Citation: Patrick Moriarty, Damon Honnery. The Earth We are Creating[J]. AIMS Energy, 2014, 2(2): 158-171. doi: 10.3934/energy.2014.2.158
[1] | Xiaoxue Zhao, Zhuchun Li . Synchronization of a Kuramoto-like model for power grids with frustration. Networks and Heterogeneous Media, 2020, 15(3): 543-553. doi: 10.3934/nhm.2020030 |
[2] | Tingting Zhu . Synchronization of the generalized Kuramoto model with time delay and frustration. Networks and Heterogeneous Media, 2023, 18(4): 1772-1798. doi: 10.3934/nhm.2023077 |
[3] | Seung-Yeal Ha, Yongduck Kim, Zhuchun Li . Asymptotic synchronous behavior of Kuramoto type models with frustrations. Networks and Heterogeneous Media, 2014, 9(1): 33-64. doi: 10.3934/nhm.2014.9.33 |
[4] | Tingting Zhu . Emergence of synchronization in Kuramoto model with frustration under general network topology. Networks and Heterogeneous Media, 2022, 17(2): 255-291. doi: 10.3934/nhm.2022005 |
[5] | Seung-Yeal Ha, Jaeseung Lee, Zhuchun Li . Emergence of local synchronization in an ensemble of heterogeneous Kuramoto oscillators. Networks and Heterogeneous Media, 2017, 12(1): 1-24. doi: 10.3934/nhm.2017001 |
[6] | Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang . Uniform stability and mean-field limit for the augmented Kuramoto model. Networks and Heterogeneous Media, 2018, 13(2): 297-322. doi: 10.3934/nhm.2018013 |
[7] | Seung-Yeal Ha, Hansol Park, Yinglong Zhang . Nonlinear stability of stationary solutions to the Kuramoto-Sakaguchi equation with frustration. Networks and Heterogeneous Media, 2020, 15(3): 427-461. doi: 10.3934/nhm.2020026 |
[8] | Seung-Yeal Ha, Se Eun Noh, Jinyeong Park . Practical synchronization of generalized Kuramoto systems with an intrinsic dynamics. Networks and Heterogeneous Media, 2015, 10(4): 787-807. doi: 10.3934/nhm.2015.10.787 |
[9] | Vladimir Jaćimović, Aladin Crnkić . The General Non-Abelian Kuramoto Model on the 3-sphere. Networks and Heterogeneous Media, 2020, 15(1): 111-124. doi: 10.3934/nhm.2020005 |
[10] | Young-Pil Choi, Seung-Yeal Ha, Seok-Bae Yun . Global existence and asymptotic behavior of measure valued solutions to the kinetic Kuramoto--Daido model with inertia. Networks and Heterogeneous Media, 2013, 8(4): 943-968. doi: 10.3934/nhm.2013.8.943 |
Synchronization in complex networks has been a focus of interest for researchers from different disciplines[1,2,4,8,15]. In this paper, we investigate synchronous phenomena in an ensemble of Kuramoto-like oscillators which is regarded as a model for power grid. In [9], a mathematical model for power grid is given by
$ Pisource=I¨θi˙θi+KD(˙θi)2−N∑l=1ailsin(θl−θi),i=1,2,…,N, $ | (1) |
where
By denoting
$ (˙θi)2=ωi+KNN∑l=1sin(θl−θi),˙θi>0,i=1,2,…,N. $ | (2) |
Here, the setting
If
$ (˙θi)2=ωi+KNN∑l=1sin(θl−θi+α),˙θi>0,i=1,2,…,N. $ | (3) |
We will find a trapping region such that any nonstationary state located in this region will evolve to a synchronous state.
The contributions of this paper are twofold: First, for identical oscillators without frustration, we show that the initial phase configurations located in the half circle will converge to complete phase and frequency synchronization. This extends the analytical results in [5] in which the initial phase configuration for synchronization needs to be confined in a quarter of circle. Second, we consider the nonidentical oscillators with frustration and present a framework leading to the boundness of the phase diameter and complete frequency synchronization. To the best of our knowledge, this is the first result for the synchronization of (3) with nonidentical oscillators and frustration.
The rest of this paper is organized as follows. In Section 2, we recall the definitions for synchronization and summarize our main results. In Section 3, we give synchronization analysis and prove the main results. Finally, Section 4 is devoted to a concluding summary.
