We can easily get that the following Lemma 4.1 holds.
Lemma 4.1. The function x = x(t) is the solution of boundary value problem (1.1) if and only if x is a fixed point of the operator T in PC^1 (J) .
Lemma 4.2. If (H1) holds, then T:PC^1 (J) \to PC^1 (J) is completely continuous.
Proof. Step 1: T is a continuous operator.
Suppose that \left\{ {u_n } \right\}\subset PC^1 (J) and there exists u \in PC^1 (J) such that \|u_n - u\| \to 0(n \to \infty) . Then there exists a constant M > 0 such that \|u_n \| \le M, \; \|u\| \le M.
Since f \in C(J \times\mathbb{R}^2, \mathbb{R}), \; I_k, \; Q_k \in C(\mathbb{R}, \mathbb{R}), \; k = 1, 2, \cdots, m , g_0, \; g_1 \in C(\mathbb{R}^2, \mathbb{R}) and \gamma _{u_n, 0}, \; \gamma _{u_n, 1}, \; \gamma _{u, 0}, \; \gamma _{u, 1}, \in \mathbb{R} , then
\mathop {\lim }\limits_{n \to \infty } {\rm{|}}f\big(t, u_n (t), u'_n (t)\big) - f\big(t, u(t), u'(t)\big){\rm{|}} = 0, \;t\in J, |
\mathop {\lim }\limits_{n \to \infty } |I_k \big(u_n (t_k )\big) - I_k \big(u(t_k )\big)| = 0, \;\mathop {\lim }\limits_{n \to \infty } {\rm{|}}Q_k \big(u_n (t_k )\big) - Q_k \big(u(t_k )\big){\rm{|}} = 0, \;k = 1, 2, \cdots, m, |
\mathop {\lim }\limits_{n \to \infty } {\rm{|}}\gamma _{u_n , 0} - \gamma _{u, 0} {\rm{|}} = 0, \;\mathop {\lim }\limits_{n \to \infty } {\rm{|}}\gamma _{u_n , 1} - \gamma _{u, 1} {\rm{|}} = 0. |
By (H1), Lemma 3.2 and Lebesgue dominated convergence theorem, for any t \in J , we have
\begin{align*} &|Tu_n (t) - Tu(t)|\\ = &{\Big{|}}\int_0^1 {G(t, s)\Big(f\big(s, u_n (s), u'_n (s)\big) - f\big(s, u(s), u'(s)\big)\Big)} \;{\rm{d}}s + \big(\varphi _{u_n } (t) - \varphi _u (t)\big)\\ &+ \Big(\frac{{tE_{2 - \alpha , 2} (\lambda t^{2 - \alpha } )}}{{n_1 + n_2 E_{2 - \alpha , 1} (\lambda )}} - \frac{{m_2 E_{2 - \alpha , 2} (\lambda )}}{{(m_1 + m_2 )\big(n_1 + n_2 E_{2 - \alpha , 1} (\lambda )\big)}}\Big)(\gamma _{u_n , 1} - \gamma _{u, 1} ) + \frac{{\gamma _{u_n , 0} - \gamma _{u, 0} }}{{m_1 + m_2 }}{\Big{|}}\\ \le &\int_0^1 {G(1, s){\rm{\big|}}f\big(s, u_n (s), u'_n (s)\big) - f\big(s, u(s), u'(s)\big){\rm{\big|}}} \;{\rm{d}}s\\ &+ \frac{{|m_1 + m_2 | + |m_2 |}}{{|m_1 + m_2 |}}\sum\limits_{i = 1}^m {\big|I_i \big(u_n (t_i )\big) - I_i \big(u(t_i )\big)\big|}\\ &+ \frac{{(|m_1 | + 2|m_2 |)\big(|n_1 | + 2|n_2 |E_{2 - \alpha , 1} (\lambda )\big)E_{2 - \alpha , 2} (\lambda )}}{{|m_1 + m_2 ||n_1 + n_2 E_{2 - \alpha , 1} (\lambda )|}}\sum\limits_{i = 1}^m {\big|Q_i \big(u_n (t_i )\big) - Q_i \big(u(t_i )\big)\big|}\\ &+ \frac{{(|m_1 | + 2|m_2 |)E_{2 - \alpha , 2} (\lambda )}}{{|m_1 + m_2 ||n_1 + n_2 E_{2 - \alpha , 1} (\lambda )|}}{\rm{|}}\gamma _{u_n , 1} - \gamma _{u, 1} {\rm{|}} + \frac{{{\rm{|}}\gamma _{u_n , 0} - \gamma _{u, 0} {\rm{|}}}}{{|m_1 + m_2 |}}\to 0 \;(n \to \infty), \end{align*} |
and
\begin{align*} &|(Tu_n )'(t) - (Tu)'(t)|\\ = &\Big|\int_0^1 {G'_t (t, s)\Big(f\big(s, u_n (s), u'_n (s)\big) - f\big(s, u(s), u'(s)\big)\Big)} {\rm{d}}s + \big(\varphi '_{u_n } (t) - \varphi '_u (t)\big)\\ &+ \frac{{E_{2 - \alpha , 1} (\lambda t^{2 - \alpha } )}}{{n_1 + n_2 E_{2 - \alpha , 1} (\lambda )}}(\gamma _{u_n , 1} - \gamma _{u, 1} )\Big|\\ \le& \int_0^1 {G'_t (1, s)} \big|f\big(s, u_n (s), u'_n (s)\big) - f\big(s, u(s), u'(s)\big)\big|{\rm{d}}s\\ &+ \sum\limits_{i = 1}^m {\frac{{(|n_1 | + 2|n_2 |E_{2 - \alpha , 1} (\lambda ))E_{2 - \alpha , 1} (\lambda )}}{{|n_1 + n_2 E_{2 - \alpha , 1} (\lambda )|}}\big|Q_i \big(u_n (t_i )\big) - Q_i \big(u(t_i )\big)\big|}\\ &+ \frac{{E_{2 - \alpha , 1} (\lambda )}}{{|n_1 + n_2 E_{2 - \alpha , 1} (\lambda )|}}|\gamma _{u_n , 1} - \gamma _{u, 1} | \to 0 \;\;(n \to \infty). \end{align*} |
So ||Tu_n - Tu|| \to 0 as n\to \infty , which means T is continuous.
Step 2: T is relatively compact.
Let \Omega \subset PC^1 (J) be a bounded set. By the continuity of the functions f, \; I_k, \; Q_k\; (k = 1, \; 2, \; \cdots, m) , g_0 and g_1 , there exists a constant L > 0 , for any u \in \Omega and t \in J ,
{\rm{|}}f\big(t, u(t), u'(t)\big){\rm{|}} \le L, \;\;|\gamma _{u, 0} | \le L, \;|\gamma _{u, 1} | \le L, |
\;{\rm{|}}I_k \big(u(t)\big){\rm{|}} \le L, \;{\rm{|}}Q_k \big(u(t)\big){\rm{|}} \le L, \;k = 1, \;2, \; \cdots , \;m. |
Then
\begin{align*} |\varphi _u (t)| \le \frac{{m(|m_1 | + 2|m_2 |)\Big(|n_1 |\big(1 + E_{2 - \alpha , 2} (\lambda )\big) + |n_2 |E_{2 - \alpha , 1} (\lambda )\big(1 + 2E_{2 - \alpha , 2} (\lambda )\big)\Big)}}{{|m_1 + m_2 ||n_1 + n_2 E_{2 - \alpha , 1} (\lambda )|}}L, \end{align*} |
\begin{align*} |\varphi '_u (t)| \le \frac{{m\big(|n_1 | + 2|n_2 |E_{2 - \alpha , 1} (\lambda )\big)E_{2 - \alpha , 1} (\lambda )}}{{|n_1 + n_2 E_{2 - \alpha , 1} (\lambda )|}}L. \end{align*} |
By Lemma 3.2, for any t \in J ,
\begin{align*} {\rm{|}}Tu(t){\rm{|}} = &{\rm{\Big|}}\int_0^1 {G(t, s)f\big(s, u(s), u'(s)\big)} {\rm{d}}s + \varphi _u (t) + \frac{{\gamma _{u, 0} }}{{m_1 + m_2 }}\\ &+ \Big(\frac{{tE_{2 - \alpha , 2} (\lambda t^{2 - \alpha } )}}{{n_1 + n_2 E_{2 - \alpha , 1} (\lambda )}} - \frac{{m_2 E_{2 - \alpha , 2} (\lambda )}}{{(m_1 + m_2 )\big(n_1 + n_2 E_{2 - \alpha , 1} (\lambda )\big)}}\Big)\gamma _{u, 1} \Big|\\ \le& \Big(\int_0^1 {G(1, s)} {\rm{d}}s + \frac{{(|m_1 | + 2|m_2 |)E_{2 - \alpha , 2} (\lambda ) + |n_1 | + |n_2 |E_{2 - \alpha , 1} (\lambda )}}{{|m_1 + m_2 ||n_1 + n_2 E_{2 - \alpha , 1} (\lambda )|}}\\ &+ \frac{{m(|m_1 | + 2|m_2 |)\Big(|n_1 |\big(1 + E_{2 - \alpha , 2} (\lambda )\big) + |n_2 |E_{2 - \alpha , 1} (\lambda )\big(1 + 2E_{2 - \alpha , 2} (\lambda )\big)\Big)}}{{|m_1 + m_2 ||n_1 + n_2 E_{2 - \alpha , 1} (\lambda )|}}\Big)L, \end{align*} |
and
\begin{align*} {\rm{|(}}Tu)'(t){\rm{|}} = &{\rm{\Big|}}\int_0^1 {G'_t (t, s)f(s, u(s), u'(s))} {\rm{d}}s + \varphi '_u (t) + \frac{{E_{2 - \alpha , 1} (\lambda t^{2 - \alpha } )}}{{n_1 + n_2 E_{2 - \alpha , 1} (\lambda )}}\gamma _{u, 1} \Big|\\ \le &\Big(\int_0^1 {G'_t (1, s){\rm{d}}s} + \frac{{m\big(|n_1 | + 2|n_2 |E_{2 - \alpha , 1} (\lambda )\big)E_{2 - \alpha , 1} (\lambda ) + E_{2 - \alpha , 1} (\lambda )}}{{|n_1 + n_2 E_{2 - \alpha , 1} (\lambda )|}}\Big)L. \end{align*} |
Therefore, the operator T(\Omega) is uniformly bounded.
