Citation: Habibe Sadeghi, Maryam Esmaeili. A modification of the trilevel Kth-Best algorithm[J]. AIMS Mathematics, 2018, 3(4): 524-538. doi: 10.3934/Math.2018.4.524
[1] | Habibe Sadeghi, Fatemeh Moslemi . A multiple objective programming approach to linear bilevel multi-follower programming. AIMS Mathematics, 2019, 4(3): 763-778. doi: 10.3934/math.2019.3.763 |
[2] | B. El-Sobky, G. Ashry . An interior-point trust-region algorithm to solve a nonlinear bilevel programming problem. AIMS Mathematics, 2022, 7(4): 5534-5562. doi: 10.3934/math.2022307 |
[3] | B. El-Sobky, G. Ashry, Y. Abo-Elnaga . An active-set with barrier method and trust-region mechanism to solve a nonlinear Bilevel programming problem. AIMS Mathematics, 2022, 7(9): 16112-16146. doi: 10.3934/math.2022882 |
[4] | Yiyuan Cheng, Yongquan Zhang, Xingxing Zha, Dongyin Wang . On stochastic accelerated gradient with non-strongly convexity. AIMS Mathematics, 2022, 7(1): 1445-1459. doi: 10.3934/math.2022085 |
[5] | Essam R. El-Zahar . Approximate analytical solution of singularly perturbed boundary value problems in MAPLE. AIMS Mathematics, 2020, 5(3): 2272-2284. doi: 10.3934/math.2020150 |
[6] | B. El-Sobky, Y. Abo-Elnaga, G. Ashry, M. Zidan . A nonmonton active interior point trust region algorithm based on CHKS smoothing function for solving nonlinear bilevel programming problems. AIMS Mathematics, 2024, 9(3): 6528-6554. doi: 10.3934/math.2024318 |
[7] | Chenyang Hu, Yuelin Gao, Eryang Guo . Fractional portfolio optimization based on different risk measures in fuzzy environment. AIMS Mathematics, 2025, 10(4): 8331-8363. doi: 10.3934/math.2025384 |
[8] | Ying Sun, Yuelin Gao . An improved composite particle swarm optimization algorithm for solving constrained optimization problems and its engineering applications. AIMS Mathematics, 2024, 9(4): 7917-7944. doi: 10.3934/math.2024385 |
[9] | Zijian Wang, Xinhui Shao . A new type of generic, self-evolving and efficient automated deduction algorithm based on category theory. AIMS Mathematics, 2023, 8(8): 18278-18294. doi: 10.3934/math.2023929 |
[10] | Mohammad H. Almomani, Mahmoud H. Alrefaei . Selecting a set of best stochastic inventory policies measured by opportunity cost. AIMS Mathematics, 2023, 8(2): 4892-4906. doi: 10.3934/math.2023244 |
Multilevel programming deals with decision-making situations in which decision makers are arranged within a hierarchical structure. Trilevel programming, the case of multilevel programming containing three planner, occurs in a variety of applications such as planning [6,7], security and accident management [1,18], supply chain management [14,17], economics, [10] and decentralized inventory [9]. In a trilevel decision-making process, the first-level planner (leader), in attempting to optimize his objective function, chooses values for the variables that he controls. Next, the second-level planner in attempting to optimize his objective function while considering the reactions of the third-level planner chooses values for the variables that he controls. Lastly, the third-level planner, with regard to the decisions made by the previous levels, optimizes his own objective function. A number of researchers have studied the linear trilevel programming (LTLP) problem, and have proposed some procedures to solve it. Some algorithms are proposed based on penalty method [16], Kuhn-Tucker transformation [2], multi-parametric approach [5], and enumerating extreme points of constraint region [19] to find the exact optimal solution to special classes of trilevel programming problem. In addition, because of the complexity of solving trilevel problems especially for large-scale problems, some other researches attempted to use fuzzy [13] and meta-heuristic approaches [8,15] to find good approximate solutions for these problems. For a good bibliography of the solution approaches to solve trilevel programming problems, the interested reader can refer to [11].