Notations. We use the following simplified notations throughout this paper:
$ νi:=˙θi,i=1,2,…,N,ω:=(ω1,ω2,…,ωN),ˉω:=max1≤i≤Nωi,ω_:=min1≤i≤Nωi,D(ω):=ˉω−ω_,θM:=max1≤i≤Nθi,θm:=min1≤i≤Nθi,D(θ):=θM−θm,νM:=max1≤i≤Nνi,νm:=min1≤i≤Nνi,D(ν):=νM−νm,θνM∈{θj|νj=νM},θνm∈{θj|νj=νm}. $ |
In this paper, we consider the system
$ (˙θi)2=ωi+KNN∑l=1sin(θl−θi+α),˙θi>0,α∈(−π4,π4),θi(0)=θ0i,i=1,2,…,N. $ | (4) |
Next we introduce the concepts of complete synchronization and conclude this introductory section with the main result of this paper.
Definition 2.1. Let
1. it exhibits asymptotically complete phase synchronization if
$ limt→∞(θi(t)−θj(t))=0,∀i≠j. $ |
2. it exhibits asymptotically complete frequency synchronization if
$ limt→∞(˙θi(t)−˙θj(t))=0,∀i≠j. $ |
For identical oscillators without frustration, we have the following result.
Theorem 2.2. Let
$ θ0∈A:={θ∈[0,2π)N:D(θ)<π}, $ |
then there exits
$ D(θ(t))≤D(θ0)e−λ1t,t≥0. $ | (5) |
and
$ D(ν(t))≤D(ν(t0))e−λ2(t−t0),t≥t0. $ | (6) |
Next we introduce the main result for nonidentical oscillators with frustration. For
$ K_{c}: = \frac{D({\omega})\sqrt{2\bar{\omega}}}{1-\sqrt{2\bar{\omega}}\sin|\alpha|} > 0. $ |
For suitable parameters, we denote by
$ sinD∞1=sinD∞∗:=√ˉω+K(D(ω)+Ksin|α|)K√ω_−K,0<D∞1<π2<D∞∗<π. $ |
Theorem 2.3. Let
$ θ0∈B:={θ∈[0,2π)N|D(θ)<D∞∗−|α|}, $ |
then for any small
$ D(ν(t))≤D(ν(T))e−λ3(t−T),t≥T. $ | (7) |
Remark 1. If the parametric conditions in Theorem 2.3 are fulfilled, the reference angles
$ D(ω)√2ˉω1−√2ˉωsin|α|<K,1−√2ˉωsin|α|>0. $ |
This implies
$ √2ˉω(D(ω)+Ksin|α|)K<1. $ |
Then, by
$ sinD∞1=sinD∞∗:=√ˉω+K(D(ω)+Ksin|α|)K√ω_−K≤√2ˉω(D(ω)+Ksin|α|)K<1. $ |
Remark 2. In order to make
In this subsection we consider the system (4) with identical natural frequencies and zero frustration:
$ (˙θi)2=ω0+KNN∑l=1sin(θl−θi),˙θi>0,i=1,2,…,N. $ | (8) |
To obtain the complete synchronization, we need to derive a trapping region. We start with two elementary estimates for the transient frequencies.
Lemma 3.1. Suppose
$ (˙θi−˙θj)(˙θi+˙θj)=2KNN∑l=1cos(θl−θi+θj2)sinθj−θi2. $ |
Proof. It is immediately obtained by (8).
Lemma 3.2. Suppose
$ ˙θi≤√ω0+K. $ |
Proof. It follows from (8) and
$ (˙θi)2=ω0+KNN∑l=1sin(θl−θi)≤ω0+K. $ |
Next we give an estimate for trapping region and prove Theorem 2.2. For this aim, we will use the time derivative of
Lemma 3.3. Let
Proof. For any
$ T:={T∈[0,+∞)|D(θ(t))<D∞,∀t∈[0,T)}. $ |
Since
$ D(θ(t))<D∞,t∈[0,η). $ |
Therefore, the set
$ T∗=∞. $ | (9) |
Suppose to the contrary that
$ D(θ(t))<D∞,t∈[0,T∗),D(θ(T∗))=D∞. $ |
We use Lemma 3.1 and Lemma 3.2 to obtain
$ 12ddtD(θ(t))2=D(θ(t))ddtD(θ(t))=(θM−θm)(˙θM−˙θm)=(θM−θm)1˙θM+˙θm2KNN∑l=1cos(θl−θM+θm2)sin(θm−θM2)≤(θM−θm)1˙θM+˙θm2KNN∑l=1cosD∞2sin(θm−θM2)≤(θM−θm)1√ω0+KKNN∑l=1cosD∞2sin(θm−θM2)=−2KcosD∞2√ω0+KD(θ)2sinD(θ)2≤−KcosD∞2π√ω0+KD(θ)2,t∈[0,T∗). $ |
Here we used the relations
$ −D∞2<−D(θ)2≤θl−θM2≤0≤θl−θm2≤D(θ)2<D∞2 $ |
and
$ xsinx≥2πx2,x∈[−π2,π2]. $ |
Therefore, we have
$ ddtD(θ)≤−KcosD∞2π√ω0+KD(θ),t∈[0,T∗), $ | (10) |
which implies that
$ D(θ(T∗))≤D(θ0)e−KcosD∞2π√ω0+KT∗<D(θ0)<D∞. $ |
This is contradictory to
Now we can give a proof for Theorem 2.2.
Proof of Theorem 2.2.. According to Lemma 3.3, we substitute
On the other hand, by (5) there exist
$ ˙νi=K2NνiN∑l=1cos(θl−θi)(νl−νi). $ |
Using Lemma 3.2, we now consider the temporal evolution of
$ ddtD(ν)=˙νM−˙νm=K2NνMN∑l=1cos(θl−θνM)(νl−νM)−K2NνmN∑l=1cos(θl−θνm)(νl−νm)≤Kcosδ2NνMN∑l=1(νl−νM)−Kcosδ2NνmN∑l=1(νl−νm)≤K2Ncosδ√ω0+KN∑l=1(νl−νM)−K2Ncosδ√ω0+KN∑l=1(νl−νm)=Kcosδ2N√ω0+KN∑l=1(νl−νM−νl+νm)=−Kcosδ2√ω0+KD(ν),t≥t0. $ |
This implies that
$ D(ν(t))≤D(ν(t0))e−Kcosδ2√ω0+K(t−t0),t≥t0, $ |
and proves (6) with
Remark 3. Theorem 2.2 shows, as long as the initial phases are confined inside an arc with geodesic length strictly less than
In this subsection, we prove the main result for nonidentical oscillators with frustration.
Lemma 3.4. Let
$ (˙θi−˙θj)(˙θi+˙θj)≤D(ω)+KNN∑l=1[sin(θl−θi+α)−sin(θl−θj+α)]. $ |
Proof. By (4) and for any
$ (˙θi−˙θj)(˙θi+˙θj)=(˙θi)2−(˙θj)2, $ |
the result is immediately obtained.
Lemma 3.5. Let
$ ˙θi∈[√ω_−K,√ˉω+K],∀i=1,2,…,N. $ |
Proof. From (4), we have
$ ω_−K≤(˙θi)2≤ˉω+K,∀i=1,2,…,N, $ |
and also because
Lemma 3.6. Let
Proof. We define the set
$ T:={T∈[0,+∞)|D(θ(t))<D∞∗−|α|,∀t∈[0,T)},T∗:=supT. $ |
Since
$ T∗=∞. $ |
Suppose to the contrary that
$ D(θ(t))<D∞∗−|α|,t∈[0,T∗),D(θ(T∗))=D∞∗−|α|. $ |
We use Lemma 3.4 to obtain
$ 12ddtD(θ)2=D(θ)ddtD(θ)=D(θ)(˙θM−˙θm)≤D(θ)1˙θM+˙θm[D(ω)+KNN∑l=1(sin(θl−θM+α)−sin(θl−θm+α))]⏟I. $ |
For
$ I=D(ω)+KcosαNN∑l=1[sin(θl−θM)−sin(θl−θm)]+KsinαNN∑l=1[cos(θl−θM)−cos(θl−θm)]. $ |
We now consider two cases according to the sign of
(1)
$ I≤D(ω)+KcosαsinD(θ)ND(θ)N∑l=1[(θl−θM)−(θl−θm)]+KsinαNN∑l=1[1−cosD(θ)]=D(ω)−K[sin(D(θ)+α)−sinα]=D(ω)−K[sin(D(θ)+|α|)−sin|α|]. $ |
(2)
$ I≤D(ω)+KcosαsinD(θ)ND(θ)N∑l=1[(θl−θM)−(θl−θm)]+KsinαNN∑l=1[cosD(θ)−1]=D(ω)−K[sin(D(θ)−α)+sinα]=D(ω)−K[sin(D(θ)+|α|)−sin|α|]. $ |
Here we used the relations
$ sin(θl−θM)θl−θM,sin(θl−θm)θl−θm≥sinD(θ)D(θ), $ |
and
$ cosD(θ)≤cos(θl−θM),cos(θl−θm)≤1,l=1,2,…,N. $ |
Since
$ I≤D(ω)−K[sin(D(θ)+|α|)−sin|α|] $ | (11) |
$ ≤D(ω)+Ksin|α|−KsinD∞∗D∞∗(D(θ)+|α|). $ | (12) |
By (12) and Lemma 3.5 we have
$ 12ddtD(θ)2≤D(θ)1˙θM+˙θm(D(ω)+Ksin|α|−KsinD∞∗D∞∗(D(θ)+|α|))=D(ω)+Ksin|α|˙θM+˙θmD(θ)−KsinD∞∗D∞∗(˙θM+˙θm)D(θ)(D(θ)+|α|)≤D(ω)+Ksin|α|2√ω_−KD(θ)−KsinD∞∗D∞∗2√ˉω+KD(θ)(D(θ)+|α|),t∈[0,T∗). $ |
Then we obtain
$ ddtD(θ)≤D(ω)+Ksin|α|2√ω_−K−KsinD∞∗2D∞∗√ˉω+K(D(θ)+|α|),t∈[0,T∗), $ |
i.e.,
$ ddt(D(θ)+|α|)≤D(ω)+Ksin|α|2√ω_−K−KsinD∞∗2D∞∗√ˉω+K(D(θ)+|α|)=KsinD∞∗2√ˉω+K−KsinD∞∗2D∞∗√ˉω+K(D(θ)+|α|),t∈[0,T∗). $ |
Here we used the definition of
$ D(θ(t))+|α|≤D∞∗+(D(θ0)+|α|−D∞∗)e−KsinD∞∗2D∞∗√ˉω+Kt,t∈[0,T∗), $ |
Thus
$ D(θ(t))≤(D(θ0)+|α|−D∞∗)e−KsinD∞∗2D∞∗√ˉω+Kt+D∞∗−|α|,t∈[0,T∗). $ |
Let
$ D(θ(T∗))≤(D(θ0)+|α|−D∞∗)e−KsinD∞∗2D∞∗√ˉω+KT∗+D∞∗−|α|<D∞∗−|α|, $ |
which is contradictory to
$ T∗=∞. $ |
That is,
$ D(θ(t))≤D∞∗−|α|,∀t≥0. $ |
Lemma 3.7. Let
$ ddtD(θ(t))≤D(ω)+Ksin|α|2√ω_−K−K2√ˉω+Ksin(D(θ)+|α|),t≥0. $ |
Proof. It follows from (11) and Lemma 3.5, Lemma 3.6 and that we have
$ 12ddtD(θ)2=D(θ)ddtD(θ)≤D(θ)1˙θM+˙θm[D(ω)−K(sin(D(θ)+|α|)−sin|α|)]=D(ω)+Ksin|α|˙θM+˙θmD(θ)−Ksin(D(θ)+|α|)˙θM+˙θmD(θ)≤D(ω)+Ksin|α|2√ω_−KD(θ)−Ksin(D(θ)+|α|)2√ˉω+KD(θ),t≥0. $ |
The proof is completed.
Lemma 3.8. Let
$ D(θ(t))<D∞1−|α|+ε,t≥T. $ |
Proof. Consider the ordinary differential equation:
$ ˙y=D(ω)+Ksin|α|2√ω_−K−K2√ˉω+Ksiny,y(0)=y0∈[0,D∞∗). $ | (13) |
It is easy to find that
$ |y(t)−y∗|<ε,t≥T. $ |
In particular,
$ D(θ(t))+|α|<D∞1+ε,t≥T, $ |
which is the desired result.