Because G(t, s) is continuous on [0, 1] \times [0, 1] , then it is uniformly continuous on [0, 1] \times [0, 1] . Thus, for any \varepsilon > 0 , there exists a constant \delta _1 > 0 such that for any s \in [0, 1] , t'_1, \; t'_2 \in J_k, \; k = 0, \; 1, \; \cdots, \; m , whenever |t'_1 - t'_2 | < \delta _1 , we can get that
|G(t'_1 , s) - G(t'_2 , s)| < \frac{\varepsilon }{{2L}}. |
Denote
G_0 (t, s) = - \frac{{n_2 tE_{2 - \alpha , 2} (\lambda t^{2 - \alpha } )E_{2 - \alpha , 1} \big(\lambda (1 - s)^{2 - \alpha } \big)}}{{n_1 + n_2 E_{2 - \alpha , 1} (\lambda )}}. |
By (3.6),
\begin{equation*} G'_t (t, s) = \left\{ \begin{array}{l} E_{2 - \alpha , 1} \big(\lambda (t - s)^{2 - \alpha } \big) + G_0 (t, s), \;0 \le s \le t \le 1, \\ G_0 (t, s), \;0 \le t < s \le 1. \\ \end{array} \right. \end{equation*} |
Similarly, for the \varepsilon > 0 , there exists a constant \delta _2 > 0 such that
\begin{align*} |G_0 (t'_1 , s) - G_0 (t'_2 , s)| < \frac{\varepsilon }{{3L}} \end{align*} |
whenever |t'_1 - t'_2 | < \delta _2 and t'_1, \; t'_2 \in J_k, k = 0, \; 1, \; \cdots, \; m .
By the uniformly continuity of functions tE_{2 - \alpha, 2} (\lambda t^{2 - \alpha }) and E_{2 - \alpha, 1} (\lambda t^{2 - \alpha }) on t\in[0, 1] , we can show that for the \varepsilon > 0 , there exists a constant \delta _3 > 0 such that
|t'_1 E_{2 - \alpha , 2} (\lambda {t'_1 }^{2 - \alpha } ) - t'_2 E_{2 - \alpha , 2} (\lambda {t'_2}^{2 - \alpha } )| < \frac{{|n_1 + n_2 E_{2 - \alpha , 1} (\lambda )|\varepsilon }}{{2\Big(m\big(|n_1 | + 2|n_2 |E_{2 - \alpha , 1} (\lambda)\big) + 1\Big)L}}, |
and
|E_{2 - \alpha , 1} (\lambda {t'}_1 ^{2 - \alpha } ) - E_{2 - \alpha , 1} (\lambda {t'_2} ^{2 - \alpha } )| < \frac{{|n_1 + n_2 E_{2 - \alpha , 1} (\lambda )|\varepsilon }}{{3\Big(m\big(|n_1 | + 2|n_2 |E_{2 - \alpha , 1} (\lambda )\big)+1\Big)L}}, |
whenever |t'_1-t'_2| < \delta _3 and t'_1, \; t'_2 \in J_k, k = 0, \; 1, \; \cdots, \; m . Hence, by (4.2) and (4.3), we have
\begin{align*} |\varphi _u (t'_1 ) - \varphi _u (t'_2 )| \le& \sum\limits_{i = 1}^m {\big|t'_1 E_{2 - \alpha , 2} (\lambda {t'_1 }^{2 - \alpha } ) - t'_2 E_{2 - \alpha , 2} (\lambda {t'_2} ^{2 - \alpha } )\big||Q_i (u(t_i ))|}\\ & + \sum\limits_{i = 1}^m {\frac{{|n_2 |E_{2 - \alpha , 1} (\lambda )|t'_1 E_{2 - \alpha , 2} (\lambda {t'_1 }^{2 - \alpha } ) - t'_2 E_{2 - \alpha , 2} (\lambda {t'_2} ^{2 - \alpha } )|}}{{|n_1 + n_2 E_{2 - \alpha , 1} (\lambda )|}}|Q_i (u(t_i ))|}\\ \le& \frac{{mL\big(|n_1 | + 2|n_2 |E_{2 - \alpha , 1} (\lambda )\big)}}{{|n_1 + n_2 E_{2 - \alpha , 1} (\lambda )|}}\big|t'_1 E_{2 - \alpha , 2} (\lambda {t'_1 }^{2 - \alpha } ) - t'_2 E_{2 - \alpha , 2} (\lambda {t'_2} ^{2 - \alpha } )\big|, \end{align*} |
and
\begin{align*} |\varphi '_u (t'_1 ) - \varphi '_u (t'_2 )| \le& \sum\limits_{i = 1}^m {\big|E_{2 - \alpha , 1} (\lambda {t'_1} ^{2 - \alpha } ) - E_{2 - \alpha , 1} (\lambda{ t'_2 }^{2 - \alpha } )\big||Q_i (u(t_i ))|}\\ & + \sum\limits_{i = 1}^m {\frac{{|n_2 |E_{2 - \alpha , 1} (\lambda )|E_{2 - \alpha , 1} (\lambda {t'_1} ^{2 - \alpha } ) - E_{2 - \alpha , 1} (\lambda{ t'_2 }^{2 - \alpha } )|}}{{|n_1 + n_2 E_{2 - \alpha , 1} (\lambda )|}}|Q_i (u(t_i ))|}\\ \le& \frac{{mL\big(|n_1 | + 2|n_2 |E_{2 - \alpha , 1} (\lambda )\big)}}{{|n_1 + n_2 E_{2 - \alpha , 1} (\lambda )|}}\big|E_{2 - \alpha , 1} (\lambda {t'_1} ^{2 - \alpha } ) - E_{2 - \alpha , 1} (\lambda{ t'_2 }^{2 - \alpha } )\big|. \end{align*} |
By the uniformly continuity of E_{2 - \alpha, 1} \big(\lambda (t - s)^{2 - \alpha } \big) on D = \left\{ {(t, s)|\; 0 \le s \le t \le 1} \right\} , for the \varepsilon > 0 , there exists a constant 0 < \delta_4 < \frac{\varepsilon }{{6LE_{2-\alpha, 1} (\lambda)}} , for (t'_1, s), \; (t'_2, s) \in D , |t'_1- t'_2| < \delta_4 and t'_1, \; t'_2 \in J_k, k = 0, \; 1, \; \cdots, \; m , we have
|E_{2-\alpha, 1}\big(\lambda(t'_1-s)^{2-\alpha}\big)-E_{2-\alpha, 1}\big(\lambda(t'_2-s)^{2-\alpha}\big)| < \frac{\varepsilon}{6L}. |
Then
\begin{align*} &\Big|\int_0^{t'_1 } {E_{2 - \alpha , 1} \big(\lambda (t'_1 - s)^{2 - \alpha } \big)f\big(s, u(s), u'(s)\big)} {\rm{d}}s - \int_0^{t'_2 } {E_{2 - \alpha , 1} \big(\lambda (t'_2 - s)^{2 - \alpha } \big)f\big(s, u(s), u'(s)\big)} {\rm{d}}s\Big|\\ \le& \Big|\int_0^{t'_1 } {E_{2 - \alpha , 1} \big(\lambda (t'_1 - s)^{2 - \alpha } \big)f\big(s, u(s), u'(s)\big)} {\rm{d}}s - \int_0^{t'_1 } {E_{2 - \alpha , 1} \big(\lambda (t'_2 - s)^{2 - \alpha } \big)f\big(s, u(s), u'(s)\big)} {\rm{d}}s\\ & - \int_{t'_1 }^{t'_2 } {E_{2 - \alpha , 1} \big(\lambda (t'_2 - s)^{2 - \alpha } \big)f\big(s, u(s), u'(s)\big)} {\rm{d}}s\Big|\\ \le& L\int_0^{t'_1 } {\big|(E_{2 - \alpha , 1} \big(\lambda (t'_1 - s)^{2 - \alpha } \big)} - E_{2 - \alpha , 1} \big(\lambda (t'_2 - s)^{2 - \alpha } )\big)\big|{\rm{d}}s + L\Big|\int_{t'_1 }^{t'_2 } {E_{2 - \alpha , 1} \big(\lambda (t'_2 - s)^{2 - \alpha } \big)} {\rm{d}}s\Big|\\ \le& L\big|(E_{2 - \alpha , 1} \big(\lambda (t'_1 - s)^{2 - \alpha } \big) - E_{2 - \alpha , 1} \big(\lambda (t'_2 - s)^{2 - \alpha } )\big)\big| + L|E_{2 - \alpha , 1} (\lambda )| |t'_2 - t'_1 |\\ < & \frac{\varepsilon }{3}. \end{align*} |
