Citation: Gashaw Beyene Kassahun. Effect of spacer on size dependent plasmonic properties of triple layered spherical core-shell nanostructure[J]. AIMS Materials Science, 2020, 7(6): 788-799. doi: 10.3934/matersci.2020.6.788
[1] | Qiuxia Hu, Bilal Khan, Serkan Araci, Mehmet Acikgoz . New double-sum expansions for certain Mock theta functions. AIMS Mathematics, 2022, 7(9): 17225-17235. doi: 10.3934/math.2022948 |
[2] | Suxia Wang, Tiehong Zhao . New refinements of Becker-Stark inequality. AIMS Mathematics, 2024, 9(7): 19677-19691. doi: 10.3934/math.2024960 |
[3] | Zhenhua Su, Zikai Tang, Hanyuan Deng . Higher-order Randić index and isomorphism of double starlike trees. AIMS Mathematics, 2023, 8(12): 31186-31197. doi: 10.3934/math.20231596 |
[4] | Waleed Mohamed Abd-Elhameed, Youssri Hassan Youssri . Spectral tau solution of the linearized time-fractional KdV-Type equations. AIMS Mathematics, 2022, 7(8): 15138-15158. doi: 10.3934/math.2022830 |
[5] | Tie-Hong Zhao, Zai-Yin He, Yu-Ming Chu . On some refinements for inequalities involving zero-balanced hypergeometric function. AIMS Mathematics, 2020, 5(6): 6479-6495. doi: 10.3934/math.2020418 |
[6] | Mustafa Inc, Mamun Miah, Akher Chowdhury, Shahadat Ali, Hadi Rezazadeh, Mehmet Ali Akinlar, Yu-Ming Chu . New exact solutions for the Kaup-Kupershmidt equation. AIMS Mathematics, 2020, 5(6): 6726-6738. doi: 10.3934/math.2020432 |
[7] | Aslıhan ILIKKAN CEYLAN, Canan HAZAR GÜLEÇ . A new double series space derived by factorable matrix and four-dimensional matrix transformations. AIMS Mathematics, 2024, 9(11): 30922-30938. doi: 10.3934/math.20241492 |
[8] | Waleed Mohamed Abd-Elhameed, Abdullah F. Abu Sunayh, Mohammed H. Alharbi, Ahmed Gamal Atta . Spectral tau technique via Lucas polynomials for the time-fractional diffusion equation. AIMS Mathematics, 2024, 9(12): 34567-34587. doi: 10.3934/math.20241646 |
[9] | Ling Zhu . New inequalities of Wilker's type for hyperbolic functions. AIMS Mathematics, 2020, 5(1): 376-384. doi: 10.3934/math.2020025 |
[10] | Bai-Ni Guo, Dongkyu Lim, Feng Qi . Series expansions of powers of arcsine, closed forms for special values of Bell polynomials, and series representations of generalized logsine functions. AIMS Mathematics, 2021, 6(7): 7494-7517. doi: 10.3934/math.2021438 |
In [18] Ramanujan showed a total of 17 series for 1/π but he did not indicate how he arrived at these series. The Borwein brothers [5] gave rigorous proofs of Ramanujan's series for the first time and also obtained many new series for 1/π. Till now, many new Ramanujan's-type series for 1/π have been published, (see, for example, [4,6,8]). Chu [7], Liu [15,16] and Wei et al. [21,22] gave many π-formula with free parameters by means of gamma functions and hypergeometric series. Guillera [10] proved a kind of bilateral semi-terminating series related to Ramanujan-like series for negative powers of π. Moreover, Guillera and Zudilin [11] outlined an elementary method for proving numerical hypergeometric identities, in particular, Ramanujan-type identities for 1/π. Recently, q-analogues of Ramanujan-type series for 1/π have caught the interests of many authors (see, for example, [9,12,13,14,20,21]).