Remark 4. Since
$ sinD∞1≥D(ω)K+sin|α|>sin|α|, $ |
we have
Proof of Theorem 2.3. It follows from Lemma 3.8 that for any small
$ supt≥TD(θ(t))<D∞1−|α|+ε<π2. $ |
We differentiate the equation (4) to find
$ ˙νi=K2NνiN∑l=1cos(θl−θi+α)(νl−νi),νi>0. $ |
We now consider the temporal evolution of
$ ddtD(ν)=˙νM−˙νm=K2NνMN∑l=1cos(θl−θνM+α)(νl−νM)−K2NνmN∑l=1cos(θl−θνm+α)(νl−νm)≤K2NνMN∑l=1cos(D∞1+ε)(νl−νM)−K2NνmN∑l=1cos(D∞1+ε)(νl−νm)≤Kcos(D∞1+ε)2N√ˉω+KN∑l=1(νl−νM−νl+νm)=−Kcos(D∞1+ε)2√ˉω+KD(ν),t≥T, $ |
where we used
$ cos(θl−θνM+α),cos(θl−θνm+α)≥cos(D∞1+ε),andνM,νm≤√ˉω+K. $ |
Thus we obtain
$ D(ν(t))≤D(ν(T))e−Kcos(D∞1+ε)2√ˉω+K(t−T),t≥T, $ |
and proves (7) with
In this paper, we presented synchronization estimates for the Kuramoto-like model. We show that for identical oscillators with zero frustration, complete phase synchronization occurs exponentially fast if the initial phases are confined inside an arc with geodesic length strictly less than
We would like to thank the anonymous referee for his/her comments which helped us to improve this paper.
[1] |
Rockström J, Steffen W, Noone K, et al. (2009) A safe operating space for humanity. Nature 461: 472-475. doi: 10.1038/461472a
![]() |
[2] |
Steffen W, Grinevald J, Crutzen P, et al. (2011) The Anthropocene: conceptual and historical perspectives. Phil Trans Roy Soc A 369: 842-867. doi: 10.1098/rsta.2010.0327
![]() |
[3] | BP (2013) BP Statistical Review Of World Energy London: BP. |
[4] | United Nations (UN) (2012) World Population Prospects: The 2012 Revision. Accessed on 20 March 2014 at (http://esa.un.org/unpd/wpp/Excel-Data/population.htm). |
[5] | Energy Information Administration (EIA) (2011) International Energy Outlook 2011. US Dept. of Energy. Available at (http://www.eia.gov/forecasts/ieo/pdf/0484(2011).pdf). |
[6] | Moriarty P, Honnery D (2011) Rise and Fall of the Carbon Civilisation. London: Springer. |
[7] |
Moriarty P, Honnery D (2014) Reconnecting technology with human welfare. Futures 55: 32-40. doi: 10.1016/j.futures.2013.12.003
![]() |
[8] | Stocker TF, Qin D, Plattner GK, et al. (eds) Climate Change 2013: The Physical Science Basis. Cambridge, UK: CUP. |
[9] | Maddison A (2010) Statistics on world population, GDP and per capita GDP, 1-2006 AD. Accessed on 22 March 2014 at (http://www.ggdc.net/maddison/). |
[10] | Smil V (2002) The Earth’s Biosphere: Evolution, Dynamics and Change. Cambridge, MA: MIT Press. |
[11] | Nicol S (2011) Givers of life. New Sci 9 July: 36-39. |
[12] |
Barnosky AD, Matzke N, Tomiya1 S (2011) Has the Earth’s sixth mass extinction already arrived? Nature 471: 51-57. doi: 10.1038/nature09678
![]() |
[13] | Heinberg R (2007) Peak Everything: Waking up to the Century of Decline in Earth’s Resources. Forest Row, UK: Clairview. |
[14] |
Campbell CJ (2013) Recognising the second half of the oil age. Environ Innovation Soc Transitions 9: 13-17. doi: 10.1016/j.eist.2013.08.004
![]() |
[15] | Wikipedia (2014) Catastrophism. Accessed on 20 March 2014 at (http://en.wikipedia.org/wiki/Catastrophists). |
[16] |
Gould SJ, Eldridge N (1993) Punctuated equilibrium comes of age. Nature 366: 223-226. doi: 10.1038/366223a0
![]() |
[17] |
Velders GJM, Fahey DW, Daniel JS et al. (2009) The large contribution of projected HFC emissions to future climate forcing. Proc Nat Acad Sci 106: 10949-10954. doi: 10.1073/pnas.0902817106
![]() |
