Citation: Aruna P. Wanninayake, Shengyi Li, Benjamin C. Church, Nidal Abu-Zahra. Electrical and optical properties of hybrid polymer solar cells incorporating Au and CuO nanoparticles[J]. AIMS Materials Science, 2016, 3(1): 35-50. doi: 10.3934/matersci.2016.1.35
[1] | Abu-Zahra N, Algazzar M (2013) Effect of crystallinity on the performance of P3HT/PC70BM/n-dodecylthiol polymer solar cells. J Sol Energy Eng 136(2):021023. |
[2] | Manceau M, Angmo D, Jorgensen M, et al. (2011) ITO-free flexible polymer solar cells: From small model devices to roll-to-roll processed large modules. Org Electron 12, 566–574. |
[3] | Michael CH, Ali D (2014) Efficient generation of model bulk heterojunction morphologies for organic photovoltaic device modeling. Appl Phys Rev 2: 014008. doi: 10.1103/PhysRevApplied.2.014008 |
[4] | Choulis SA, Kim Y, Nelson J, et al. (2004) High ambipolar and balanced carrier mobility in regioregular poly (3-hexy thiophene). Appl Phys Rev 85: 3890–3892. |
[5] | Ma W, Yang C, Gong X, et al. (2005) Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater 15: 1617–1622. doi: 10.1002/adfm.200500211 |
[6] | Liao SH, Jhuo HJ, Yeh PN, et al. (2014) Single junction inverted polymer solar cell reaching power conversion efficiency 10.31% by employing dual-doped zinc oxide nano-film as cathode interlayer. Sci Rep, 4: 6813: 4–10. |
[7] | Raja R, Liu WS, Hsiow CY, et al. (2015) Terthiophene-C60 dyads as donor/acceptor compatibilizers for developing highly stable P3HT/ PCBM bulk heterojunction solar cells. J Mater Chem A 3: 14401–14408. doi: 10.1039/C5TA02953H |
[8] | Jung K, Song HJ, Lee G, et al. (2014) Plasmonic organic solar cells employing nanobump assembly via aerosol-derived nanoparticles. ACS Nano 8: 2590-2601. doi: 10.1021/nn500276n |
[9] | Deibel C, Dyakonov V (2010) Polymer–fullerene bulk heterojunction solar cells. Rep Prog Phys 3: 9. |
[10] | Gunes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107: 1324–1338. doi: 10.1021/cr050149z |
[11] | Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9: 205–213. doi: 10.1038/nmat2629 |
[12] | Schuller JA, Barnard ES, Cai W, et al. (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9: 193–204. doi: 10.1038/nmat2630 |
[13] | Mahmoud AY, Izquierdo R, Truong VV (2014) Gold nanorods incorporated cathode for better performance of polymer solar cells. J Nanomater (2014): 464160. |
[14] | Brown M, Suteewong T, Kumar R, et al. (2011) Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles. Nano Lett: 11: 438–445. doi: 10.1021/nl1031106 |
[15] | Kim SS, Na SI, Jo J, et al. (2008) Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles. Appl Phys Lett 93: 073307. doi: 10.1063/1.2967471 |
[16] | Chou SY, Ding W (2013) Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array. Opt Express 21: 60–76. doi: 10.1364/OE.21.000060 |
[17] | Chen FC, Wu JL, Lee CL, et al. (2009) Plasmonic-enhanced polymer photovoltaic devices incorporating solution- processable metal nanoparticles. Appl Phys Lett 95: 013305. doi: 10.1063/1.3174914 |
[18] | Xie F, Choy W, Wang C, et al. (2011) Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers. Appl Phys Lett 99: 153304. doi: 10.1063/1.3650707 |