Although various definitions for gamma functions are used in the literature, we adopt the following definition [23, p.76]
1Γ(z)=zeγz∞∏n=1(1+zn)e−zn |
where γ is the Euler constant defined as
γ=limn→∞(1+12+⋯+1n−logn). |
It is easy to verify that Γ(1)=1,Γ(12)=√π and Γ(z+1)=zΓ(z). It follows that for every positive integer n, Γ(n)=(n−1)!.
For any complex α, we define the general rising shifted factorial by
(z)α=Γ(z+α)/Γ(z). | (1.1) |
Obviously, (z)0=1. For every positive integer n, we have
(z)n=Γ(z+n)/Γ(z)=z(z+1)⋯(z+n−1) |
and
(z)−n=Γ(z−n)/Γ(z)=1(z−1)(z−2)…(z−n). |
For convenience, we use the following compact notations
(a1,a2,…,am)n=(a1)n(a2)n…(am)n |
and
(a)(n1,n2,…,nm)=(a)n1(a)n2…(a)nm. |
Following [1,3], the hypergeometric series is defined by
r+1Fs[a0,a1,…,arb1,…,bs;z]=∞∑k=0(a0,a1,…,ar)k(b1,…,bs)kzkk!, |
where ai,bj(i=0,1,…,r,j=1,2,…,s) are complex numbers such that no zero factors appear in the denominators of the summand on the right hand side.
We let Fp:r;uq:s;v (p,q,r,s,u,v∈N0={0,1,2,…}) denote a general (Kampé de Fériet's) double hypergeometric function defined by (see [2,19])
Fp:r;uq:s;v[α1,…,αp:a1,…,ar;c1,…,cu;β1,…,βq:b1,…,bs;d1,…,dv;x,y]=∞∑m,n=0(α1,…,αp)m+n(a1,…,ar)m(c1,…,cu)n(β1,…,βq)m+n(b1,…,bs)m(d1,…,dv)nxmm!ynn!, |
where, for convergence of the double hypergeometric series,
p+r≤q+s+1andp+u≤q+v+1, |
with equality only when |x| and |y| are appropriately constrained (see, for details, [19,Eq 1.3(29),p.27]).
There exist numerous identities for such series. For example, we have
Theorem 1.1 (See [17,(30)] ) If Re(e−d)>0 and Re(d+e−a−b−c)>0, then
F0:3;31:1;1[−:a,b,c;d−a,d−b,d−c;d:e;d+e−a−b−c;1,1]=Γ(e)Γ(e+d−a−b−c)Γ(e−d)Γ(e−a)Γ(e−b)Γ(e−c). |
In [15], Liu used the general rising shifted factorial and the Gauss summation formula to prove the following four-parameter series expansions formula, which implies infinitely many Ramanujan type series for 1/π and π.
Theorem 1.2 For any complex α and Re(c−a−b)>0, we have
∞∑n=0(α)a+n(1−α)b+nn!Γ(c+n+1)=(α)a(1−α)bΓ(c−a−b)(α)c−b(1−α)c−a⋅sinπαπ. |
Motivated by Liu's work, in this paper we derive the following result from Theorem 1.1 which enables us to give many double series expansions for 1/π and π. To the best of our knowledge, most of the results in this paper have not previously appeared.
Theorem 1.3 If d∈N0,Re(e−d+σ−δ)>0 and Re(d+e−a−b−c+δ+σ−α−β−γ)>0, then
∞∑m,n=0(α)a+m(β)b+m(γ)c+m(δ−α)d−a+n(δ−β)d−b+n(δ−γ)d−c+nm!n!(δ+d)m+n(σ)e+m(δ+σ−α−β−γ)d+e−a−b−c+n=(α)a(β)b(γ)c(δ−α)d−a(δ−β)d−b(δ−γ)d−c(σ−δ)e−d(σ−α)e−a(σ−β)e−b(σ−γ)e−c⋅Γ(σ)Γ(σ−δ)Γ(δ+σ−α−β−γ)Γ(σ−α)Γ(σ−β)Γ(σ−γ). |
Several examples of such formulae are
∞∑m,n=0(12)3m(12)2nm!n!(m+n)!(m+1)!(2n+1)=4π, |
∞∑m,n=0(−12)3m(32)3nm!n!(m+n)!(n+3)!(12)m+1=π, |
and
∞∑m,n=0(−23)2m(13)3nm!n!(n+1)!(2−3m)(−13)m+n=√3π3. |
The remainder of the paper is organized as follows. In section 2 we give the proof of Theorem 1.3. Sections 3 and 4 are devoted to the double series expansions for 1/π and π, respectively.