The present study investigates the trilevel Kth-best algorithm offered by Zhang et. al. [19] at a higher level of accuracy. First, some of the geometric properties of the feasible region of the LTLP problem have been stated and proven. It ought to be mentioned that despite the similarity of some presented theoretical results in this paper with Ref. [19], the techniques of the proof are different. Then, a modified version of the trilevel Kth-Best algorithm has been proposed regarding unboundedness of objective functions in both the second level and third level which is not considered in the proposed Kth-Best algorithm in reference [19]. Moreover, it is shown that the amount of computations in the solving process by the modified trilevel Kth-Best algorithm is less than of that of the solving process by the traditional trilevel Kth-Best algorithm. In addition, in case of finding the optimal solution of linear trilevel programming problems with conflicting objective functions, the modified Kth-Best algorithm is capable of giving more accurate solutions.
The organization of the paper is as follows. Basic definitions concerning LTLP problem that we shall investigate, are presented in Section 2. Some theoretical and geometric properties of the LTLP problem are studied in Section 3. Based on the facts stated in Section 3, a modified trilevel Kth-Best algorithm is proposed to solve the LTLP problem in Section 4. To show the superiority of the proposed algorithm over the traditional Kth-Best algorithm, some numerical examples are presented in Section 5. Ultimately, the paper is concluded with Section 6.
As it is mentioned before, we consider the linear trilevel programming problem which can be formulated as follows:
minx1∈X1f1(x1,x2,x3)=3∑j=1αT1jxjs.t3∑j=1A1jxj≤b1where x2,x3 solve:minx2∈X2f2(x1,x2,x3)=3∑j=1αT2jxjs.t3∑j=1A2jxj≤b2where x3 solves:minx3∈X3f3(x1,x2,x3)=3∑j=1αT3jxjs.t3∑j=1A3jxj≤b3 | (2.1) |
where
In this section, we state some definitions and notations about the LTLP problem.
● Constraint region:
● Constraint region for middle and bottom level, for fixed
● Feasible set for the level 3, for fixed
● Rational reaction set for level 3, for fixed
● Feasible set for level 2, for fixed
● Rational reaction set for level 2, for fixed
● Inducible region :
In the above definitions, the term
Definition 2.1. A point
Definition 2.2. A feasible point
In view of the above Definitions, determining the solution for the LTLP problem (2.1) is equal to solve the following problem:
min{f1(x1,x2,x3):(x1,x2,x3)∈IR}. | (2.2) |
In this section, we will demonstrate some geometric properties of the problem (2.1). Let
Assumption 3.1.
Assumption 3.2.
Assumption 3.3.
Note that by Assumption 3.1, we can conclude that
Example 3.1.
maxx1x1+10x2−2x3+x4s.t0≤x1≤1maxx2,x3x2+2x3s.tx2+x3≤x10≤x2,x3≤1x4=0maxx4x4s.tx4≤x3x4≤1−x3 |
In this example, we have
Ψ3(x1,x2,x3)={x3 if 0≤x3≤12,1−x3 if 12≤x3≤1. |
Then,
and
Ψ2(x1)=argmax{x2+2x3:(x2,x3,x4)∈Ω2(x1)} | (3.1) |
It is clear that if
Ψ2(x1)={(x1,0,0) if0≤x1<1(0,1,0) ifx1=1 |
It is evident that
Lemma 3.1. Let
Proof. It follows from
minx2≥03∑j=2αT2jxjs.t3∑j=2A2jxj≤b2−A21ˉx1where x3 solves:minx3≥03∑j=2αT3jxjs.t3∑j=2A3jxj≤b3−A31ˉx1 | (3.2) |
By Theorem 5.2.2 of [3] we conclude that
Since
Thus, it can be concluded that
Corollary 3.1. Let
Proof. The statement is immediately derived from the fact that
Theorem 3.1. Let
Proof. Let
Moreover, we can choose
Besides, for all
Consequently, from Corollary 3.1, it can be concluded that:
In addition,
Eventually,
If we repeat the process, we can construct from
Therefore, we approach point
Corollary 3.2. The inducible region of the LTLP problem can be written as the union of some faces of S that are not necessarily connected.
Corollary 3.3. If
Proof. Notice that the problem (2.2) can be written equivalently as
min{f1(x1,x2,x3):(x1,x2,x3)∈conv IR} | (3.3) |
where conv
Through the above results, it has been demonstrated that there exists at least a vertex of
In this section, the modified trilevel Kth-Best algorithm is presented. In actual, the modified algorithm takes into account LTLP problems with unbounded middle and bottom level problems. These cases are not considered in the Kth-Best algorithm [19]. Also, it resolves some of drawbacks while finding an optimal solution for LTLP problems with opposing objectives. Moreover, in the next section, it is shown that in some LTLP problems, the proposed algorithm leads to reduction the amount of computations needed for finding an optimal solution.
