Research article Special Issues

The preview control of a corticothalamic model with disturbance

  • Received: 06 November 2023 Revised: 20 December 2023 Accepted: 08 January 2024 Published: 12 January 2024
  • Based on a neural field network model with impulsive and random disturbances, a preview control method that makes full use of known future information is proposed to reduce the static error of the target signal and the transient oscillatory behavior of the controlled system when it receives random disturbance inputs. The preview controller for epileptic seizures is constructed, and the feasibility and effectiveness of clinical single-target and multi-target stimulation in epilepsy regulation are explored from a computational perspective. In addition, a performance index function is proposed to evaluate the energy consumption of controller with and without preview under different input (target) strategies. Suggestions for different strategies are given in terms of the individualized disease environment of patients. From the perspective of seizure control effectiveness and performance consumption, the results show that the preview controller has a greater advantage. The theory of preview control is applied to the control of epileptic seizures for the first time, and the conclusions of the multifaceted study provide some references for clinical trials and controller applications.

    Citation: Denggui Fan, Yingxin Wang, Jiang Wu, Songan Hou, Qingyun Wang. The preview control of a corticothalamic model with disturbance[J]. Electronic Research Archive, 2024, 32(2): 812-835. doi: 10.3934/era.2024039

    Related Papers:

  • Based on a neural field network model with impulsive and random disturbances, a preview control method that makes full use of known future information is proposed to reduce the static error of the target signal and the transient oscillatory behavior of the controlled system when it receives random disturbance inputs. The preview controller for epileptic seizures is constructed, and the feasibility and effectiveness of clinical single-target and multi-target stimulation in epilepsy regulation are explored from a computational perspective. In addition, a performance index function is proposed to evaluate the energy consumption of controller with and without preview under different input (target) strategies. Suggestions for different strategies are given in terms of the individualized disease environment of patients. From the perspective of seizure control effectiveness and performance consumption, the results show that the preview controller has a greater advantage. The theory of preview control is applied to the control of epileptic seizures for the first time, and the conclusions of the multifaceted study provide some references for clinical trials and controller applications.