First of all, by making use of (1.1), Theorem 1.3 can be restated as follows:
∞∑m,n=0Γ(a+m)Γ(b+m)Γ(c+m)Γ(d−a+n)Γ(d−b+n)Γ(d−c+n)m!n!Γ(d+m+n)Γ(e+m)Γ(d+e−a−b−c+n)=Γ(a)Γ(b)Γ(c)Γ(d−a)Γ(d−b)Γ(d−c)Γ(e−d)Γ(d)Γ(e−a)Γ(e−b)Γ(e−c). | (2.1) |
From (1.1) it is easy to see that
Γ(a+α+m)=(α)a+mΓ(α), Γ(b+β+m)=(β)b+mΓ(β), Γ(c+γ+m)=(γ)c+mΓ(γ),Γ(d−a+δ−α+n)=(δ−α)d−a+nΓ(δ−α), Γ(d−b+δ−β+n)=(δ−β)d−b+nΓ(δ−β),Γ(d−c+δ−γ+n)=(δ−γ)d−c+nΓ(δ−γ), Γ(d+δ+m+n)=(δ)d+m+nΓ(δ)Γ(e+m+σ)=(σ)e+mΓ(σ), Γ(a+α)=(α)aΓ(α), Γ(b+β)=(β)bΓ(β), Γ(c+γ)=(γ)cΓ(γ),Γ(d−a+δ−α)=(δ−α)d−aΓ(δ−α), Γ(d−b+δ−β)=(δ−β)d−bΓ(δ−β),Γ(d−c+δ−γ)=(δ−γ)d−cΓ(δ−γ), Γ(e−d+σ−δ)=(σ−δ)e−dΓ(σ−δ),Γ(d+δ)=(δ)dΓ(δ),Γ(e−a+σ−α)=(σ−α)e−aΓ(σ−α),Γ(e−b+σ−β)=(σ−β)e−bΓ(σ−β), Γ(e−c+σ−γ)=(σ−γ)e−cΓ(σ−γ),Γ(d+e−a−b−c+δ+σ−α−β−γ)=(δ+σ−α−β−γ)d+e−a−b−cΓ(δ+σ−α−β−γ). |
and we realize that (δ)d+m+n=(δ)d(δ+d)m+n when d∈N0. Replacing(a,b,c,d,e) by (a+α,b+β,c+γ,d+δ,e+σ) in (2.1) and substituting above identities into the resulting equation, we get the desired result.
In this section we will use Theorem 1.3 to prove the following double series expansion formula for 1/π.
Theorem 3.1 If d∈N0,Re(e−d+1)>0 and Re(d+e−a−b−c+32)>0, then
∞∑m,n=0(12)(a+m,b+m,c+m,d−a+n,d−b+n,d−c+n)m!n!(d+1)m+n(2)e+m(32)d+e−a−b−c+n=(12)(a,b,c,d−a,d−b,d−c)(1)e−d(32)(e−a,e−b,e−c)⋅4π. |
Proof. Let (α,β,γ,δ,σ)=(12,12,12,1,2) in Theorem 1.3. We find that
∞∑m,n=0(12)(a+m,b+m,c+m,d−a+n,d−b+n,d−c+n)m!n!(d+1)m+n(2)e+m(32)d+e−a−b−c+n=(12)(a,b,c,d−a,d−b,d−c)(1)e−d(32)(e−a,e−b,e−c)⋅Γ(2)Γ(1)Γ(32)Γ3(32). | (3.1) |
Substituting Γ(32)=√π2 into (3.1) we obtain the result immediately. Putting (a,b,c)=(0,0,0) in Theorem 3.1 we get the following general double summation formula for 1/π with two free parameters.