The process of the modified trilevel Kth-Best algorithm is as follows:
The Algorithm
Step 1. Initialization: Set
Step 2. Find the optimal solution of the optimization problem (4.1). Let it be
min{f1(x1,x2,x3):(x1,x2,x3)∈S} | (4.1) |
Step 3. Solve the following problem.
min{αT3 3x3:x3∈Ω3(x[k]1,x[k]2)}. | (4.2) |
If the problem (4.2) is unbounded go to step 7, else let
Step 4. If
Step 5. Solve the following problem.
min{αT2 2x2+αT2 3x3:(x2,x3)∈S2(x[k]1),x3=x[k]3}. | (4.3) |
If problem (4.3) is unbounded go to step 7, else let
Step 6. If
Step 7. Set
Step 8. If
Figure 1 illustrates the process of modified trilevel Kth-Best algorithm.
Remark 4.1. It is clear that if
Proposition 4.1. Let the LTLP problem (2.1) has an optimal solution. Then the modified trilevel Kth-Best algorithm will terminate with an optimal solution of LTLP problem in a finite number of iterations.
Proof. Let
It is worth mentioning that, by omitting the examined extreme points from
To illustrate the advantages of the modified trilevel Kth-Best algorithm, the following examples are solved according to the outline indicated in the previous section.
Example 5.1. Consider the following LTLP problem:
minx12x1+2x2+5x3x1≤8x2≤5 where x2,x3 solve:maxx26x1+x2−3x3x1+x2≤8x1+4x2≥87x1−2x2≥0 where x3 solves:minx32x1+x2−2x35x1+5x2+14x3≤40x1,x2,x3≥0 |
In this example, we have
Ψ2(x1)={(72x1,114(40−452x1)):815≤x1≤169}∪{(8−x1,0):169≤x1≤8}. |
It is clear that for
Actually,
which is disconnected. This fact shows that despite the continuity of
By Corollary 3.3, an optimal solution of the above example occurs at the point
To solve the example by the modified trilevel Kth-Best algorithm, the process is as follows:
Iteration 1
1.
2.
3.
4.
Iteration 2
1.
2.
3.
4.
Iteration 3
1.
2.
3.
4. The point
As demonstrated in the solving process of this problem, although the number of iterations and the optimal solution found by the two algorithms are the same, the number of optimization problems needed to be solved in each iteration of the Kth-Best algorithm [19] are more than the number of optimization problems needed to be solved in the modified Kth-Best algorithm. Then the amount of computations in each iteration of the modified Kth-Best algorithm is less than that of the corresponding iteration in the Kth-Best algorithm..
The two following examples show some discrepancies in the Kth-Best algorithm [19] that cause an erroneous result.
Example 5.2.
minxf1(x,y,z)=−x−4z+2ywhere y, z soleve:s.tminyf2(x,y,z)=3y−2zwhere z solves:s.tminzf3(x,y,z)=2z−ys.tx+y+z≤20≤x,y,z≤1 |
In this example, we have
The Kth-Best algorithm process [19] for solving this problem is as follows:
Iteration 1 :
Therefore,
Iteration 2 :
Iteration 7 :
By solving the example via the modified trilevel Kth-Best algorithm, the process is as follows:
Iteration 1
1.
2.
3.
Iteration 2
1.
2.
3.
Continuing this method, at iteration 4 we get:
Note that, in the trilevel Kth-Best algorithm [19], the bottom-level optimal solution which is found for some fixed values of upper and middle-level variables, is not considered as a constraint for the second level problem. This causes the Kth-best algorithm is not capable of finding an optimal solution for some LTLP problems. This fact is considered in step 5 of the modified trilevel Kth-Best algorithm by fixing the lower level variable which is found as the optimal solution of problem (4.2) and substituting it in the problem (4.3).
Example 5.3.
minx1x1−4x2+2x3−x1−x2≤−3−3x1+2x2−x3≥−10where x2,x3 solve:minx2x1+x2−x3−2x1+x2−2x3≤−12x1+x2+4x3≤14where x3 solves:minx3x1−2x2−2x32x1−x2−x3≤2x1,x2,x3≥0 | (5.1) |
The process of the modified trilevel Kth-Best algorithm to solve this problem is as follows:
Iteration 1
1.
2. The bottom level problem corresponding to
3.
4.
5.
Iteration 2
1.
2. The bottom level problem corresponding to
3.
4.
5.
Iteration 3
1.
2. The bottom level problem corresponding to
3.
