Citation: Benedetta Ferrario, Christian Olivera. Lp-solutions of the Navier-Stokes equation with fractional Brownian noise[J]. AIMS Mathematics, 2018, 3(4): 539-553. doi: 10.3934/Math.2018.4.539
[1] | S. Albeverio, B. Ferrario, Some Methods of Infinite Dimensional Analysis in Hydrodynamics: An Introduction, In: SPDE in Hydrodynamic: Recent Progress and Prospects, Lecture Notes in Mathematics 1942, Berlin: Springer, 1-50, 2008. |
[2] | A. Bensoussan, R. Temam, Équations stochastiques du type Navier-Stokes, J. Funct. Anal., 13 (1973), 195-222. |
[3] | Z. BrzÉzniak, J. van Neerven, D. Salopek, Stochastic evolution equations driven by Liouville fractional Brownian motion, Czech. Math. J., 62 (2012), 1-27. |
[4] | P. Čoupek, B. Maslowski, M. Ondreját, Lp-valued stochastic convolution integral driven by Volterra noise, Stoch. Dynam., (2018), 1850048. |
[5] | T. E. Duncan, B. Pasik-Duncan, B. Maslowski, Fractional Brownian motion and stochastic equations in Hilbert spaces, Stoch. Dynam., 2 (2002), 225-250. |
[6] | L. Fang, P. Sundar, F. Viens, Two-dimensional stochastic Navier-Stokes equations with fractional Brownian noise, Random Operators and Stochastic Equations, 21 (2013), 135-158. |
[7] | F. Flandoli, Dissipativity and invariant measures for stochastic Navier-Stokes equations, NoDEANonlinear Differential Equations Appl., 1 (1994), 403-423. |
[8] | F. Flandoli, An introduction to 3D stochastic fluid dynamics, In: SPDE in Hydrodynamic: Recent Progress and Prospects, Lecture Notes in Math. 1942, Berlin: Springer, 51-150, 2008. |
[9] | H. Fujita, T. Kato, On the Navier-Stokes initial value problem. I, Arch. Ration. Mech. Anal., 16 (1964), 269-315. |
[10] | Y. Giga, Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system, J. Differ. Equations, 62 (1986), 186-212. |
[11] | Y. Giga, T. Miyakawa, Solutions in Lr of the Navier-Stokes initial value problem, Arch. Ration. Mech. An., 89 (1985), 267-281. |
[12] | T. Kato, H. Fujita, On the nonstationary Navier-Stokes system, Rend. Semin. Mat. U. Pad., 32 (1962), 243-260. |
[13] | T. Kato, Strong Lp-solutions of the Navier-Stokes equation in Rm, with applications to weak solutions, Math. Z., 187 (1984), 471-480. |
[14] | S. B. Kuksin, A. Shirikyan, Mathematics of two-dimensional turbulence, Vol. 194, Cambridge: Cambridge University Press, 2012. |
[15] | P. G. Lemarie-Rieusset, Recent developments in the Navier-Stokes problem, CRC Press, 2002. |
[16] | J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248. |
[17] | P-L Lions, Mathematical topics in fluid mechanics, Vol. Ⅰ: incompressible models, Oxford Lecture Series in Mathematics and its applications, Oxford University Press, 1996. |
[18] | D. Nualart, Malliavin Calculus and Related Topics, Second Edition, New York: Springer, 2006. |
[19] | B. Pasik-Duncan, T. E. Duncan, B. Maslowski, Linear stochastic equations in a Hilbert space with a fractional Brownian motion, In: Stochastic processes, optimization, and control theory: applications in financial engineering, queueing networks, and manufacturing systems, 201-221, Springer, New York, 2006. |
[20] | H. Sohr, The Navier-Stokes equations. An elementary functional analytic approach, Birkhäuser Advanced Texts, Basel: Birkhäuser Verlag, 2001. |
[21] | J. van Neerven, γ-radonifying operators - a survey, In: Proc. Centre Math. Appl. Austral. Nat. Univ. 44, Austral. Nat. Univ., The AMSI-ANU Workshop on Spectral Theory and Harmonic Analysis, Canberra, 1-61, 2010. |
[22] | M. J. Vishik, A. V. Fursikov, Mathematical Problems of Statistical Hydromechanics, Dordrecht: Kluver, 1980. |
[23] | F. B. Weissler, The Navier-Stokes initial value problem in Lp, Arch. Ration. Mech. An., 74 (1980), 219-230. |