[18] | Laurance W (2008) Tipping the balance. The Ecologist 38(6): 37-41. |
[19] | Ditlevsen PD, Johnsen SJ (2010) Tipping points: Early warning and wishful thinking. Geophys Res Lett 37: 19703. |
[20] | Tierney K (2008) Hurricane in New Orleans? Who knew? Anticipating Katrina and its devastation. Sociol Inquiry 78(2): 179-183. |
[21] | Brulle RJ (2014) Institutionalizing delay: Foundation funding and the creation of U.S. climate change counter-movement organizations. Clim Change DOI 10.1007/s10584-013-1018-7. |
[22] | Moriarty P, Honnery D (2010) A human needs approach to reducing atmospheric carbon. Energy Policy 38(2): 695-700. |
[23] |
Moriarty P, Honnery D (2011) Is there an optimum level for renewable energy? Energy Policy 39: 2748-2753. doi: 10.1016/j.enpol.2011.02.044
![]() |
[24] | Van Vuuren DP, Stehfest E, den Elzen MGJ, et al. (2011) RCP2.6: Exploring the possibility to keep global mean temperature increase below 2 ℃. Clim Change 109: 95-116. |
[25] | Dittmar M (2013) The end of cheap uranium. Sci Total Environ 461: 792-798. |
[26] | Searle SY, Malins CJ (2014) Will energy crop yields meet expectations? Biomass Bioenergy Available at: http://dx.doi.org/10.1016/j.biombioe.2014.01.001. |
[27] | Keller DP, Feng EY, Oschlies A (2014) Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario. Nature Comm 5: 1-11 |
[28] |
Van Vuuren DP, Edmonds J, Kainuma M, et al. (2011) The representative concentration pathways: An overview. Clim Change 109: 5-31. doi: 10.1007/s10584-011-0148-z
![]() |
[29] |
Moriarty P, Honnery D (2007) Bioenergy: problems and prospects. Int J Global Energy Issues 27: 231-249. doi: 10.1504/IJGEI.2007.013657
![]() |
[30] | Moriarty P, Honnery D (2009) What energy levels can the Earth sustain? Energy Policy 37: 2469–2474. |
[31] |
Van Vuuren DP, Sebastiaan D, van Ruijven BJ, et al (2013) The role of negative CO2 emissions for reaching 2 ℃—insights from integrated assessment modelling. Clim Change 118: 15-27. doi: 10.1007/s10584-012-0680-5
![]() |
[32] |
Krausmann F, Erb KH, Gringrich S, et al. (2013) Global human appropriation of net primary production doubled in the 20th century. PNAS 110: 10324-10329. doi: 10.1073/pnas.1211349110
![]() |
[33] |
Moriarty P, Honnery D (2012) What is the global potential for renewable energy? Renew Sus Energy Rev 16: 244-252. doi: 10.1016/j.rser.2011.07.151
![]() |
[34] |
Moriarty P, Honnery D (2012) Preparing for a low-energy future. Futures 44: 883-892. doi: 10.1016/j.futures.2012.08.002
![]() |
[35] | Hansen J, Sato M, Kharecha P, et al. (2011) Earth's energy imbalance and implications. Available at: http://arxiv.org/ftp/arxiv/papers/1105/1105.1140.pdf. |
[36] | Roe G (2010) Knowability and no ability in climate projections. Available at: http://earthweb.ess.washington.edu/roe/GerardWeb/Publications_files/Roe_Knowability_EPA.pdf. |
[37] |
Kitzes J, Wackernagel M, Loh J, et al. (2008) Shrink and share: Humanity's present and future Ecological Footprint. Phil Trans Roy Soc B 363: 467-475. doi: 10.1098/rstb.2007.2164
![]() |
1. | Sha Xu, Xiaoyue Huang, Hua Zhang, 2024, Synchronization of a Kuramoto-like Model with Time Delay and Phase Shift, 978-9-8875-8158-1, 5299, 10.23919/CCC63176.2024.10662837 | |
2. | Sun-Ho Choi, Hyowon Seo, Inertial power balance system with nonlinear time-derivatives and periodic natural frequencies, 2024, 129, 10075704, 107695, 10.1016/j.cnsns.2023.107695 |