We take \delta = \min\left\{{\delta_1, \delta_2, \delta_3, \delta_4}\right\} . Therefore, for any \varepsilon > 0 , there exists a constant \delta > 0 such that for t'_1, \; t'_2 \in J_k, k = 0, \; 1, \; \cdots, \; m whenever |t'_1-t'_2| < \delta and any u\in \Omega , we can get that
\begin{align*} &{\rm{|}}Tu(t'_1 ) - Tu(t'_2 ){\rm{|}}\\ \leq & \int_0^1 {\big|G(t'_1 , s) - G(t'_2 , s)\big|\big|f(s, u(s), u'(s))}\big| {\rm{d}}s + \big|\varphi _u (t'_1 ) - \varphi _u (t'_2 )\big|\\ &+ \frac{{\big|t'_1 E_{2 - \alpha , 2} (\lambda {t'}_1 ^{2 - \alpha } ) - t'_2 E_{2 - \alpha , 2} (\lambda {t'}_2 ^{2 - \alpha } )\big|}}{{|n_1 + n_2 E_{2 - \alpha , 1} (\lambda )|}}\gamma _{u, 1}\\ \le& L\int_0^1 {\big|G(t'_1 , s) - G(t'_2 , s)\big|} {\rm{d}}s + \big|\varphi _u (t'_1 ) - \varphi _u (t'_2 )\big|\\ &+ \frac{L}{{|n_1 + n_2 E_{2 - \alpha , 1} (\lambda )|}}\big|t'_1 E_{2 - \alpha , 2} (\lambda {t'_1} ^{2 - \alpha } ) - t'_2 E_{2 - \alpha , 2} (\lambda {t'_2 }^{2 - \alpha } )\big|\\ < & \frac{\varepsilon }{2}+\frac{{\Big(m\big(|n_1 | + 2|n_2 |E_{2 - \alpha , 1} (\lambda )\big) + 1\Big)L}}{{|n_1 + n_2 E_{2 - \alpha } (\lambda )|}}\big|t'_1 E_{2 - \alpha , 2} (\lambda {t'_1} ^{2 - \alpha } ) - t'_2 E_{2 - \alpha , 2} (\lambda {t'_2 }^{2 - \alpha } )\big|\\ < &\frac{\varepsilon }{2} + \frac{\varepsilon }{2} = \varepsilon, \end{align*} |
and
\begin{align*} &{\rm{|(}}Tu)'(t'_1 ) - (Tu)'(t'_2 )|\\ = & \Big|\int_0^{t'_1 } {E_{2 - \alpha , 1} \big(\lambda (t'_1 - s)^{2 - \alpha } \big)f\big(s, u(s), u'(s)\big)} {\rm{d}}s - \int_0^{t'_2 } {E_{2 - \alpha , 1} \big(\lambda (t'_2 - s)^{2 - \alpha } \big)f\big(s, u(s), u'(s)\big)} {\rm{d}}s\\ &+ \int_0^1 {\big(G_0 (t'_1 , s) - G_0 (t'_1 , s)\big)f\big(s, u(s), u'(s)\big)} {\rm{d}}s + \varphi '_u (t'_1 ) - \varphi '_u (t'_2 )\\ &+ \frac{{\gamma _{u, 1}}}{{n_1 + n_2 E_{2 - \alpha , 1} (\lambda )}}\big(E_{2 - \alpha , 1} (\lambda {t'}_1 ^{2 - \alpha } ) - E_{2 - \alpha , 1} (\lambda{ t'_2 }^{2 - \alpha } )\big)\Big|\\ \le& \Big|\int_0^{t'_1 } {E_{2 - \alpha , 1} \big(\lambda (t'_1 - s)^{2 - \alpha } \big)f\big(s, u(s), u'(s)\big)} {\rm{d}}s - \int_0^{t'_2 } {E_{2 - \alpha , 1} \big(\lambda (t'_2 - s)^{2 - \alpha } \big)f\big(s, u(s), u'(s)\big)} {\rm{d}}s\Big|\\ & + L\big|G_0 (t'_1 , s) - G_0 (t'_2 , s)\big| + \frac{{\Big(m\big(|n_1 | + 2|n_2 |E_{2 - \alpha , 1} (\lambda )\big) + 1\Big)L}}{{|n_1 + n_2 E_{2 - \alpha } (\lambda )|}}\big|E_{2 - \alpha , 1} (\lambda {t'_1} ^{2 - \alpha } ) - E_{2 - \alpha , 1} (\lambda {t'_2 }^{2 - \alpha } )\big|\\ < & \frac{\varepsilon }{3} + \frac{\varepsilon }{3} + \frac{\varepsilon }{3} = \varepsilon. \end{align*} |
Thus, the operator T(\Omega) is equicontinuous on every interval J_k .
According to the Arzela-Ascoli theorem, T(\Omega) is relatively compact.
Therefore, T:PC^1 (J) \to PC^1 (J) is completely continuous.
In the following, we give out some hypotheses.
(H2) f(t, x_1, y_1) \le f(t, x_2, y_2) if t \in J , x_1\le x_2 , y_1\le y_2\in\mathbb{R} . Furthermore, f(t, x_1, y_1) < f(t, x_2, y_2) if x_1 < x_2 and y_1 \le y_2 .
And for x_1 \le x_2\in\mathbb{R} , I_k (x_1) \le I_k (x_2), \; Q_k (x_1) \le Q_k (x_2), \; k = 1, 2, \cdots, m.
(H3.1) If m_1 + m_2 > 0, \; m_2 < 0, \; n_1 + n_2 E_{2 - \alpha, 1} (\lambda) > 0, \; n_2 < 0 , then for y_1\le y_2 , z_1\le z_2\in\mathbb{R} ,
g_0 (z_2 , y_2 ) - g_0 (z_1 , y_1 ) \ge - m_1 (z_2 - z_1 ) - m_2 (y_2 - y_1 ), |
and
g_1 (z_2 , y_2 ) - g_1 (z_1 , y_1 ) \ge - n_1 (z_2 - z_1 ) - n_2 (y_2 - y_1 ). |
(H3.2) If m_1+ m_2 < 0, \; m_2 > 0, \; n_1+n_2E_{2-\alpha, 1}(\lambda) > 0, \; n_2 < 0 , then for y_1\le y_2 , z_1\le z_2\in\mathbb{R} ,
g_0 (z_2 , y_2 ) - g_0 (z_1 , y_1 ) \le - m_1 (z_2 - z_1 ) - m_2 (y_2 - y_1 ), |
and
g_1 (z_2 , y_2 ) - g_1 (z_1 , y_1 ) \ge - n_1 (z_2 - z_1 ) - n_2 (y_2 - y_1 ). |
(H3.3) If m_1 + m_2 > 0, \; m_2 < 0, \; n_1 + n_2 E_{2 - \alpha, 1} (\lambda) < 0, \; n_2 > 0 , then for y_1\le y_2 , z_1\le z_2\in\mathbb{R} ,
g_0 (z_2 , y_2 ) - g_0 (z_1 , y_1 ) \ge - m_1 (z_2 - z_1 ) - m_2 (y_2 - y_1 ), |
and
g_1 (z_2 , y_2 ) - g_1 (z_1 , y_1 ) \le - n_1 (z_2 - z_1 ) - n_2 (y_2 - y_1 ). |
(H3.4) If m_1 + m_2 < 0, \; m_2 > 0, \; n_1 + n_2 E_{2 - \alpha, 1} (\lambda) < 0, \; n_2 > 0 , then for y_1\le y_2 , z_1\le z_2\in\mathbb{R} ,
g_0 (z_2 , y_2 ) - g_0 (z_1 , y_1 ) \le - m_1 (z_2 - z_1 ) - m_2 (y_2 - y_1 ), |
and
g_1 (z_2 , y_2 ) - g_1 (z_1 , y_1 ) \le - n_1 (z_2 - z_1 ) - n_2 (y_2 - y_1 ). |
Remark. It is easy to see that if one of (H3.1)–(H3.4) holds, then (H1) holds.
Lemma 4.3. For m_i, \; n_i \in\mathbb{R}(i = 1, \; 2) , if one of the following conditions holds, then x(t) \ge 0 and x'(t) \ge 0 for t \in J .