4.
5.
Iteration 4
1.
2. The bottom level problem corresponding to
3.
4.
5.
Iteration 5
1.
2. The bottom level problem corresponding to
3.
4.
5.
Iteration 6
1.
2. The bottom level problem corresponding to
3.
4.
5.
Iteration 7
1.
2. The bottom level problem corresponding to
.
4.
5.
Iteration 8
1.
2. The bottom level problem corresponding to
4.
5. There is no optimal solution.
In the above example, the constraint region is a bounded polyhedron. Let
minx3x1−2x2−2x32x1−x2−x3≤2x1=x∗1 , x2=x∗2 , x3≥0 | (5.2) |
It is easy to see that the problem (5.2) is unbounded. Therefore,
In this study, the linear trilevel programming problem whereby each planner has his (her) own constraints, was considered. Some geometric properties of the inducible region were discussed. Under certain assumptions, it is proved that if the inducible region is non-empty, then it is composed of the union of some non-empty faces of the constraint region
The authors declare no conflict of interest in this paper.
[1] | N. Alguacil, A. Delgadillo, J. M. Arroyo, A trilevel programming approach for electric grid defense planning, Comput. Oper. Res., 41 (2014), 282–290. |
[2] | J. F. Bard, An investigation of the linear three level programming problem, IEEE T. Syst. Man Cy., 14 (1984), 711–717. |
[3] | J. F. Bard, Practical Bilevel Optimization, Kluwer, Dordrecht, Netherland, 1998. |
[4] | M. S. Bazaraa, H. D. Sheraly, C. M. Shetty, Nonlinear Programming, Theory and Algorithms, Wiley Interscience, New Jersy, 2006. |
[5] | N. P. Faisca, P. M. Saraiva, B. Rustem, E. N. Pistikopoulos, A multi-parametric programming approach for multilevel hierarchical and decentralised optimisation problems, Computational Management Science, 6 (2009), 377–397. |
[6] | G. Florensa, P. Garcia-Herreros, P. Mirsa, et al. Capacity planning with competitive decisionmakers: Trilevel MILP formulation, degeneracy, and solution approaches, Eur. J. Oper. Res., 262 (2017), 449–463. |
[7] | J. Han, J. Lu, Y. Hu, et al. Tri-level decision-making with multiple followers: Model, algorithm and case study, Inform. Sci., 311 (2015), 182–204. |
[8] | J. Han, G. Zhang, Y. Hu, et al. A solution to bi/tri-level programming problems using particle swarm optimization, Inform. Sci., 370 (2016), 519–537. |
[9] | J. Han, J. Lu, G. Zhang, Tri-level decision-making for decentralized vendor-managed inventory, Inform. Sci., 421 (2017), 85–103 |
[10] | G. Y. Ke, J. H. Bookbinder, Coordinating the discount policies for retailer, wholesaler, and less-than-truckload carrier under price-sensitive demand: A trilevel optimization approach, Int. J. Prod. Econ., 196 (2018), 82–100. |
[11] | J. Lu, J. Han, Y. Hu, et al. Multilevel Decision-Making: A Survey, Inform. Sci., 346 (2016), 463–487. |
[12] | R. T. Rockafellar, Convex Analysis, Prinston University Press, Prinston, USA, 1970. |
[13] | M. Sakawa, I. Nishizaki, Interactive fuzzy programming for multi-level programming problems: a review, International journal of multicriteria decision making, 2 (2012), 241–266. |
[14] | S. S. Sana, A production-inventory model of imperfect quality products in a three-layer supply chain, Decis. Support Syst., 50 (2011), 539–547. |
[15] | U.Wen, W. Bialas, The hybrid algorithm for solving the three level programming problem, Comput. Oper. Res., 13 (1986), 367–377. |
[16] | D. White, Penalty function approach to linear trilevel programming, J. Optimiz. Theory App., 93 (1997), 183–197. |
[17] | X. Xu, Z. Meng, R. Shen, A tri-level programming model based on conditional value-at-risk for three-stage supply chain management, Comput. Ind. Eng., 66 (2013), 470–475. |
[18] | Y. Yao, T. Edmunds, D. Papageorgiou, et al. Trilevel optimization in power network defense, IEEE T. Syst. Man Cy., 37 (2007), 712–718. |
[19] | G. Zhang, J. lu, J. Montero, et al. Model, solution concept, and K-th Best algorithm for linear trilevel programming, Inf. Sci., 180 (2010), 481–492. |