[19] | Wang DH, Kim DY, Choi KW, et al. (2011) Enhancement of Donor–Acceptor Polymer Bulk Heterojunction Solar Cell Power Conversion Efficiencies by Addition of Au Nanoparticles. Angew Chem Int Ed 50: 5519–5523. doi: 10.1002/anie.201101021 |
[20] | Xie F, Choy W, Zhu X, et al. (2011) Improving polymer solar cell performances by manipulating the self-organization of polymer. Appl Phys Lett 98: 243302. doi: 10.1063/1.3599488 |
[21] | Baek SW, Noh J, Lee CH, et al. (2013) Plasmonic Forward Scattering Effect in Organic Solar Cells: A Powerful Optical Engineering Method. Nat Sci Rep 3: 1726. |
[22] | Chen X, Zuo L, Fu W, et al. (2013) Insight into the efficiency enhancement of polymer solar cells by incorporating gold nanoparticles. Sol Energy Mat Sol 111: 1–8. doi: 10.1016/j.solmat.2012.12.016 |
[23] | Choy W, Sha W, Li X, et al. (2014) Multi-Physical Properties of Plasmonic Organic Solar Cells. Prog Electromag Res 146: 25–46. doi: 10.2528/PIER14031810 |
[24] | Choy W (2014) The emerging multiple metal nanostructures for enhancing the light trapping of thin film organic photovoltaic cells. Chem Commun 50: 11984–11993. doi: 10.1039/C4CC03767G |
[25] | Gan Q, Bartoli FJ, Kafafi ZH (2013) Plasmonic-Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier. Adv Mater 25: 2385–2396. doi: 10.1002/adma.201203323 |
[26] | Wanninayake AP, Gunashekar S, Li S, et al. (2015) CuO Nanoparticles Based Bulk Heterojunction Solar Cells: Investigations on Morphology and Performance. J Sol Energy Eng 137: 031016. doi: 10.1115/1.4029542 |
[27] | Wright M, Uddin A (2012) Organic-inorganic hybrid solar cells: A comparative review. Sol Energ Mat Sol C 107: 87–111. |
[28] | Bundgaard E, Shaheen SE, Krebs FC, et al. (2007) Bulk heterojunctions based on a low band gap copolymer of thiophene and benzothiadiazole. Sol Energ Mat Sol C 91: 1631–1637. doi: 10.1016/j.solmat.2007.05.013 |
[29] | Fung D, Qiao LF, Choy W, et al. (2011) Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT–PSS layer. J Mater Chem 21: 16349–16356. doi: 10.1039/c1jm12820e |
[30] | Hsu MH, Yu P, Huang JH, et al. (2011) Balanced carrier transport in organic solar cells employing embedded indium-tinoxide nanoelectrodes. Appl Phys Lett 98: 073308-1. doi: 10.1063/1.3556565 |
[31] | Li G, Shrotriya V, Yao Y, et al. (2005) Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly„3-hexylthiophen. J Appl Phys 98: 043704. doi: 10.1063/1.2008386 |
[32] | Kim K, Carroll DL (2005) Roles of Au and Ag nanoparticles in efficiency enhancement of poly(3-octylthiophene)/C60 bulk heterojunction photovoltaic devices. Appl Phys Lett 87: 203113. doi: 10.1063/1.2128062 |
[33] | Krebs FC, Thomann Y, Thomann R, et al. (2008) A simple nanostructured polymer/ZnO hybrid solar cell-preparation and operation in air. Nanotechnology 19: 424013. doi: 10.1088/0957-4484/19/42/424013 |
[34] | Wanninayake A, Gunashekar S, Li S, et al. (2015) Performance enhancement of polymer solar cells using copper oxide nanoparticles. Semicond Sci Technol 30: 064004. doi: 10.1088/0268-1242/30/6/064004 |
[35] | Nguyen BP, Kim T, Park CR (2014) Nanocomposite-based bulk heterojunction hybrid solar cells. J Nanomater (2014): 243041. |
[36] | Eisenhawer B, Sensfuss S, Sivakov V, et al. (2011) Increasing the efficiency of polymer solar cells by silicon nanowires. Nanotechnology 22: 315401. doi: 10.1088/0957-4484/22/31/315401 |