(1) m_1 + m_2 > 0, \; m_2 < 0, \; n_1 + n_2 E_{2 - \alpha, 1} (\lambda) > 0, \; n_2 < 0 and x \in PC^1 (J) satisfies
\left\{ \begin{array}{l} x''(t) - \lambda {}^cD_{0^ + }^\alpha x(t) \ge 0, \;t \in J', \; \\ \Delta x(t)|_{t = t_k } \ge 0, \;k = 1, \;2, \cdots , \;m, \\ \Delta x'(t)|_{t = t_k } \ge 0, \;k = 1, \;2, \cdots , \;m, \\ m_1 x(0) + m_2 x(1) \ge 0, \;n_1 x'(0) + n_2 x'(1) \ge 0. \end{array} \right. |
(2) m_1+m_2 < 0, \; m_2 > 0, \; n_1+n_2E_{2-\alpha, 1}(\lambda) > 0, \; n_2 < 0 and x \in PC^1 (J) satisfies
\left\{ \begin{array}{l} x''(t) - \lambda {}^cD_{0^ + }^\alpha x(t) \ge 0, \;t \in J', \; \\ \Delta x(t)|_{t = t_k } \ge 0, \;k = 1, \;2, \cdots , \;m, \\ \Delta x'(t)|_{t = t_k } \ge 0, \;k = 1, \;2, \cdots , \;m, \\ m_1 x(0) + m_2 x(1) \le 0, \;n_1 x'(0) + n_2 x'(1) \ge 0. \end{array} \right. |
(3) m_1 + m_2 > 0, \; m_2 < 0, \; n_1 + n_2 E_{2 - \alpha, 1} (\lambda) < 0, \; n_2 > 0 and x \in PC^1 (J) satisfies
\left\{ \begin{array}{l} x''(t) - \lambda {}^cD_{0^ + }^\alpha x(t) \ge 0, \;t \in J', \; \\ \Delta x(t)|_{t = t_k } \ge 0, \;k = 1, \;2, \cdots , \;m, \\ \Delta x'(t)|_{t = t_k } \ge 0, \;k = 1, \;2, \cdots , \;m, \\ m_1 x(0) + m_2 x(1) \ge 0, \;n_1 x'(0) + n_2 x'(1) \le 0. \end{array} \right. |
(4) m_1 + m_2 < 0, \; m_2 > 0, \; n_1 + n_2 E_{2 - \alpha, 1} (\lambda) < 0, \; n_2 > 0 and x \in PC^1 (J) satisfies
\left\{ \begin{array}{l} x''(t) - \lambda {}^cD_{0^ + }^\alpha x(t) \ge 0, \;t \in J', \; \\ \Delta x(t)|_{t = t_k } \ge 0, \;k = 1, \;2, \cdots , \;m, \\ \Delta x'(t)|_{t = t_k } \ge 0, \;k = 1, \;2, \cdots , \;m, \\ m_1 x(0) + m_2 x(1) \le 0, \;n_1 x'(0) + n_2 x'(1) \le 0. \end{array} \right. |
Proof. (1) Denote x''(t) - \lambda {}^cD_{0^ + }^\alpha x(t) = h(t), \; \Delta x(t)|_{t = t_k } = p_k, \; \Delta x'(t)|_{t = t_k } = q_k, \; k = 1, \; 2, \cdots, \; m, \; m_1 x(0) + m_2 x(1) = \gamma _0, \; n_1 x'(0) + n_2 x'(1) = \gamma _1. Then h(t) \ge 0, \; p_k \ge 0, \; \; q_k \ge 0, \; k = 1, \; 2, \; \cdots, \; m .
By Lemma 3.1, the following boundary value problem
\left\{ \begin{array}{l} x''(t) - \lambda {}^cD_{0^ + }^\alpha x(t) = h(t), \;t \in J', \\ \Delta x(t)|_{t = t_k } = p_k , \;k = 1, \;2, \cdots , \;m, \\ \Delta x'(t)|_{t = t_k } = q_k , \;k = 1, \;2, \cdots , \;m, \\ m_1 x(0) + m_2 x(1) = \gamma _0 , \;n_1 x'(0) + n_2 x'(1) = \gamma _1, \end{array} \right. |
has a unique solution
x(t) = \int_0^t {G(t, s)h(s){\rm{d}}s} + \varphi (t) + \Big(\frac{{tE_{2 - \alpha , 2} (\lambda t^{2 - \alpha } )}}{{n_1 + n_2 E_{2 - \alpha , 1} (\lambda )}} - \frac{{m_2 E_{2 - \alpha , 2} (\lambda )}}{{(m_1 + m_2 )\big(n_1 + n_2 E_{2 - \alpha , 1} (\lambda )\big)}}\Big)\gamma _1 + \frac{{\gamma _0 }}{{m_1 + m_2 }}, \;t\in J, |
and
x'(t) = \int_0^1 {G'_t (t, s)h(s)} {\rm{d}}s + \varphi '(t) + \frac{{E_{2 - \alpha , 1} (\lambda t^{2 - \alpha } )}}{{n_1 + n_2 E_{2 - \alpha , 1} (\lambda )}}\gamma _1, \;t\in J. |
It's easy to see that x(t) \ge 0 and x'(t) \ge 0 for t \in J .
Similarly, (2)–(4) are easy to be proved.
Lemma 4.4. Suppose (H2) and one of (H3.1)-(H3.4) holds, then T is a strongly increasing operator.
Proof. Here, we will only prove the conclusion when (H3.1) holds, and other situations are similar.
For any u_1, \; u_2 \in PC^1 (J) , and u_1 \prec u_2 which implies that u_1 (t) \le u_2 (t), \; u'_1 (t) \le u'_2 (t) and u_1 (t)\not \equiv u_2 (t) for t\in J . By (H2), for any t \in J ,
\begin{align*} f\big(t, u_2 (t), u'_2 (t)\big) -& f\big(t, u_1 (t), u'_1 (t)\big) \ge 0, \nonumber\\ I_k \big(u_2 (t_k )\big) - I_k \big(u_1 (t_2 )\big) \ge 0, \;&Q_k \big(u_2 (t_k )\big) - Q_k \big(u_2 (t_k )\big) \ge 0. \end{align*} |
Since u_1 (t)\not \equiv u_2 (t) , there exists an interval [a, b] \subset J such that u_1(t) < u_2(t) for t\in [a, b] . It follows from (H2)
\begin{equation} f\big(t, u_2 (t), u'_2 (t)\big)-f\big(t, u_1 (t), u'_1 (t)\big) > 0, t \in [a, b]. \end{equation} | (4.4) |
By (H3.1), we can get that
\begin{align*} \gamma _{u_2 , 0} - \gamma _{u_1 , 0} = &g_0 \big(u_2 (0), u_2 (1)\big) - g_0 \big(u_1 (0), u_1 (1)\big)\nonumber \\ &+(m_1 u_2 (0) + m_2 u_2 (1)) - (m_1 u_1 (0) + m_2 u_1 (1))\nonumber \\ \ge& 0, \\ \gamma _{u_2 , 1} - \gamma _{u_1 , 1} = &g_1 \big(u_2 (0), u_2 (1)\big) - g_1 \big(u_1 (0), u_1 (1)\big)\nonumber \\ &+\big(n_1 u_2 (0) + n_2 u_2 (1)\big) - \big(n_1 u_1 (0)n_2 u_1 (1)\big)\nonumber \\ \ge& 0. \end{align*} |
By (4.2), (4.3), (H3.1) and (H2), we can get that for t\in J ,
\begin{align*} &\varphi _{u_2 } (t) - \varphi _{u_1 } (t)\\ = &\sum\limits_{0 < t_i < t}^{} {\Big(I_i \big(u_2 (t_i )\big) - I_i \big(u_1 (t_i )\big)\Big)} - \frac{{m_2 }}{{m_1 + m_2 }}\sum\limits_{i = 1}^m {\Big(I_i \big(u_2 (t_i )\big) - I_i \big(u_1 (t_i )\big)\Big)}\\ &+ \sum\limits_{0 < t_i < t} {\frac{{tE_{2 - \alpha , 2} (\lambda t^{2 - \alpha } ) - t_i E_{2 - \alpha , 2} (\lambda t_i ^{2 - \alpha } )}}{{E_{2 - \alpha , 1} \big(\lambda t_i ^{2 - \alpha } \big)}}\Big(Q_i \big(u_2 (t_i )\big) - Q_i \big(u_1 (t_i )\big)\Big)}\\ &+ \sum\limits_{i = 1}^m {\Big( - \frac{{m_2 \big(E_{2 - \alpha , 2} (\lambda ) - t_i E_{2 - \alpha , 1} (\lambda t_i^{2 - \alpha } )\big)}}{{(m_1 + m_2 )E_{2 - \alpha , 1} (\lambda t_i ^{2 - \alpha } )}} - \frac{{n_2 E_{2 - \alpha , 1} (\lambda )\big(tE_{2 - \alpha , 2} (\lambda t^{2 - \alpha } )\big)}}{{\big(n_1 + n_2 E_{2 - \alpha , 1} (\lambda )\big)E_{2 - \alpha , 1} (\lambda t_i ^{2 - \alpha } )}}}\\ & + \frac{{m_2 n_2 E_{2 - \alpha , 2} (\lambda )E_{2 - \alpha , 1} (\lambda )}}{{(m_1 + m_2 )\big(n_1 + n_2 E_{2 - \alpha , 1} (\lambda )\big)E_{2 - \alpha , 1} (\lambda t_i^{2 - \alpha } )}}\Big)\Big(Q_i \big(u_2 (t_i )\big) - Q_i \big(u_1 (t_i )\big)\Big)\\ \ge &\sum\limits_{0 < t_i < t}^{} {\Big(I_i \big(u_2 (t_i )\big) - I_i \big(u_1 (t_i )\big)\Big)} - \frac{{m_2 }}{{m_1 + m_2 }}\sum\limits_{i = 1}^m {\Big(I_i \big(u_2 (t_i )\big) - I_i \big(u_1 (t_i )\big)\Big)}\\ &+ \sum\limits_{i = 1}^m {\frac{{m_2 n_2 E_{2 - \alpha , 2} (\lambda )E_{2 - \alpha , 1} (\lambda )}}{{(m_1 + m_2 )\big(n_1 + n_2 E_{2 - \alpha , 1} (\lambda )\big)E_{2 - \alpha , 1} (\lambda )}}\Big(Q_i \big(u_2 (t_i )\big) - Q_i \big(u_1 (t_i )\big)\Big)}\\ \ge& 0, \end{align*} |
