As the availability of high-frequency data becomes more widespread, it has become very popular to model random fluctuations of some econometric variables over time using Itô semi-martingale. An emblematic problem is to estimate the quadratic variation, i.e., the integrated volatility of log prices, using noisy high frequency data with endogenous time and jumps. We propose a methodology that combines the multiple sub-grids and thresholds. First, the sub-sample is used to reduce the effect of the noise. Then, the threshold method is used to get rid of the effect of jumps. Finally, the multiple sub-grids method is used to increase the convergence rate. The asymptotic properties, such as consistency and asymptotic normality, are investigated. Simulation is also included to illustrate the performance of the proposed procedure.
Citation: Erlin Guo, Patrick Ling. Estimation of the quadratic variation of log prices based on the Itô semi-martingale[J]. Electronic Research Archive, 2024, 32(2): 799-811. doi: 10.3934/era.2024038
As the availability of high-frequency data becomes more widespread, it has become very popular to model random fluctuations of some econometric variables over time using Itô semi-martingale. An emblematic problem is to estimate the quadratic variation, i.e., the integrated volatility of log prices, using noisy high frequency data with endogenous time and jumps. We propose a methodology that combines the multiple sub-grids and thresholds. First, the sub-sample is used to reduce the effect of the noise. Then, the threshold method is used to get rid of the effect of jumps. Finally, the multiple sub-grids method is used to increase the convergence rate. The asymptotic properties, such as consistency and asymptotic normality, are investigated. Simulation is also included to illustrate the performance of the proposed procedure.
[1] | J. Q. Fan, A selective overview of nonparametric methods in financial econometrics (with discussion), Stat. Sci., 20 (2005), 317–357. |
[2] | T. Andersen, T. Bollerslev, F. Diebold, P. Labys, Modeling and forcasting realized volatility, Econometrica, 71 (2003), 579–625. https://doi.org/10.1111/1468-0262.00418 doi: 10.1111/1468-0262.00418 |
[3] | P. Protter, Stochastic Integration and Differential Equations, Springer-Verlag, 2004. https://doi.org/10.2307/978-3-540-00313-4 |
[4] | O. E. Barndorff-Nielsen, N. Shephard, Power and bipower variation with stochastic volatility and jumps, J. Financ. Econ., 2 (2004), 1–37. https://doi.org/10.1093/jjfinec/nbh001 doi: 10.1093/jjfinec/nbh001 |
[5] | O. E. Barndorff-Nielsen, N. Shephard, Ecnometrics of testing for jumps in financial economics using bipower variation, J. Financ. Econ., 4 (2006), 1–30. https://doi.org/10.1093/jjfinec/nbi022 doi: 10.1093/jjfinec/nbi022 |
[6] | J. Jacod, Asymptotic properties of realized power variations and related functionals of semimartingales, Stoch. Proc. Appl., 118 (2008), 517–559. https://doi.org/10.1016/J.SPA.2007.05.005 doi: 10.1016/J.SPA.2007.05.005 |
[7] | C. Mancini, Non-parametric threshold estimation for models with stochastic diffusion coefficients and jumps, Scand. J. Stat., 36 (2009), 270–296. https://doi.org/10.1111/j.1467-9469.2008.00622.x doi: 10.1111/j.1467-9469.2008.00622.x |
[8] | L. Zhang, P. A. Mykland, Y. Aït-Sahalia, A tale of two time scales: Determining integrated volatility with noisy high-frequency data, J. Am. Stat. Assoc., 100 (2005), 1394–1411. https://doi.org/10.2307/27590680 doi: 10.2307/27590680 |
[9] | L. Zhang, Efficient estimation of stochastic volatility using noisy observations: A multi-scale approach, Bernoulli, 12 (2006), 1019–1043. https://doi.org/10.2139/ssrn.619682 doi: 10.2139/ssrn.619682 |
[10] | J. Q. Fan, Y. Z. Wang, Multi-scale jump and volatility analysis for high-frequency financial data, J. Am. Statist. Assoc., 102 (2007), 1349–1362. https://doi.org/10.1198/016214507000001067 doi: 10.1198/016214507000001067 |
[11] | J. Jacod, Y. Li, P. A. Mykland, M. Podolskij, M. Vetter, Microstructure noise in the continuous case: The pre-averaging approach, Stoch. Proc. Appl., 179 (2009), 2249–2276. https://doi.org/10.1016/j.spa.2008.11.0047 doi: 10.1016/j.spa.2008.11.0047 |
[12] | O. E. Barndorff-Nielsen, P. R. Hansen, A. Lunde, N. Shephard, Designing realized kernels to measure the ex-post variation of equity prices in the presence of noise, Econometrica., 76 (2008), 1481–1536. https://doi.org/10.3982/ecta6495 doi: 10.3982/ecta6495 |
[13] | D. Xiu, Quasi-maximum likelihood estimation of volatility with high frequency data, J. Econometrics., 159 (2010), 235–250. https://doi.org/10.1016/j.jeconom.2010.07.002 doi: 10.1016/j.jeconom.2010.07.002 |
[14] | Y. Aït-Sahalia, J. Q. Fan, D. Xiu, High-frequency covariance estimates with noisy and asynchronous financial data, J. Amer. Statist. Assoc., 105 (2010), 1504–1517. https://doi.org/10.2139/ssrn.1631344 doi: 10.2139/ssrn.1631344 |
[15] | K. Christensen, S. Kinnebrock, M. Podolskij, Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data, J. Econometrics, 159 (2010), 116–133. https://doi.org/10.1016/j.jeconom.2010.05.001 doi: 10.1016/j.jeconom.2010.05.001 |
[16] | O. E. Barndorff-Nielsen, P. R. Hansen, A. Lunde, N. Shephard, Multivariate realized kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading, J. Econometrics., 162 (2011), 149–169. https://doi.org/10.1016/j.jeconom.2010.07.009 doi: 10.1016/j.jeconom.2010.07.009 |
[17] | L. Zhang, Estimating covariation: epps effect, microstructure noise, J. Econometrics., 160 (2011), 33–47. https://doi.org/10.1016/j.jeconom.2010.03.012 doi: 10.1016/j.jeconom.2010.03.012 |
[18] | Y. Z. Wang, J. Zou, Vast volatility matrix estimation for high-frequency financial data, Ann. Statist., 38 (2010), 943–978. https://doi.org/10.1214/09-aos730 doi: 10.1214/09-aos730 |
[19] | M. Tao, Y. Z. Wang, X. Chen, Fast convergence rates in estimating large volatility matrices using high-frequency financial data, Economet. Theor., 29 (2013), 11–19. https://doi.org/10.2139/ssrn.3786912 doi: 10.2139/ssrn.3786912 |
[20] | M. Tao, Y. Z. Wang, H. Zhou, Fast convergence rates in estimating large volatility matrices using high-frequency financial data, Ann. Statist., 41 (2013), 1816–1864. https://doi.org/10.1214/13-aos1128 doi: 10.1214/13-aos1128 |
[21] | D. Kim, Y. Z. Wang, J. Zou, Asymptotic theory for large volatility matrix estimation based on high-frequency financial data, Stoch. Proc. Appl., 126 (2016), 3527–3577. https://doi.org/10.1016/j.spa.2016.05.004 doi: 10.1016/j.spa.2016.05.004 |
[22] | D. Kim, X. B. Kong, C. X. Li, Y. Z. Wang, Adaptive thresholding for large volatility matrix estimation based on high-frequency financial data, J. Econometrics, 203 (2018), 69–79. https://doi.org/10.1016/J.JECONOM.2017.09.006 doi: 10.1016/J.JECONOM.2017.09.006 |
[23] | M. Fukasawa, Central limit theorem for the realized volatility based on tick time sampling, Financ. Stoch., 14 (2010), 209–233. https://doi.org/10.1007/s00780-008-0087-3 doi: 10.1007/s00780-008-0087-3 |
[24] | M. Fukasawa, M. Rosenbaum, Central limit theorems for realized volatility under hitting times of an irregular grid, Stoch. Proc. Appl., 122 (2012), 3901–3920. https://doi.org/10.1016/j.spa.2012.08.005 doi: 10.1016/j.spa.2012.08.005 |
[25] | M. Fukasawa, Realized volatility with stochastic sampling, Stoch. Proc. Appl., 120 (2010), 829–852. https://doi.org/10.1016/j.spa.2010.02.006 doi: 10.1016/j.spa.2010.02.006 |
[26] | E. Renault, B. J. Werker, Causality effects in return volatility measures with random times, J. Econometrics., 160 (2011), 272–279. https://doi.org/10.1016/j.jeconom.2010.03.036 doi: 10.1016/j.jeconom.2010.03.036 |
[27] | Y. Li, E. Renault, P. A. Mykland, L. Zhang, X. Zheng, Realized volatility when sampling times are possibly endogenous, Economet. Theor., 30 (2014), 580–605. https://doi.org/10.1017/s0266466613000418 doi: 10.1017/s0266466613000418 |
[28] | C. X. Li, J. Y. Chen, Z. Liu, B. Y. Jing, On integrated volatility of Ito semimartingales when sampling times are endogenous, Commun. Stat-Theor. M., 43 (2014), 5263–5275. https://doi.org/10.1080/03610926.2012.730169 doi: 10.1080/03610926.2012.730169 |
[29] | Y. Li, Z. Zhang, X. Zheng, Volatility inference in the presence of both endogenous time and microstructure noise, Stoch. Proc. Appl., 123 (2013), 2696–2727. https://doi.org/10.1016/j.spa.2013.04.002 doi: 10.1016/j.spa.2013.04.002 |
[30] | C. X. Li, E. L. Guo, Estimation of the integrated volatility using noisy high-frequency data with jumps and endogeneity, Commun. Stat-Theor. M., 47 (2018), 521–531. https://doi.org/10.1080/03610926.2017.1307403 doi: 10.1080/03610926.2017.1307403 |
[31] | B. Y. Jing, Z. Liu, X. B. Kong, On the estimation of integrated volatility with jumps and microstructure noise, J. Bus. Econ. Stat., 32 (2014), 457–467. http://dx.doi.org/10.1080/07350015.2014.906350 doi: 10.1080/07350015.2014.906350 |