Citation: Habibe Sadeghi, Maryam Esmaeili. A modification of the trilevel Kth-Best algorithm[J]. AIMS Mathematics, 2018, 3(4): 524-538. doi: 10.3934/Math.2018.4.524
[1] | N. Alguacil, A. Delgadillo, J. M. Arroyo, A trilevel programming approach for electric grid defense planning, Comput. Oper. Res., 41 (2014), 282–290. |
[2] | J. F. Bard, An investigation of the linear three level programming problem, IEEE T. Syst. Man Cy., 14 (1984), 711–717. |
[3] | J. F. Bard, Practical Bilevel Optimization, Kluwer, Dordrecht, Netherland, 1998. |
[4] | M. S. Bazaraa, H. D. Sheraly, C. M. Shetty, Nonlinear Programming, Theory and Algorithms, Wiley Interscience, New Jersy, 2006. |
[5] | N. P. Faisca, P. M. Saraiva, B. Rustem, E. N. Pistikopoulos, A multi-parametric programming approach for multilevel hierarchical and decentralised optimisation problems, Computational Management Science, 6 (2009), 377–397. |
[6] | G. Florensa, P. Garcia-Herreros, P. Mirsa, et al. Capacity planning with competitive decisionmakers: Trilevel MILP formulation, degeneracy, and solution approaches, Eur. J. Oper. Res., 262 (2017), 449–463. |
[7] | J. Han, J. Lu, Y. Hu, et al. Tri-level decision-making with multiple followers: Model, algorithm and case study, Inform. Sci., 311 (2015), 182–204. |
[8] | J. Han, G. Zhang, Y. Hu, et al. A solution to bi/tri-level programming problems using particle swarm optimization, Inform. Sci., 370 (2016), 519–537. |
[9] | J. Han, J. Lu, G. Zhang, Tri-level decision-making for decentralized vendor-managed inventory, Inform. Sci., 421 (2017), 85–103 |
[10] | G. Y. Ke, J. H. Bookbinder, Coordinating the discount policies for retailer, wholesaler, and less-than-truckload carrier under price-sensitive demand: A trilevel optimization approach, Int. J. Prod. Econ., 196 (2018), 82–100. |
[11] | J. Lu, J. Han, Y. Hu, et al. Multilevel Decision-Making: A Survey, Inform. Sci., 346 (2016), 463–487. |
[12] | R. T. Rockafellar, Convex Analysis, Prinston University Press, Prinston, USA, 1970. |
[13] | M. Sakawa, I. Nishizaki, Interactive fuzzy programming for multi-level programming problems: a review, International journal of multicriteria decision making, 2 (2012), 241–266. |
[14] | S. S. Sana, A production-inventory model of imperfect quality products in a three-layer supply chain, Decis. Support Syst., 50 (2011), 539–547. |
[15] | U.Wen, W. Bialas, The hybrid algorithm for solving the three level programming problem, Comput. Oper. Res., 13 (1986), 367–377. |
[16] | D. White, Penalty function approach to linear trilevel programming, J. Optimiz. Theory App., 93 (1997), 183–197. |
[17] | X. Xu, Z. Meng, R. Shen, A tri-level programming model based on conditional value-at-risk for three-stage supply chain management, Comput. Ind. Eng., 66 (2013), 470–475. |
[18] | Y. Yao, T. Edmunds, D. Papageorgiou, et al. Trilevel optimization in power network defense, IEEE T. Syst. Man Cy., 37 (2007), 712–718. |
[19] | G. Zhang, J. lu, J. Montero, et al. Model, solution concept, and K-th Best algorithm for linear trilevel programming, Inf. Sci., 180 (2010), 481–492. |