and
\begin{align*} &\varphi '_{u_2 } (t) - \varphi '_{u_1 } (t)\nonumber\\ = &\sum\limits_{0 < t_i < t} {\frac{{E_{2 - \alpha , 1} (\lambda t^{2 - \alpha } )}}{{E_{2 - \alpha , 1} (\lambda t_i ^{2 - \alpha } )}}}\Big(Q_i \big(u_2 (t_i )\big) - Q_i \big(u_1 (t_i )\big)\Big)\nonumber\\ &- \sum\limits_{i = 1}^m {\frac{{n_2 E_{2 - \alpha , 1} (\lambda )E_{2 - \alpha , 1} (\lambda t^{2 - \alpha } )}}{{(n_1 + n_2 E_{2 - \alpha , 1} (\lambda ))E_{2 - \alpha , 1} (\lambda t_i^{2 - \alpha } )}}\Big(Q_i \big(u_2 (t_i )\big) - Q_i \big(u_1 (t_i )\big)\Big)}\nonumber\\ \ge& \sum\limits_{0 < t_i < t} {\frac{1}{{E_{2 - \alpha , 1} (\lambda )}}}\Big(Q_i \big(u_2 (t_i )\big) - Q_i \big(u_1 (t_i )\big)\Big)\nonumber\\ &- \sum\limits_{i = 1}^m {\frac{{n_2 E_{2 - \alpha , 1} (\lambda )}}{{\big(n_1 + n_2 E_{2 - \alpha , 1} (\lambda )\big)E_{2 - \alpha , 1} (\lambda )}}\Big(Q_i \big(u_2 (t_i )\big) - Q_i \big(u_1 (t_i )\big)\Big)}\nonumber\\ \ge& 0. \end{align*} |
By Lemma 3.2, (H2) and (4.4), for any u_1, \; u_2 \in PC^1 (J) and u_1 \prec u_2 , as t \in J , we have
\begin{align*} Tu_2 (t) - Tu_1 (t) = &\int_0^1 {G(t, s)\Big(f\big(s, u_2 (s), u'_2 (s)\big) - f\big(s, u_1 (s), u'_1 (s)\big)\Big)} {\rm{d}}s + \big(\varphi _{u_2 } (t) - \varphi _{u_1 } (t)\big)\\ &+ \Big(\frac{{tE_{2 - \alpha , 2} (\lambda t^{2 - \alpha } )}}{{n_1 + n_2 E_{2 - \alpha , 1} (\lambda )}} - \frac{{m_2 E_{2 - \alpha , 2} (\lambda )}}{{(m_1 + m_2 )\big(n_1 + n_2 E_{2 - \alpha , 1} (\lambda )\big)}}\Big)(\gamma _{u_2 , 1} - \gamma _{u_1 , 1} )\\ &+\frac{{\gamma _{u_2 , 0} - \gamma _{u_1 , 0} }}{{m_1 + m_2 }}\\ \ge& \int_a^b {G(0, s)\Big(f\big(s, u_2 (s), u'_2 (s)\big) - f\big(s, u_1 (s), u'_1 (s)\big)\Big)} {\rm{d}}s\\ > & 0, \end{align*} |
and
\begin{align*} (Tu_2 )'(t) - (Tu_1 )'(t) = &\int_0^1 {G'_t (t, s)\Big(f\big(s, u_2 (s), u'_2 (s)\big) - f\big(s, u_1 (s), u'_1 (s)\big)\Big)} {\rm{d}}s + \big(\varphi '_{u_2 } (t) - \varphi '_{u_1 } (t)\big)\\ &+ \frac{{E_{2 - \alpha , 1} (\lambda t^{2 - \alpha } )}}{{n_1 + n_2 E_{2 - \alpha , 1} (\lambda )}}(\gamma _{u_2 , 1} - \gamma _{u_1 , 1} )\\ \ge &\int_a^b {G'_t (0, s)\Big(f\big(s, u_2 (s), u'_2 (s)\big) - f\big(s, u_1 (s), u'_1 (s)\big)\Big)} {\rm{d}}s\\ > &0. \end{align*} |
Thus,
Tu_2 - Tu_1 \in\mathring {P} |
which implies that T is a strongly increasing operator.
The proof is completed.
Theorem 4.5. If (H2) and (H3.1) hold, there exist z_i, \; y_i\in PC^1 (J), \; i = 1, \; 2 , with z_1 \prec y_1 \prec z_2 \prec y_2 such that
\begin{align} \left\{ \begin{array}{l} z''_i (t) - \lambda {}^cD_{0^ + }^\alpha z_i (t) \le f\big(t, z_i (t), z'_i (t)\big), \;t \in J', \; \\ \Delta z_i (t)|_{t = t_k } \le I_k \big(z_i (t_k )\big), \;k = 1, \;2, \cdots , \;m, \\ \Delta z'_i (t)|_{t = t_k } \le Q_k \big(z_i (t_k )\big), \;k = 1, \;2, \cdots , \;m, \\ g_0 \big(z_i (0), z_i (1)\big) \ge 0, \;g_1 \big(z'_i (0), z'_i (1)\big) \ge 0, \end{array} \right. \end{align} | (4.5) |
and
\begin{align} \left\{ \begin{array}{l} y''_i (t) - \lambda {}^cD_{0^ + }^\alpha y_i (t) \ge f\big(t, y_i (t), y'_i (t)\big), \;t \in J', \; \\ \Delta y_i (t)|_{t = t_k } \ge I_k \big(y_i (t_k )\big), \;k = 1, \;2, \cdots , \;m, \\ \Delta y'_i (t)|_{t = t_k } \ge Q_k \big(y_i (t_k )\big), \;k = 1, \;2, \cdots , \;m, \\ g_0 \big(y_i (0), y_i (1)\big) \le 0, \;g_1 \big(y'_i (0), y'_i (1)\big) \le 0, \end{array} \right. \end{align} | (4.6) |
where i = 1, 2 , z_2 and y_1 are not the solutions of boundary value problem (1.1). Then boundary value problem (1.1) has at least three distinct solutions x_1, \; x_2, \; x_3 \in [z_1, \; y_2] and satisfies
z_1 (t) \le x_1 (t) < y_1 (t), \;z_2 (t) < x_2 (t) \le y_2 (t), \;z_2 (t)\not \le x_2 (t)\not \le y_1 (t), \;t \in J. |
Proof. By Lemma 4.2 and Lemma 4.4, we can get that T:[z_1, y_2] \to PC^1(J) is a completely continuous strongly increasing operator.
By the definition of operator T , we can show that
\begin{align*} \left\{ \begin{array}{l} (Tz_1 )''(t) - \lambda {}^cD_{0^ + }^\alpha (Tz_1 )(t) = f\big(t, z_1 (t), z'_1 (t)\big), t \in J', \; \\ \Delta (Tz_1 )(t)|_{t = t_k } = I_k \big(z_1 (t_k )\big), \;k = 1, \;2, \cdots , \;m, \\ \Delta (Tz_1 )'(t)|_{t = t_k } = Q_k \big(z_1 (t_k )\big), \;k = 1, \;2, \cdots , \;m, \\ m_1 (Tz_1 )(0) + m_2 (Tz_1 )(1) = g_0 \big(z_1 (0), z_1 (1)\big) + m_1 z_1 (0) + m_2 z_1 (1), \; \\ n_1 (Tz_1 )'(0) + n_2 (Tz_1 )'(1) = g_1 \big(z'_1 (0), z'_1 (1)\big) + n_1 z'_1 (0) + n_2 z'_1 (1). \end{array} \right. \end{align*} |
Let x = Tz_1-z_1 . By (4.5),
\begin{align*} x''(t) - \lambda {}^cD_{0^ + }^\alpha x(t) & = \big((Tz_1 )''(t) - z''_1 (t)\big) - \lambda \big({}^cD_{0^ + }^\alpha (Tz_1 )(t) - {}^cD_{0^ + }^\alpha z_1 (t)\big)\\ & = \;\big((Tz_1 )''(t) - \lambda {}^cD_{0^ + }^\alpha (Tz_1 )(t)\big) - \big(z''_1 (t) - \lambda {}^cD_{0^ + }^\alpha z_1 (t)\big) \\ & = f\big(t, z_1 (t), z'_1 (t)\big) - \big(z''_1 (t) - \lambda {}^cD_{0^ + }^\alpha z_1 (t)\big) \\ &\ge 0, \;t \in J'. \end{align*} |
\begin{align*} \Delta x(t)|_{t = t_k } = \Delta Tz_1 (t)|_{t = t_k } - \Delta z_1 (t)|_{t = t_k } = I_k \big(z_1 (t_k )\big) - \Delta z_1 (t)|_{t = t_k } \ge 0.\\ \Delta x'(t)|_{t = t_k } = \Delta (Tz_1 )'(t)|_{t = t_k } - \Delta z'_1 (t)|_{t = t_k } = Q_k \big(z_1 (t_k )\big) - \Delta z'_1 (t)|_{t = t_k } \ge 0. \end{align*} |
\begin{align*} m_1 x(0) + m_2 x(1) & = m_1 \big((Tz_1 )(0) - z_1 (0)\big) + m_2 \big((Tz_1 )(1) - z_1 (1)\big)\\ & = m_1 \big((Tz_1 )(0) + m_2 (Tz_1 )(1)\big) - \big(m_1 z_1 (0) + m_2 z_1 (1)\big)\\ & = g_0 \big(z_1 (0), z_1 (1)\big) + \big(m_1 z_1 (0) + m_2 z_1 (1)\big) - \big(m_1 z_1 (0) + m_2 z_1 (1)\big)\\ & = g_0 \big(z_1 (0), z_1 (1)\big)\\ &\ge 0. \end{align*} |
Similarly, we can get that
n_1 x'(0) + n_2 x'(1)\ge 0. |
By (1) in Lemma 4.3, we have
x(t) = (Tz_1 )(t) - z_1 (t) \ge 0, \;x'(t) = (Tz_1 )'(t) - z'_1 (t) \ge 0, \;t\in J. |
Therefore, z_1 \underline \prec Tz_1 .