    加载中


    [1] Y. Aghakhani, A. P. Bagshaw, C. G. Bénar, C. Hawco, F. Andermann, F. Dubeau, et al., fMRI activation during spike and wave discharges in idiopathic generalized epilepsy, Brain, 127 (2004), 1127–1144. https://doi.org/10.1093/brain/awh136 doi: 10.1093/brain/awh136
    [2] P. N. Taylor, G. Baier, A spatially extended model for macroscopic spike-wave discharges, J. Comput. Neurosci., 31 (2011), 679–684. https://doi.org/10.1007/s10827-011-0332-1 doi: 10.1007/s10827-011-0332-1
    [3] J. G. Milton, Epilepsy as a dynamic disease: a tutorial of the past with an eye to the future, Epilepsy Behav., 18 (2010), 33–34. https://doi.org/10.1016/j.yebeh.2010.03.002 doi: 10.1016/j.yebeh.2010.03.002
    [4] F. H. L. da Silva, W. Blanes, S. N. Kalitzin, J. Parra, P. Suffczynski, D. N. Velis, Dynamical diseases of brain systems: different routes to epileptic seizures, IEEE Trans. Biomed. Eng., 50 (2003), 540–548. https://doi.org/10.1109/TBME.2003.810703 doi: 10.1109/TBME.2003.810703
    [5] F. H. L. da Silva, J. P. Pijn, W. J. Wadman, Dynamics of local neuronal networks: control parameters and state bifurcations in epileptogenesis, Progr. Brain Res., 102 (1994), 359–370. https://doi.org/10.1016/S0079-6123(08)60552-X doi: 10.1016/S0079-6123(08)60552-X
    [6] M. C. Mackey, L. Glass, Oscillation and chaos in physiological control systems, Science, 197 (1977), 287–289. https://doi.org/10.1126/science.267326 doi: 10.1126/science.267326
    [7] L. Glass, M. C. Mackey, Pathological conditions resulting from instabilities in physiological control systems, Ann. N. Y. Acad. Sci., 316 (1979), 214–235. https://doi.org/10.1111/j.1749-6632.1979.tb29471.x doi: 10.1111/j.1749-6632.1979.tb29471.x
    [8] Z. C. Yang, D. G. Fan, Q. Y. Wang, G. M. Luan, Sharp decrease in the Laplacian matrix rank of phase-space graphs: a potential biomarker in epilepsy, Cognit. Neurodyn., 15 (2021), 649–659. https://doi.org/10.1007/s11571-020-09662-x doi: 10.1007/s11571-020-09662-x
    [9] P. Gloor, Neurophysiological basis of generalized seizures termed centrocephalic, in The Physiopathogenesis of the Epilepsies, Springfield, (1969), 209–236. Available from: https://cir.nii.ac.jp/crid/1573950399116067840.
    [10] W. W. Lytton, Computer modeling of epilepsy, Nat. Rev. Neurosci., 9 (2008), 626–637. https://doi.org/10.1038/nrn2416 doi: 10.1038/nrn2416
    [11] I. Soltesz, K. Staley, Computational Neuroscience in Epilepsy, Academic Press, San Diego, 2008. https://doi.org/10.1016/B978-0-12-373649-9.X5001-7
    [12] H. R. Wilson, J. D. Cowan, Excitatory and inhibitory interactions in localized populations of model neurons, Biophys. J., 12 (1972), 1–24. https://doi.org/10.1016/S0006-3495(72)86068-5 doi: 10.1016/S0006-3495(72)86068-5
    [13] J. G. Milton, P. H. Chu, J. D. Cowan, Spiral waves in integrate-and-fire neural network, in Advances in Neural Information Processing Systems, 5 (1992), 1001–1006. Available from: https://proceedings.neurips.cc/paper_files/paper/1992/file/07a96b1f61097ccb54be14d6a47439b0-Paper.pdf.
    [14] S. A. Hou, D. G. Fan, Q. Y. Wang, Regulating absence seizures by tri-phase delay stimulation applied to globus pallidus internal, Appl. Math. Mech., 43 (2022), 1399–1414. https://doi.org/10.1007/s10483-022-2896-7 doi: 10.1007/s10483-022-2896-7
    [15] R. P. Lesser, S. H. Kim, L. Beyderman, D. L. Miglioretti, W. R. Webber, M. Bare, et al., Brief bursts of pulse stimulation terminate afterdischarges caused by cortical stimulation, Neurology, 53 (1999), 1081–2073. https://doi.org/10.1212/WNL.53.9.2073 doi: 10.1212/WNL.53.9.2073
    [16] G. K. Motanedi, R. P. Lesser, D. L. Miglioretti, M. M. Yuko, B. Gordon, W. R. S. Webber, et al., Optimizing parameters for terminating cortical afterdischarges with pulse stimulation, Epilepsia, 43 (2002), 836–846. https://doi.org/10.1046/j.1528-1157.2002.24901.x doi: 10.1046/j.1528-1157.2002.24901.x
    [17] A. Ashourvan, S. Pequito, A. N. Khambhati, F. Mikhail, S. N. Baldassano, K. A. Davis, et al., Model-based design for seizure control by stimulation, J. Neural Eng., 17 (2020), 836–846. https://doi.org/10.1088/1741-2552/ab7a4e doi: 10.1088/1741-2552/ab7a4e
    [18] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983. https://doi.org/10.1007/978-1-4612-1140-2
    [19] S. H. Strogatz, Nonlinear Dynamics and Chaos, Addison-Wesley, New York, 1994. Available from: http://hdl.handle.net/1813/97.
    [20] H. S. Haghighi, A. H. Markazi, Control of epileptic seizures by electrical stimulation: a model-based study, Biomed. Phys. Eng. Express, 7 (2021), 065009. https://doi.org/10.1088/2057-1976/ac240d doi: 10.1088/2057-1976/ac240d
    [21] P. Suffczynski, S. Kalitzin, F. H. L. da Silva, Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network, Neuroscience, 126 (2004), 467–-484. https://doi.org/10.1016/j.neuroscience.2004.03.014 doi: 10.1016/j.neuroscience.2004.03.014
    [22] P. N. Taylor, Y. J. Wang, M. Goodfellow, J. Dauwels, F. Moeller, U. Stephani, et al., A computational study of stimulus driven epileptic seizure abatement, PLoS One, 9 (2014), e114316. https://doi.org/10.1371/journal.pone.0114316 doi: 10.1371/journal.pone.0114316