Corollary 3.2 If d∈N0,Re(e−d+1)>0 and Re(d+e+32)>0, then
∞∑m,n=0(12)3(m,d+n)m!n!(d+1)m+n(2)e+m(32)d+e+n=4(12)3d(1)e−dπ(32)3e. |
Setting d=0 and e=k∈N0 in Corallary 3.2 we have the following result.
Proposition 3.3 Let k be a nonnegative integer. Then
∞∑m,n=0(12)3(m,n)m!n!(m+n)!(m+k+1)!(32+k)n=4k!π(32)2k. |
Example 3.1 (k=0 in Proposition 3.3).
∞∑m,n=0(12)3m(12)2nm!n!(m+n)!(m+1)!(2n+1)=4π. |
If d=e=k∈N0 in Corollary 3.2 we achieve
Proposition 3.4 Let k be a nonnegative integer. Then
∞∑m,n=0(12)3(m,n+k)m!n!(k+1)m+n(m+k+1)!(32)n+2k=4π(2k+1)3. |
If we put k=0 into Proposition 3.4, then we can also get Example 3.1.
In this section we will prove the following theorem, which allows us to derive infinitely double series expansions for π.
Theorem 4.1 If d∈N0,Re(e−d−σ+1)>0 and Re(d+e−a−b−c+2)>0, then
∞∑m,n=0(σ−1)(a+m,b+m,c+m)(σ)(d−a+n,d−b+n,d−c+n)m!n!(2σ+d−1)m+n(σ)e+m(2)d+e−a−b−c+n=(σ−1)(a,b,c)(σ)(d−a,d−b,d−c)(1−σ)e−d(1)(e−a,e−b,e−c)⋅πsinσπ. |
Proof. Let (α,β,γ,δ)=(σ−1,σ−1,σ−1,2σ−1) in Theorem 1.3. We obtain that
∞∑m,n=0(σ−1)(a+m,b+m,c+m)(σ)(d−a+n,d−b+n,d−c+n)m!n!(2σ+d−1)m+n(σ)e+m(2)d+e−a−b−c+n=(σ−1)(a,b,c)(σ)(d−a,d−b,d−c)(1−σ)e−d(1)(e−a,e−b,e−c)⋅Γ(σ)Γ(1−σ)Γ(2)Γ3(1). | (4.1) |
Combining Γ(σ)Γ(1−σ)=πsinσπ with (4.1) we get the desired result immediately. Putting a=b=c=0 in Theorem 4.1 we obtain the following equation.
Corollary 4.2 If d∈N0,Re(e−d−σ+1)>0 and Re(d+e+2)>0, then
∞∑m,n=0(σ−1)3m(σ)3d+nm!n!(2σ+d−1)m+n(σ)e+m(2)d+e+n=(σ)3d(1−σ)e−d(1)3e⋅πsinσπ. |
Letting σ=12 in Corollary 4.2, we get the following proposition.
Proposition 4.3 If d∈N0,Re(e−d+12)>0 and Re(d+e+2)>0, then
∞∑m,n=0(−12)3m(12)3d+nm!n!(d)m+n(12)e+m(2)d+e+n=(12)3d(12)e−d(1)3eπ. |
When we set d=1 and e=k∈N={1,2,3…} in Proposition 4.3 we obtain
Proposition 4.4 If k is a positive integer, then
∞∑m,n=0(−12)3m(32)3nm!n!(m+n)!(n+k+2)!(12)m+k=π(12)k−1(k!)3. |
Example 4.1 (k=1 in Proposition 4.4).
∞∑m,n=0(−12)3m(32)3nm!n!(m+n)!(n+3)!(12)m+1=π. |
Putting σ=13 in Corollary 4.2, we get the following proposition.