It is similar that we can obtain z_2 \underline \prec Tz_2 . Because z_2 is not the solution of boundary value problem (1.1), then Tz_2 \ne z_2 . Thus, z_2 \prec Tz_2 .
By using the same method, we can easily get Ty_1 \prec y_1, \; Ty_2 \underline \prec y_2 .
By using Lemma 2.6, we can get that the operator T has at least three distinct fixed points x_1, \; x_2, \; x_3 \in [z_1, \; y_2] , and satisfies
z_1 \underline \prec x_1 \prec \prec y_1 , \;z_2 \prec \prec x_2 \underline \prec y_2 , \;z_2 \underline {\not \prec } x_3 \underline {\not \prec } y_1. |
Therefore, by Lemma 4.1, we can obtain that boundary value problem (1.1) has at least three distinct solutions x_1, \; x_2, \; x_3 \in [z_1, \; y_2] , and
z_1 (t) \le x_1 (t) < y_1 (t), \;z_2 (t) < x_2 (t) \le y_2 (t), \;z_2 (t)\not \le x_2 (t)\not \le y_1 (t), \;t \in J. |
The proof is completed.
In the similar way, the following three theorems can be established.
Theorem 4.6. If (H2) and (H3.2) hold, there exist z_i, \; y_i\in PC^1 (J), \; i = 1, \; 2 , with z_1 \prec y_1 \prec z_2 \prec y_2 such that
\begin{align*} \left\{ \begin{array}{l} z''_i (t) - \lambda {}^cD_{0^ + }^\alpha z_i (t) \le f\big(t, z_i (t), z'_i (t)\big), \;t \in J', \; \\ \Delta z_i (t)|_{t = t_k } \le I_k \big(z_i (t_k )\big), \;k = 1, \;2, \cdots , \;m, \\ \Delta z'_i (t)|_{t = t_k } \le Q_k \big(z_i (t_k )\big), \;k = 1, \;2, \cdots , \;m, \\ g_0 \big(z_i (0), z_i (1)\big) \le 0, \;g_1 \big(z'_i (0), z'_i (1)\big) \ge 0, \end{array} \right. \end{align*} |
and
\begin{align*} \left\{ \begin{array}{l} y''_i (t) - \lambda {}^cD_{0^ + }^\alpha y_i (t) \ge f\big(t, y_i (t), y'_i (t)\big), \;t \in J', \; \\ \Delta y_i (t)|_{t = t_k } \ge I_k \big(y_i (t_k )\big), \;k = 1, \;2, \cdots , \;m, \\ \Delta y'_i (t)|_{t = t_k } \ge Q_k \big(y_i (t_k )\big), \;k = 1, \;2, \cdots , \;m, \\ g_0 \big(y_i (0), y_i (1)\big) \ge 0, \;g_1 \big(y'_i (0), y'_i (1)\big) \le 0, \end{array} \right. \end{align*} |
where i = 1, 2 , z_2 and y_1 are not the solutions of boundary value problem (1.1). Then the boundary value problem (1.1) has at least three distinct solutions x_1, \; x_2, \; x_3 \in [z_1, \; y_2] and satisfies
z_1 (t) \le x_1 (t) < y_1 (t), \;z_2 (t) < x_2 (t) \le y_2 (t), \;z_2 (t)\not \le x_2 (t)\not \le y_1 (t), \;t \in J. |
Theorem 4.7. If (H2) and (H3.3) hold, there exist z_i, \; y_i\in PC^1 (J), \; i = 1, \; 2 , with z_1 \prec y_1 \prec z_2 \prec y_2 such that
\begin{align*} \left\{ \begin{array}{l} z''_i (t) - \lambda {}^cD_{0^ + }^\alpha z_i (t) \le f\big(t, z_i (t), z'_i (t)\big), \;t \in J', \; \\ \Delta z_i (t)|_{t = t_k } \le I_k \big(z_i (t_k )\big), \;k = 1, \;2, \cdots , \;m, \\ \Delta z'_i (t)|_{t = t_k } \le Q_k \big(z_i (t_k )\big), \;k = 1, \;2, \cdots , \;m, \\ g_0 \big(z_i (0), z_i (1)\big) \ge 0, \;g_1 \big(z'_i (0), z'_i (1)\big) \le 0, \end{array} \right. \end{align*} |
and
\begin{align*} \left\{ \begin{array}{l} y''_i (t) - \lambda {}^cD_{0^ + }^\alpha y_i (t) \ge f\big(t, y_i (t), y'_i (t)\big), \;t \in J', \; \\ \Delta y_i (t)|_{t = t_k } \ge I_k \big(y_i (t_k )\big), \;k = 1, \;2, \cdots , \;m, \\ \Delta y'_i (t)|_{t = t_k } \ge Q_k \big(y_i (t_k )\big), \;k = 1, \;2, \cdots , \;m, \\ g_0 \big(y_i (0), y_i (1)\big) \le 0, \;g_1 \big(y'_i (0), y'_i (1)\big) \ge 0, \end{array} \right. \end{align*} |
where i = 1, 2 , z_2 and y_1 are not the solutions of boundary value problem (1.1). Then the boundary value problem (1.1) has at least three distinct solutions x_1, \; x_2, \; x_3 \in [z_1, \; y_2] and satisfies
z_1 (t) \le x_1 (t) < y_1 (t), \;z_2 (t) < x_2 (t) \le y_2 (t), \;z_2 (t)\not \le x_2 (t)\not \le y_1 (t), \;t \in J. |
Theorem 4.8. If (H2) and (H3.4) hold, there exist z_i, \; y_i\in PC^1 (J), \; i = 1, \; 2 , with z_1 \prec y_1 \prec z_2 \prec y_2 such that
\begin{align*} \left\{ \begin{array}{l} z''_i (t) - \lambda {}^cD_{0^ + }^\alpha z_i (t) \le f\big(t, z_i (t), z'_i (t)\big), \;t \in J', \; \\ \Delta z_i (t)|_{t = t_k } \le I_k \big(z_i (t_k )\big), \;k = 1, \;2, \cdots , \;m, \\ \Delta z'_i (t)|_{t = t_k } \le Q_k \big(z_i (t_k )\big), \;k = 1, \;2, \cdots , \;m, \\ g_0 \big(z_i (0), z_i (1)\big) \le 0, \;g_1 \big(z'_i (0), z'_i (1)\big) \le 0, \end{array} \right. \end{align*} |
and
\begin{align*} \left\{ \begin{array}{l} y''_i (t) - \lambda {}^cD_{0^ + }^\alpha y_i (t) \ge f\big(t, y_i (t), y'_i (t)\big), \;t \in J', \; \\ \Delta y_i (t)|_{t = t_k } \ge I_k \big(y_i (t_k )\big), \;k = 1, \;2, \cdots , \;m, \\ \Delta y'_i (t)|_{t = t_k } \ge Q_k \big(y_i (t_k )\big), \;k = 1, \;2, \cdots , \;m, \\ g_0 \big(y_i (0), y_i (1)\big) \ge 0, \;g_1 \big(y'_i (0), y'_i (1)\big) \ge 0, \end{array} \right. \end{align*} |
where i = 1, 2 , z_2 and y_1 are not the solutions of boundary value problem (1.1). Then the boundary value problem (1.1) has at least three distinct solutions x_1, \; x_2, \; x_3 \in [z_1, \; y_2] and satisfies
z_1 (t) \le x_1 (t) < y_1 (t), \;z_2 (t) < x_2 (t) \le y_2 (t), \;z_2 (t)\not \le x_2 (t)\not \le y_1 (t), \;t \in J. |
In this section, we discuss the applicability of our main results.
Consider the following the boundary value problem
\begin{align} \left\{ \begin{array}{l} x''(t) - \frac{1}{{100}}{}^cD_{0^ + }^{\frac{1}{2}} x(t) = \frac{{2t^3 }}{\pi }\arctan (x(t)+x'(t)), \;t\in (0, \frac{1}{2})\cup(\frac{1}{2}, 1), \\ \Delta x(t)|_{t = \frac{1}{2}} = \frac{1}{2}x(\frac{1}{2}), \;\Delta x'(t)|_{t = \frac{1}{2}} = \frac{1}{209}x(\frac{1}{2}), \\ - \cos (2\pi x(0)) + 0.02x(1) - 0.52 = 0, \\ - 6\pi \cos (\pi x'(0)) +\pi x'(1) - 6\pi = 0, \end{array} \right. \end{align} | (5.1) |
where \alpha = \frac{1}{2}, \; \lambda = \frac{1}{{100}}, \; f(t, x, y) = \frac{{2t^3 }}{\pi }\arctan (x+y), \; I_1 (x) = \frac{1}{2}x, \; Q_1 (x) = \frac{1}{209}x .
\begin{align*} g_0(x, y) = -\cos (2\pi x)+0.02y-0.52, \;g_1(x, y) = -6\pi\cos(\pi x)+\pi y-6\pi. \end{align*} |
Obviously, f \in C([0, 1] \times \mathbb{R}^2, \mathbb{R}), \; I_1, \; Q_1 \in C(\mathbb{R}, \mathbb{R}), \; g_0, \; g_1 \in C(\mathbb{R}^2, \mathbb{R}) are nonlinear functions. And f, \; I_1, \; Q_1 satisfy (H2).