    [23] M. Breakspear, J. A. Roberts, J. R. Terry, S. Rodrigues, N. Mahant, P. A. Robinson, A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis, Cereb. Cortex, 16 (2006), 1296–1313. https://doi.org/10.1093/cercor/bhj072 doi: 10.1093/cercor/bhj072
    [24] M. Cetin, Model-based robust suppression of epileptic seizures without sensory measurements, Cognit. Neurodyn., 14 (2020), 51–67. https://doi.org/10.1007/s11571-019-09555-8 doi: 10.1007/s11571-019-09555-8
    [25] D. G. Fan, L. Y. Zhang, Q. Y. Wang, Transition dynamics and adaptive synchronization of time-delay interconnected corticothalamic systems via nonlinear control, Nonlinear Dyn., 94 (2018), 2807–2825. https://doi.org/10.1007/s11071-018-4526-1 doi: 10.1007/s11071-018-4526-1
    [26] M. A. Kramer, B. A. Lopour, H. E. Kirsch, A. J. Szeri, Bifurcation control of a seizing human cortex, Phys. Rev. E: Stat. Nonlinear Biol. Soft Matter Phys., 73 (2006), 041928. https://doi.org/10.1103/PhysRevE.73.041928 doi: 10.1103/PhysRevE.73.041928
    [27] P. N. Taylor, J. Thomas, N. Sinha, J. Dauwels, M. Kaiser, T. Thesen, et al., Optimal control based seizure abatement using patient derived connectivity, Front. Neurosci., 9 (2015). https://doi.org/10.3389/fnins.2015.00202
    [28] O. Zakary, M. Rachik, I. Elmouki, On the analysis of a multi-regions discrete SIR epidemic model: an optimal control approach, Int. J. Dyn. Control, 5 (2017), 917–930. https://doi.org/10.1007/s40435-016-0233-2 doi: 10.1007/s40435-016-0233-2
    [29] E. H. Essoufi, A. Zafrar, Boundary optimal control of time-space SIR model with nonlinear Robin boundary condition, Int. J. Dyn. Control, 10 (2022), 1279–1290. https://doi.org/10.1007/s40435-021-00886-1 doi: 10.1007/s40435-021-00886-1
    [30] S. Mollah, S. Biswas, Optimal control for the complication of Type 2 diabetes: the role of awareness programs by media and treatment, Int. J. Dynam. Control, 11 (2023), 877–891. https://doi.org/10.1007/s40435-022-01013-4 doi: 10.1007/s40435-022-01013-4
    [31] N. Birla, A. Swarup, Optimal preview control: a review, Optim. Control. Appl. Methods, 36 (2015), 241–268. https://doi.org/10.1002/oca.2106 doi: 10.1002/oca.2106
    [32] X. Yu, F. C. Liao, L. Li, New results on observer-based robust preview tracking control for Lipschitz nonlinear systems, J. Vib. Control, 27 (2020), 2081–2096. https://doi.org/10.1177/1077546320953650 doi: 10.1177/1077546320953650
    [33] A. Khalil, N. Fezans, Gust load alleviation for flexible aircraft using discrete-time preview control, Aeronaut. J., 125 (2020), 341–364. https://doi.org/10.1017/aer.2020.85 doi: 10.1017/aer.2020.85
    [34] L. Li, F. C. Liao, Design of a preview controller for discrete-time systems based on LMI, Math. Probl. Eng., 2015 (2015), 179126. https://doi.org/10.1155/2015/179126 doi: 10.1155/2015/179126
    [35] E. Sitnikova, Thalamo-cortical mechanisms of sleep spindles and spike–wave discharges in rat model of absence epilepsy (a review), Epilepsy Res., 89 (2010), 17–26. https://doi.org/10.1016/j.eplepsyres.2009.09.005 doi: 10.1016/j.eplepsyres.2009.09.005
    [36] B. M. Bouwman, P. Suffczynski, F. H. L. da Silva, E. Maris, C. V. van Rijn, GABAergic mechanisms in absence epilepsy: a computational model of absence epilepsy simulating spike and wave discharges after vigabatrin in WAG/Rij rats, Eur. J. Neurosci., 25 (2007), 2783–2790. https://doi.org/10.1111/j.1460-9568.2007.05533.x doi: 10.1111/j.1460-9568.2007.05533.x
    [37] J. C. Young, A. Paolini, M. Pedersen, G. Jackson, Genetic absence epilepsy: effective connectivity from piriform cortex to mediodorsal thalamus, Epilepsy Behav., 97 (2019), 219–228. https://doi.org/10.1016/j.yebeh.2019.05.042 doi: 10.1016/j.yebeh.2019.05.042
    [38] F. Marten, S. Rodrigues, P. Suffczynski, M. Richardson, J. R. Terry, Derivation and analysis of an ordinary differential equation mean-field model for studying clinically recorded epilepsy dynamics, Phys. Rev. E: Stat. Nonlinear Biol. Soft Matter Phys., 79 (2009), 021911. https://doi.org/10.1103/PHYSREVE.79.021911 doi: 10.1103/PHYSREVE.79.021911
    [39] Y. J. Wang, M. Goodfellow, P. N. Taylor, G. Baier, Phase space approach for modeling of epileptic dynamics, Phys. Rev. E: Stat. Nonlinear Biol. Soft Matter Phys., 85 (2012), 061918. https://doi.org/10.1103/PHYSREVE.85.061918 doi: 10.1103/PHYSREVE.85.061918
    [40] P. N. Taylor, M. Goodfellow, Y. J. Wang, G. Baier, Towards a large-scale model of patient-specific epileptic spike-wave discharges, Biol. Cybern., 107 (2013), 83–94. https://doi.org/10.1007/s00422-012-0534-2 doi: 10.1007/s00422-012-0534-2
    [41] X. Yu, Preview Control for Several Classes of Nonlinear Systems (in Chinese), Ph.D thesis, University of Science and Technology Beijing, 2019.
    [42] T. E. T. Tsuchiya, F. C. Liao, The Latest Automatic Control Technology - Digital Preview and Predictive Control, Beijing Science and Technology Press, Beijing, 1994.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(868) PDF downloads(61) Cited by(0)

Article outline

Figures and Tables

Figures(12)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog