Citation: Roger Chang, Kemakorn Ithisuphalap, Ilona Kretzschmar. Impact of particle shape on electron transport and lifetime in zinc oxide nanorod-based dye-sensitized solar cells[J]. AIMS Materials Science, 2016, 3(1): 51-65. doi: 10.3934/matersci.2016.1.51
[1] | O'Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353: 734–740. |
[2] | Mathew S, Yella A, Gao P, et al. (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6: 242–247. doi: 10.1038/nchem.1861 |
[3] | Kojima A, Teshima K, Shirai Y, et al. (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131: 6050–6051. doi: 10.1021/ja809598r |
[4] | Lee MM, Teuscher J, Miyasaka T, et al. (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338: 643–647. doi: 10.1126/science.1228604 |
[5] | Burschka J, Pellet N, Moon S-J, et al. (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499: 316–320. doi: 10.1038/nature12340 |
[6] | Yang WS, Noh JH, Jeon NJ, et al. (2015) High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348: 1234–1237. doi: 10.1126/science.aaa9272 |
[7] | Xu F, Sun L (2011) Solution-derived ZnO nanostructures for photoanodes of dye-sensitized solar cells. Energy Environ Sci 4: 818–841. doi: 10.1039/C0EE00448K |
[8] | Zhang Q, Cao G (2011) Nanostructured photoelectrodes for dye-sensitized solar cells. Nano Today 6: 91–109. doi: 10.1016/j.nantod.2010.12.007 |
[9] | Strehlow WH, Cook EL (1973) Compilation of energy band gaps in elemental and binary compound semiconductors and insulators. J Phys Chem Ref Data 2: 163–200. doi: 10.1063/1.3253115 |
[10] | Scanlon DO, Dunnill CW, Buckeridge J, et al. (2013) Band alignment of rutile and anatase TiO2. Nat Mater 12: 798–801. doi: 10.1038/nmat3697 |
[11] | Chou TP, Zhang Q, Fryxell GE, et al. (2007) Hierarchically structured ZnO film for dye-sensitized solar cells with enhanced energy conversion efficiency. Adv Mater 19: 2588–2592. doi: 10.1002/adma.200602927 |
[12] | Dittrich T, Lebedev EA, Weidmann J (1998) Electron drift mobility in porous TiO2 (anatase). Phys Status Solidi A 165: R5–R6. |
[13] | Redmond G, Fitzmaurice D, Graetzel M (1994) Visible light sensitization by cis-bis(thiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)ruthenium(II) of a transparent nanocrystalline ZnO film prepared by sol-gel techniques. Chem Mater 6: 686–691. |
[14] | Hoyer P, Weller H (1995) Potential-dependent electron injection in nanoporous colloidal ZnO films. J Phys Chem 99: 14096–14100. doi: 10.1021/j100038a048 |
[15] | Rensmo H, Keis K, Lindström H, et al. (1997) High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes. J Phys Chem B 101: 2598–2601. doi: 10.1021/jp962918b |
[16] | van de Lagemaat J, Frank AJ (2001) Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films: Transient photocurrent and random-walk modeling studies. J Phys Chem B 105: 11194–11205. doi: 10.1021/jp0118468 |
[17] | Frank A, Kopidakis N, Lagemaat Jvd (2004) Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties. Coord Chem Rev 248: 1165–1179. doi: 10.1016/j.ccr.2004.03.015 |
[18] | Willis RL, Olson C, O'Regan B, et al. (2002) Electron dynamics in nanocrystalline ZnO and TiO2 films probed by potential step chronoamperometry and transient absorption spectroscopy. J Phys Chem B 106: 7605–7613. doi: 10.1021/jp020231n |
[19] | Quintana M, Edvinsson T, Hagfeldt A, et al. (2007) Comparison of dye-sensitized ZnO and TiO2 solar cells: Studies of charge transport and carrier lifetime. J Phys Chem C 111: 1035–1041. doi: 10.1021/jp065948f |
[20] | Kopidakis N, Benkstein KD, van de Lagemaat J, et al. (2003) Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells. J Phys Chem B 107: 11307–11315. |
[21] | Martinson ABF, McGarrah JE, Parpia MOK, et al. (2006) Dynamics of charge transport and recombination in ZnO nanorod array dye-sensitized solar cells. Phys Chem Chem Phys 8: 4655–4659. doi: 10.1039/b610566a |
[22] | Baxter JB, Walker AM, Ommering Kv, et al. (2006) Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells. Nanotechnol 17: S304. doi: 10.1088/0957-4484/17/11/S13 |