Let m_1 = 2\pi, \; m_2 = -0.02, \; n_1 = 6\pi, \; n_2 = -\pi . Since
\begin{align*} g_0 (x_2 , y_2 ) - g_0 (x_1 , y_1 ) & = - \cos (2\pi x_2 ) + \cos (2\pi x_1 ) + 0.02(y_2 - y_1 ) \\ &\ge - 2\pi (x_2 - x_1 ) + 0.02(y_2 - y_1 ), \\ g_1 (x_2 , y_2 ) - g_1 (x_1 , y_1 )& = - 6\pi \cos (\pi x_2 ) + 6\pi \cos (\pi x_1 ) + \pi (y_2 - y_1 ) \\ &\ge - 6\pi (x_2 - x_1 ) + \pi (y_2 - y_1 ), \end{align*} |
then g_0, \; g_1 satisfy (H3.1).
For t \in [0, 1] , we take
\begin{align*} z_1 (t) = \left\{ \begin{array}{l} \frac{3}{2} + t, \;t \in [0, \;\frac{1}{2}], \\ 2 + t, \;t \in (\frac{1}{2}, \;1], \end{array} \right. y_1 (t) = \left\{ \begin{array}{l} 4 +\frac{3}{2}t + \frac{1}{8}t^2 + \frac{1}{4}t^4 , \;t \in [0, \;\frac{1}{2}], \\ 9 +\frac{3}{2}t+ \frac{1}{6}t^2 + \frac{1}{4}t^4 , \;t \in (\frac{1}{2}, \;1], \end{array} \right. \end{align*} |
\begin{align*} z_2 (t) = \left\{ \begin{array}{l} \frac{{23}}{2} + 3t, \;t \in [0, \;\frac{1}{2}], \\ 12 + 3t, \;t \in (\frac{1}{2}, \;1], \end{array} \right. y_2 (t) = \left\{ \begin{array}{l} 16+\frac{7}{2}t+ \frac{2}{5}t^2 + \frac{1}{6}t^4 , \;t \in [0, \;\frac{1}{2}], \\ 33 +\frac{7}{2}t+ \frac{3}{4}t^2 + \frac{1}{6}t^4 , \;t \in (\frac{1}{2}, \;1]. \end{array} \right. \end{align*} |
We can easily get that
\begin{align*} z''_1 (t) - \frac{1}{{100}}{}^cD_{0^ + }^{\frac{1}{2}} z_1 (t) - \frac{{2t^3 }}{\pi }\arctan (z_1 (t) + z'_1 (t)) = \left\{ \begin{array}{l} - \frac{{\sqrt t }}{{50\sqrt \pi }} - \frac{{2t^3 \arctan (\frac{5}{2} + t)}}{\pi } < 0, \;t \in (0, \frac{1}{2}), \\ - \frac{{\sqrt t }}{{50\sqrt \pi }} - \frac{{2t^3 \arctan (3 + t)}}{\pi } < 0, \;t \in (\frac{1}{2}, 1), \end{array} \right. \end{align*} |
\begin{align*} &y''_1 (t) - \frac{1}{{100}}{}^cD_{0^ + }^{\frac{1}{2}} y_1 (t) - \frac{{2t^3 }}{\pi }\arctan (y_1 (t) + y'_1 (t))\\ {\rm{ = }}&\left\{ \begin{array}{l} \frac{1}{4} + 3t^2 - \frac{{\sqrt t (315 + 35t + 96t^3 )}}{{10500\sqrt \pi }} - \frac{{2t^3 \arctan (\frac{{11}}{2} + \frac{{7t}}{4} + \frac{{t^2 }}{8} + t^3 + \frac{{t^4 }}{4})}}{\pi } > 0, \;\;t \in [0, \frac{1}{2}], \\ \frac{{84000\sqrt \pi \sqrt t (1 + 9t^2 ) - 7560t - 840t^2 - 2304t^4 - 35\sqrt 2 \big(\sqrt {t(2t - 1)} + 4\sqrt {t^3 (2t - 1)} \big)}}{{252000\sqrt \pi \sqrt t }}\\ \;\;\;- \frac{{2t^3 \arctan (\frac{{21}}{2} +\frac{11t}{6} + \frac{{t^2 }}{6} + t^3 + \frac{{t^4 }}{4})}}{\pi } > 0, \;\;t \in (\frac{1}{2}, 1], \end{array} \right. \end{align*} |
\begin{align*} z''_2 (t) - \frac{1}{{100}}{}^cD_{0^ + }^{\frac{1}{2}} z_2 (t) - \frac{{2t^3 }}{\pi }\arctan (z_2 (t) + z'_2 (t)) = \left\{ \begin{array}{l} - \frac{{3\sqrt t }}{{50\sqrt \pi }} - \frac{{2t^3 \arctan (\frac{{29}}{2} + 3t)}}{\pi } < 0, \;t \in (0, \frac{1}{2}), \\ - \frac{{3\sqrt t }}{{50\sqrt \pi }} - \frac{{2t^3 \arctan (15 + 3t)}}{\pi } < 0, \;t \in (\frac{1}{2}, 1), \end{array} \right. \end{align*} |
and
\begin{align*} &y''_2 (t) - \frac{1}{{100}}{}^cD_{0^ + }^{\frac{1}{2}} y_2 (t) - \frac{{2t^3 }}{\pi }\arctan (y_2 (t) + y'_2 (t))\\ {\rm{ = }}&\left\{ \begin{array}{l} \frac{4}{5} + 2t^2 - \frac{{\sqrt t (735 + 112t + 64t^3 )}}{{10500\sqrt \pi }} - \frac{{2t^3 \arctan (\frac{{39}}{2} + \frac{{43t}}{{10}} + \frac{{2t^2 }}{5} + \frac{{2t^3 }}{3} + \frac{{t^4 }}{6})}}{\pi } > 0, \;\;t \in [0, \frac{1}{2}], \\ \frac{{21000\sqrt \pi \sqrt t (3 + 4t^2 )-2940t - 448t^2 - 256t^4 - 49\sqrt 2 \big(\sqrt {t(2t - 1)} + 4\sqrt {t^3 (2t - 1)} \big)}}{{42000\sqrt \pi \sqrt t }} \\ \;\;\;- \frac{{2t^3 \arctan (\frac{{73}}{2} + 5t + \frac{{3t^2 }}{4} + \frac{{2t^3 }}{3} + \frac{{t^4 }}{6})}}{\pi } > 0, \;\;t \in (\frac{1}{2}, 1]. \end{array} \right. \end{align*} |
So
\begin{align*} \left\{ \begin{array}{l} z''_1 (t) - \frac{1}{{100}}{}^cD_{0^ + }^{\frac{1}{2}} z_1 (t) < \frac{{2t^3 }}{\pi }\arctan (z_1 (t) + z'_1 (t)), \; t\in(0, \frac{1}{2})\cup(\frac{1}{2}, 1), \\ \Delta z_1 (t)|_{t = \frac{1}{2}} = z_1 (\frac{1}{2}^ + ) - z_1 (\frac{1}{2}^ - ) = \frac{1}{2} < \frac{1}{2} z_1 (\frac{1}{2}) = 1, \\ \Delta z'_1 (t)|_{t = \frac{1}{2}} = z'_1 (\frac{1}{2}^ + ) - z'_1 (\frac{1}{2}^ - ) = 0 < \frac{1}{209}z_1 (\frac{1}{2}) = \frac{2}{209}, \\ - \cos (2\pi z_1 (0)) + 0.02z_1 (1) - 0.52 > 0, \\ - 6\pi \cos (\pi z'_1 (0)) + \pi z'_1 (1) - 6\pi > 0, \end{array} \right. \end{align*} |
\begin{align*} \left\{ \begin{array}{l} y''_1 (t) - \frac{1}{{100}}{}^cD_{0^ + }^{\frac{1}{2}} y_1 (t) > \frac{{2t^3 }}{\pi }\arctan (y_1 (t) + y'_1 (t)), \; t\in(0, \frac{1}{2})\cup(\frac{1}{2}, 1), \\ \Delta y_1 (t)|_{t = \frac{1}{2}} = y_1 (\frac{1}{2}^ + ) - y_1 (\frac{1}{2}^ - ) = \frac{481}{96} > \frac{1}{2}y_1 (\frac{1}{2}) = \frac{307}{128}, \\ \Delta y'_1 (t)|_{t = \frac{1}{2}} = y'_1 (\frac{1}{2}^ + ) - y'_1 (\frac{1}{2}^ - ) = \frac{1}{24} > \frac{1}{209}y_1 (\frac{1}{2}) = \frac{307}{13376}, \\ - \cos (2\pi y_1 (0)) + 0.02y_1 (1) - 0.52 < 0, \\ - 6\pi \cos (\pi y'_1 (0)) + \pi y'_1 (1) - 6\pi < 0, \end{array} \right. \end{align*} |
\begin{align*} \left\{ \begin{array}{l} z''_2 (t) - \frac{1}{{100}}{}^cD_{0^ + }^{\frac{1}{2}} z_2 (t) < \frac{{2t^3 }}{\pi }\arctan (z_2 (t) + z'_2 (t)), \; t\in(0, \frac{1}{2})\cup(\frac{1}{2}, 1), \\ \Delta z_2 (t)|_{t = \frac{1}{2}} = z_2 (\frac{1}{2}^ + ) - z_2 (\frac{1}{2}^ - ) = \frac{1}{2} < \frac{1}{2} z_2 (\frac{1}{2}) = \frac{13}{2}, \\ \Delta z'_2 (t)|_{t = \frac{1}{2}} = z'_2 (\frac{1}{2}^ + ) - z'_2 (\frac{1}{2}^ - ) = 0 < \frac{1}{209}z_2 (\frac{1}{2}) = \frac{13}{209}, \\ - \cos (2\pi z_2 (0)) + 0.02z_2 (1) - 0.52 > 0, \\ - 6\pi \cos (\pi z'_2 (0)) + \pi z'_2 (1) - 6\pi > 0 \end{array} \right. \end{align*} |
and
\begin{align*} \left\{ \begin{array}{l} y''_2 (t) - \frac{1}{{100}}{}^cD_{0^ + }^{\frac{1}{2}} y_2 (t) > \frac{{2t^3 }}{\pi }\arctan (y_2 (t) + y'_2 (t)), \; t\in(0, \frac{1}{2})\cup(\frac{1}{2}, 1), \\ \Delta y_2 (t)|_{t = \frac{1}{2}} = y_2 (\frac{1}{2}^ + ) - y_2 (\frac{1}{2}^ - ) = \frac{1367}{80} > \frac{1}{2}y_2 (\frac{1}{2}) = \frac{8573}{960}, \\ \Delta y'_2 (t)|_{t = \frac{1}{2}} = y'_2 (\frac{1}{2}^ + ) - y'_2 (\frac{1}{2}^ - ) = \frac{7}{20} > \frac{1}{209}y_2 (\frac{1}{2}) = \frac{8573}{100320}, \\ - \cos (2\pi y_2 (0)) + 0.02y_2 (1) - 0.52 < 0, \\ - 6\pi \cos (\pi y'_2 (0)) + \pi y'_2 (1) - 6\pi < 0. \end{array} \right. \end{align*} |
We can easily get that z_1 (t), \; z_2 (t) satisfy (4.5) and y_1 (t), \; y_2 (t) satisfy (4.6) with z_1 \prec y_1 \prec z_2 \prec y_2 .