Proposition 4.5 If d∈N0,Re(e−d+23)>0 and Re(d+e+2)>0, then
∞∑m,n=0(−23)3m(13)3d+nm!n!(d−13)m+n(13)e+m(2)d+e+n=2√3π(13)3d(23)e−d3(1)3e. |
When we set d=0 and e=k∈N0 in Proposition 4.5 we obtain
Proposition 4.6 If k is a nonnegative integer, then
∞∑m,n=0(−23)3m(13)3nm!n!(−13)m+n(13)m+k(n+k+1)!=2√3π(23)k3k!3. |
Example 4.2 (k=0 in Proposition 4.6).
∞∑m,n=0(−23)2m(13)3nm!n!(n+1)!(2−3m)(−13)m+n=√3π3. |
Setting d=e=k∈N0 in Proposition 4.5, we get
Proposition 4.7 If k is a nonnegative integer, then
∞∑m,n=0(−23)3m(13+k)3nm!n!(n+2k+1)!(k−13)m+n(13)m+k=2√3π3k!3. |
Therefore, Example 4.2 can also be deduced by fixing k=0 in the above equation.
Example 4.3 (k=1 in Proposition 4.7).
∞∑m,n=0(−23)3m(43)3nm!n!(n+3)!(23)m+n(43)m=2√3π9. |
Double series expansions for 1/π and π with several free parameters are established and many interesting formulas are obtained. A point that should be stressed is that there is an important connection between the summation formulas for double hypergeometric functions and double series expansions for the powers of π.
The author was partially supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (grant 19KJB110006).
The author declares that there is no conflict of interest in this paper.
[1] | Ismail MM, Cao WQ, Humadi MD (2016) Synthesis and optical properties of Au/ZnO core-shell nanorods and their photocatalytic activities. Optik 127: 4307-4311. |
[2] | Brinson BE, Lassiter JB, Levin CS, et al. (2008) Nanoshells made easy: Improving Au layer growth on nanoparticle surfaces. Langmuir 24: 14166-14171. |
[3] | Azizi S, Mohamad R, Rahim RA, et al. (2016) ZnO-Ag core shell nanocomposite formed by green method using essential oil of wild ginger and their bactericidal and cytotoxic effects. Appl Surf Sci 384: 517-524. |
[4] | Bartosewicz B, Michalska-Domańska M, Liszewska M, et al. (2017) Synthesis and characterization of noble metal-titania core-shell nanostructures with tunable shell thickness. Beilstein J Nanotech 8: 2083-2093. |
[5] | Fan CZ, Wang JQ, Cheng YG, et al. (2013) Electric field distribution around the chain of composite nanoparticles in ferrofluids. Chinese Phys B 22: 084703. |
[6] | Sadollahkhani A, Kazeminezhad I, Lu J, et al. (2014) Synthesis, structural characterization and photocatalytic application of ZnO@ZnS core-shell nanoparticles. RSC Adv 4: 36940-36950. |
[7] | Kassahun GB (2019) High tunability of sizedependent optical properties of ZnO@M@Au (M = SiO2, TiO2, In2O3) core/spacer/shell nanostructure. ANR 2: 1-13. |
[8] | Encina ER, Prez MA, Coronado EA (2013) Synthesis of Ag@ZnO core-shell hybrid nanostructures: An optical approach to reveal the growth mechanism. J Nanopart Res 15: 1688. |
[9] | Derkachova A, Kolwas K, Demchenko I (2016) Dielectric function for gold in plasmonics applications: Size dependence of plasmon resonance frequencies and damping rates for nanospheres. Plasmonics 11: 941-951. |
[10] | Wang B, Zhu X, Li S, et al. (2018) Ag@SiO2 core-shell nanoparticles embedded in a TiO2 mesoporous layer substantially improve the performance of perovskite solar cells. Nanomaterials 8: 701. |
[11] | Bai Y, Butburee T, Yu H, et al. (2015) Controllable synthesis of concave cubic gold core-shell nanoparticles for plasmon-enhanced photon harvesting. J Colloid Interf Sci 449: 246-251. |