[23] | Galoppini E, Rochford J, Chen H, et al. (2006), Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells. J Phys Chem B 110: 16159–16161. |
[24] | Law M, Greene LE, Johnson JC, et al. (2005) Nanowire dye-sensitized solar cells. Nat Mater 4: 455–459. doi: 10.1038/nmat1387 |
[25] | Noack V, Weller H, Eychmüller A (2002) Electron transport in particulate ZnO electrodes: A simple approach. J Phys Chem B 106: 8514–8523. doi: 10.1021/jp0200270 |
[26] | Qiu J, Li X, Zhuge F, et al. (2010) Solution-derived 40 µm vertically aligned ZnO nanowire arrays as photoelectrodes in dye-sensitized solar cells. Nanotechnol 21: 195602. doi: 10.1088/0957-4484/21/19/195602 |
[27] | Ku C-H, Wu J-J (2007) Chemical bath deposition of ZnO nanowire–nanoparticle composite electrodes for use in dye-sensitized solar cells. Nanotechnol 18: 505706. doi: 10.1088/0957-4484/18/50/505706 |
[28] | Xu F, Dai M, Lu Y, et al. (2010) Hierarchical ZnO nanowire−nanosheet architectures for high power conversion efficiency in dye-sensitized solar cells. J Phys Chem C 114: 2776–2782. doi: 10.1021/jp910363w |
[29] | Xu C, Wu J, Desai UV, et al. (2011) Multilayer assembly of nanowire arrays for dye-sensitized solar cells. J Am Chem Soc 133: 8122–8125. doi: 10.1021/ja202135n |
[30] | Seow ZLS, Wong ASW, Thavasi V, et al. (2009) Controlled synthesis and application of ZnO nanoparticles, nanorods and nanospheres in dye-sensitized solar cells. Nanotechnol 20: 045604. doi: 10.1088/0957-4484/20/4/045604 |
[31] | Cakir AC, Erten-Ela S (2012) Comparison between synthesis techniques to obtain ZnO nanorods and its effect on dye sensitized solar cells. Adv Powder Technol 23: 655–660. doi: 10.1016/j.apt.2011.08.003 |
[32] | Hosni M, Kusumawati Y, Farhat S, et al. (2014), Effects of oxide nanoparticle size and shape on electronic structure, charge transport, and recombination in dye-sensitized solar cell photoelectrodes. J Phys Chem C 118: 16791–16798. |
[33] | Cao HL, Qian XF, Gong Q, et al. (2006) Shape- and size-controlled synthesis of nanometre ZnO from a simple solution route at room temperature. Nanotechnol 17: 3632. doi: 10.1088/0957-4484/17/15/002 |
[34] | Bai S, Hu J, Li D, et al. (2011) Quantum-sized ZnO nanoparticles: Synthesis, characterization and sensing properties for NO2. J Mater Chem 21: 12288–12294. doi: 10.1039/c1jm11302j |
[35] | Hu X, Masuda Y, Ohji T, et al. (2008) Micropatterning of ZnO nanoarrays by forced hydrolysis of anhydrous zinc acetate. Langmuir 24: 7614–7617. doi: 10.1021/la8006348 |
[36] | Tan ST, Sun XW, Zhang XH, et al. (2006) Cluster coarsening in zinc oxide thin films by postgrowth annealing. J Appl Phys 100: 033502. doi: 10.1063/1.2218468 |
[37] | Hill JJ, Haller K, Gelfand B, et al. (2010) Eliminating capillary coalescence of nanowire arrays with applied electric fields. ACS Appl Mater Interfaces 2: 1992–1998. doi: 10.1021/am100290z |
[38] | Sutton LE, HJM Bowen (1958) Tables of Interatomic Distances and Configuration in Molecules and Ions, London: The Chemical Society. |
[39] | Spiro M, Creeth AM (1990) Tracer diffusion coefficients of I-, I3-, Fe2+ and Fe3+ at low temperatures. J Chem Soc Faraday Trans 86: 3573–3576. doi: 10.1039/ft9908603573 |
[40] | Lin C, Tsai FY, Lee FH, et al. (2009) Enhanced performance of dye-sensitized solar cells by an Al2O3 charge-recombination barrier formed by low-temperature atomic layer deposition. J Mater Chem 19: 2999–3003. doi: 10.1039/b819337a |
[41] | Mozer AJ, Wagner P, Officer DL, et al. (2008) The origin of open circuit voltage of porphyrin-sensitised TiO2 solar cells. Chem Commun 4741–4743. |
[42] | Ko SB, Cho AN, Kim MJ, et al., (2012) Alkyloxy substituted organic dyes for high voltage dye-sensitized solar cell: Effect of alkyloxy chain length on open-circuit voltage. Dyes Pigments 94: 88–98. doi: 10.1016/j.dyepig.2011.10.014 |
[43] | Kalyanasundaram K (2009) Dye-sensitized solar cells. Boca Raton, Fla: CRC. |