The conditions of Theorem 4.5 are all satisfied. So by Theorem 4.5, the boundary value problem (5.1) has at least three distinct solutions x_1, \; x_2, \; x_3 \in [z_1, y_2], and moreover,
z_1 (t) \le x_1 (t) < y_1 (t), \;z_2 (t) < x_2 (t) \le y_2 (t), \;z_2 (t)\not \le x_3 (t)\not \le y_1 (t), \;t \in [0, 1]. |
In this work, we investigate the existence of solutions for a class of second order impulsive vibration equation with fractional derivatives. Some sufficient conditions for existence of the multiplicity solutions are established by applying monotone iterative technique. Finally, a concrete example is given to illustrate the wide range of potential applications of our main results.
Further extensions of this paper are to study the motion state of the vibrator in the system described by boundary value problem (1.1) and the existence of solutions to the boundary value problems with other boundary conditions. Moreover, fractional differential equation models such as the rheological model of the fractional derivative and singular systems model of fractional differential equations have real world applications. So, we also can consider using the boundary value problem of impulsive differential equations to simulate the abrupt changes in the systems described by these models.
The authors would like to thank college mathematics characteristic pilot team of University of Shanghai for science and technology for its support to this project.
The authors declare that they have no conflicts of interest.
[1] |
A. Arshad, S. Kamal, J. Fahd, Existence and stability analysis to a coupled system of implicit type impulsive boundary value problems of fractional-order differential equations, Adv. Differ. Equ., 2019 (2019), 1–21. doi: 10.1186/s13662-018-1939-6
![]() |
[2] |
H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620–709. doi: 10.1137/1018114
![]() |
[3] | Z. Bai, Z. Du, S. Zhang, Iterative method for a class of fourth-order p-Laplacian beam equation, J. Appl Anal. Comput., 9 (2019), 1443–1453. |
[4] |
C. Promsakon, E. Suntonsinsoungvon, S. K. Ntouyas, J. Tariboon, Impulsive boundary value problems containing Caputo fractional derivative of a function with respect to another function, Adv. Differ. Equ., 2019 (2019), 1–17. doi: 10.1186/s13662-018-1939-6
![]() |
[5] |
J. Cao, H. Chen, Impulsive fractional differential equations with nonlinear boundary conditions, Math. Comp. Model., 55 (2012), 303–311. doi: 10.1016/j.mcm.2011.07.037
![]() |
[6] | I. Dassios, D. Baleanu, Caputo and related fractional derivatives in singular systems, Appl. Math. Comput., 337 (2018), 591–606. |
[7] | S. Dhar, Q. Kong, M. McCabe, Fractional boundary value problems and Lyapunov-type inequalities with fractional integral boundary conditions, Electron. J. Qual. Theo., 2016 (2016), |
[8] | K. Diethelm, The analysis of fractional differential equations, Spring-Verlag Berlin, Heidelberg, 2010. |
[9] |
M. Feckan, Y. Zhou, J. R. Wang, On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci., 17 (2012), 3050–3060. doi: 10.1016/j.cnsns.2011.11.017
![]() |
[10] | D. Guo, J. Sun, Z. Liu, Nonlinear ordinary differential equation functional method, Shandong Science and Technology Press, Jinan (in Chinese), 2005. |
[11] | Z. Gao, T. Hu, H. Pang, Existence and uniqueness theorems for a fractional differential equation with impulsive effect under Band-Like integral boundary conditions, Adv. Math. Phys., 2020 (2020), 1–8. |
[12] | M. Jia, X. Liu, Multiplicity of solutions for integral boundary value problems of fractional differential equations with upper and lower solutions, Appl. Math. Comput., 232 (2014), 313–323. |
[13] |
M. Jia, L. Li, X. Liu, J. Song, Z. Bai, A class of nonlocal problems of fractional differential equations with composition of derivative and parameters, Adv. Differ. Equ., 2019 (2019), 1–26. doi: 10.1186/s13662-018-1939-6
![]() |
[14] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier Science, 2006. |
[15] | M. Lázaro, J. L. Pérez-Aparicio, Dynamic analysis of frame structures with free viscoelastic layers: New closed-form solutions of eigenvalues and a viscous approach, Eng. Struct., 54 (2013), 69–81. |
[16] |
R. Lewandowski, Z. Pawlak, Dynamic analysis of frames with viscoelastic dampers modelled by rheological models with fractional derivatives, J. Sound Vib., 330 (2011), 923–936. doi: 10.1016/j.jsv.2010.09.017
![]() |
[17] | X. Liu, M. Jia, Solvability and numerical simulations for BVPs of fractional coupled systems involving left and right fractional derivatives, Appl. Math. Comput., 353 (2019), 230–242. |
[18] |
X. Liu, M. Jia, W. Ge, The method of lower and upper solutions for mixed fractional four-point boundary value problem with p-Laplacian operator, Appl. Math. Lett., 65 (2017), 56–62. doi: 10.1016/j.aml.2016.10.001
![]() |
[19] |
X. Liu, M. Jia, The method of lower and upper solutions for the general boundary value problems of fractional differential equations with p-Laplacian, Adv. Differ. Equ., 2018 (2018), 1–15. doi: 10.1186/s13662-017-1452-3
![]() |
[20] | I. Podluny, Fractional differential equtions, Academic press, San Diego, 1999. |
[21] | T. Sandev, R. Metzler, Z. Tomovski, Correlation functions for the fractional generalized Langevin equation in the presence of internal and external noise, J. Math. Phys., 55 (2014), 1–23. |
[22] |
P. J. Torvik, R. L. Bagley, On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech., 51 (1984), 294–298. doi: 10.1115/1.3167615
![]() |
[23] |
A. Ullah, K. Shah, T. Abdeljawad, R. A. Khan, I. Mahariq, Study of impulsive fractional differential equation under Robin boundary conditions by topological degree method, Bound. Value Probl., 2020 (2020), 1–17. doi: 10.1186/s13661-019-01311-5
![]() |
[24] |
B. S. Vadivoo, R. Ramachandran, J. Cao, H. Zhang, X. Li, Controllability analysis of nonlinear neutral-type fractional-order differential systems with state delay and impulsive effects, Int. J. Control. Autom., 16 (2018), 659–669. doi: 10.1007/s12555-017-0281-1
![]() |
[25] |
B. Zhu, L. Liu, Y. Wu, Existence and uniqueness of global mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay, Comput. Math. Appl., 78 (2019), 1811–1818. doi: 10.1016/j.camwa.2016.01.028
![]() |
[26] | T. Zhang, L. Xiong, Periodic motion for impulsive fractional functional differential equations with piecewise Caputo derivative, Appl. Math. Lett., 101 (2020), 1–7. |