[12] | Daneshfar N, Bazyari K (2014) Optical and spectral tunability of multilayer spherical and cylindrical nanoshells. Appl Phys A-Mater 116: 611-620. |
[13] | Elyahb AK, Elise C, Yongmei W, et al. (2017) Synthesis and properties of magnetic optical core-shell nanoparticles. RSC Adv 7: 17137-17153. |
[14] | Alzahrani E (2017) Photodegradation of binary azo dyes using core-shell Fe3O4/SiO2/TiO2 nanospheres. AJAC 8: 95-115. |
[15] | Shao X, Li B, Zhang B, et al. (2016) Au@ZnO core-shell nanostructures with plasmon-induced visible-light photocatalytic and photoelectrochemical properties. Inorg Chem Front 3: 934-943. |
[16] | Guo L, Xiao Y, Xu Z, et al. (2018) Band alignment of BiOCl/ZnO core shell nanosheets by X-ray photoelectron spectroscopy measurements. Ferroelectrics 531: 31-37. |
[17] | Li J, Cushing SK, Bright J, et al. (2013) Ag@Cu2O core-shell nanoparticles as visible-light plasmonic photocatalysts. ACS Catal 3: 47-51. |
[18] | He L, Liu Y, Liu J, et al. (2013) Core-shell noble-metal@metal-organic-framework nanoparticles with highly selective sensing property. Angew Chem Int Edit 125: 3829-3833. |
[19] | Lee S, Lee J, Nam K, et al. (2016) Application of Ni-oxide@TiO2 core-shell structures to photocatalytic mixed dye degradation, CO oxidation, and supercapacitors. Materials 9: 1-15. |
[20] | Yu J, Wang D, Huang Y, et al. (2011) A cylindrical core-shell-like TiO2 nanotube array anode for flexible fiber-type dye-sensitized solar cells. Nanoscale Res Lett 6: 94. |
[21] | Mondal K, Sharma A (2016) Recent advances in the synthesis and application of photocatalytic metal-metal oxide core-shell nanoparticles for environmental remediation and their recycling process. RSC Adv 6: 83589-83612. |
[22] | Meng Y (2015) Synthesis and adsorption property of SiO2@Co(OH)2 core-shell nanoparticles. Nanomaterials 5: 554-564. |
[23] | Jadhav J, Biswas S (2016) Structural and electrical properties of ZnO:Ag coreshell nanoparticles synthesized by a polymer precursor method. Ceram Int 42: 16598-16610. |
[24] | D'Addato S, Pinotti D, Spadaro MC, et al. (2015) Influence of size, shape and core-shell interface on surface plasmon resonance in Ag and Ag@MgO nanoparticle films deposited on Si/SiOx. Beilstein J Nanotech 6: 404-413. |
[25] | Müller A, Peglow S, Karnahl M, et al. (2018) Morphology, optical properties and photocatalytic activity of photo- and plasma-deposited Au and Au/Ag core/shell nanoparticles on titania layers. Nanomaterials 502: 6-12. |
[26] | Senthilkumar N, Ganapathy M, Arulraj A, et al (2018) Two step synthesis of ZnO/Ag and ZnO/Au core/shell nanocomposites: Structural, optical and electrical property analysis. J Alloy Compd 750: 171-181. |
[27] | Gawande MB, Goswami A, Asefa T, et al. (2015) Core-shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem Soc Rev 44: 7540-7590. |
[28] | Qian J, Li Y, Chen J, et al. (2014) Localized hybrid plasmon modes reversion in gold-silica-gold multilayer nanoshells. J Phys Chem C 118: 8581-8587. |
[29] | Liu LW, Zhou QW, Zeng ZQ, et al. (2016) Induced SERS activity in Ag@SiO2/Ag core-shell nanosphere arrays with tunable interior insulator. J Raman Spectrosc 47: 1200-1206. |
[30] | Zhou M, Diao K, Zhang J, et al. (2014) Controllable synthesis of plasmonic ZnO/Au core/shell nanocable arrays on ITO glass. Physica E 56: 59-63. |
[31] | Singh SC, Swarnkar RK, Gopal R (2010) Zn/ZnO core/shell nanoparticles synthesized by la ser ablation in aqueous environment: Optical and structural characterizations. B Mater Sci 33: 21-26. |
[32] | Oh S, Ha K, Kang S, et al. (2018) Self-standing ZnO nanotube/SiO2 core-shell arrays for high photon extraction efficiency in Ⅲ-nitride emitter. Nanotechnology 29: 015301. |
[33] | Beyene G, Senbeta T, Mesfin B (2019) Size dependent optical properties of ZnO@Ag core/shell nanostructures. Chinese J Phys 58: 235-243. |
[34] | Brijitta J, Ramachandran D, Chennakesavulu K, et al. (2016) Mesoporous ZnO-SiO2 core-shell rods for UV absorbing and non-wetting applications. Mater Res Express 3: 25001. |
[35] | Li F, Huang X, Jiang Y, et al. (2009) Synthesis and characterization of ZnO/SiO2 core/shell nanocomposites and hollow SiO2 nanostructures. Mater Res Bull 44: 437-441. |
[36] | Ponnuvelu DV, Pullithadathil B, Prasad AK, et al. (2015) Rapid synthesis and characterization of hybrid ZnO@Au core-shell nanorods for high performance, low temperature NO2 gas sensor applications. Appl Surf Sci 355: 726-735. |
[37] | Azimi M, Sadjadi MS, Farhadyar N (2016) Fabrication and characterization of core/shell ZnO/gold nanostructures and study of their structural and optical properties. Orient J Chem 32: 2517-2523. |
[38] | Kettunen H, Walĺn H, Sihvola A (2008) Electrostatic resonances of a negative-permittivity hemisphere. J Appl Phys 103: 1-8. |
[39] | Chettiar UK, Engheta N (2012) Internal homogenization: Effective permittivity of a coated sphere. Opt Express 20: 22976-22986. |
[40] | Beyene G, Sakata G, Senbeta T, et al. (2020) Effect of core size/shape on the plasmonic response of spherical ZnO@Au core-shell nanostructures embedded in a passive host-matrices of MgF2. AIMS Mater Sci 7: 705-719. |
[41] | Lv W, Phelan PE, Swaminathan R, et al. (2012) Multifunctional core-shell nanoparticle suspensions for efficient absorption. J Sol Energy Eng-T ASME 135: 021004. |
[42] | Beyene G, Senbeta T, Mesfin B, et al. (2020) Plasmonic properties of spheroidal spindle and disc shaped core-shell nanostructures embedded in passive host-matrices. Opt Quant Electron 52: 157. |
[43] | Prodan E, Nordlander PGCP (2004) Plasmon hybridization in spherical nanoparticles. J Chem Phys 120: 5444-5454. |
[44] | Sambou, A, Ngom BD, Gomis L, et al. (2016) Turnability of the plasmonic response of the gold nanoparticles in infrared region. Am J Nanomater 4: 63-69. |
[45] | Mahdavi, Z, Rezvani H, Moraveji MK (2020) Core-shell nanoparticles used in drug delivery-microfluidics: a review. RSC Adv 10: 18280-18295. |
[46] | Wang, D, Han D, Yang J, et al. (2018) Controlled preparation of superparamagnetic Fe3O4@SiO2@ZnO-Au core-shell photocatalyst with superior activity: RhB degradation and working mechanism. Powder Technol 327: 489-499. |
[47] | Misra M, Kapur P, Nayak MK, et al. (2014) Synthesis and visible photocatalytic activities of an Au@Ag@ZnO triple layer core-shell nanostructure. New J Chem 38: 4197-4203. |
[48] | Li XR, Xu MC, Chen HY, et al. (2015) Bimetallic Au@Pt@Au core-shell nanoparticles ongraphene oxide nanosheets for high-performance H2O2 bi-directional sensing. J Mater Chem B 3: 4355-4362. |