Citation: Xiaoming Peng, Xiaoxiao Zheng, Yadong Shang. Lower bounds for the blow-up time to a nonlinear viscoelastic wave equation with strong damping[J]. AIMS Mathematics, 2018, 3(4): 514-523. doi: 10.3934/Math.2018.4.514
[1] | A. B. Al'shin, M. O. Korpusov, A. G. Siveshnikov, Blow up in nonlinear Sobolev type equations, Series in Nonlinear Analysis and Applications, Vol. 15, Berlin: De Gruyter, 2011. |
[2] | S. A. Messaoudi, Blow up and global existence in a nonlinear viscoelastic wave equation, Math. Nachr., 260 (2003), 58–66. |
[3] | S. A. Messaoudi, Blow-up of positive-initial-energy solutions of a nonlinear viscoelastic hyperbolic equation, J. Math. Anal. Appl., 320 (2006), 902–915. |
[4] | S. T. Wu, Blow-up of solutions for an integro-di_erential equation with a nonlinear source, Electron. J. Di_er. Eq., 45 (2006), 1–9. |
[5] | H. T. Song, C. K. Zhong, Blow-up of solutions of a nonlinear viscoelastic wave equation, Nonlinear Analysis: Real World Applications, 11 (2010), 3877–3883. |
[6] | H. T. Song, D. X. Xue, Blow up in a nonlinear viscoelastic wave equation with strong damping, Nonlinear Analysis: Theory, Methods & Applications, 109 (2014), 245–251. |
[7] | F. S. Li, C. L. Zhao, Uniform energy decay rates for nonlinear viscoelastic wave equation with nonlocal boundary damping, Nonlinear Analysis: Theory, Methods & Applications, 74 (2011), 3468–3477. |
[8] | F. S. Li, Z. Q. Zhao, Y. F. Chen, Global existence uniqueness and decay estimates for nonlinear viscoelastic wave equation with boundary dissipation, Nonlinear Analysis: Real World Applications, 12 (2011), 1759–1773. |
[9] | W. Liu, Y. Sun, G. Li, On decay and blow-up of solutions for a singular nonlocal viscoelastic problem with a nonlinear source term, Topol. Method Nonl. An., 49 (2017), 299–323. |
[10] | W. Liu, D. Wang, D. Chen, General decay of solution for a transmission problem in infinite memory-type thermoelasticity with second sound, J. Therm. Stresses, 41 (2018), 758–775. |
[11] | S. H. Park, M. J. Lee, J. R. Kang, Blow-up results for viscoelastic wave equations with weak damping, Appl. Math. Lett., 80 (2018), 20–26. |
[12] | L. E. Payne, P.W. Schaefer, Lower bounds for blow-up time in parabolic problems under Dirichlet conditions, J. Math. Anal. Appl., 328 (2007), 1196–1205. |
[13] | L. E. Payne, P.W. Schaefer, Lower bounds for blow-up time in parabolic problems under Neumann conditions, J. Math. Appl. Anal., 85 (2006), 1301–1311. |
[14] | L. L. Sun, B. Guo, W. J. Gao, A lower bound for the blow-up time to a damped semilinear wave equation, Appl. Math. Lett., 37 (2014), 22–25. |
[15] | G. A. Philippin, Lower bounds for blow-up time in a class of nonlinear wave equations, Z. Angew. Math. Phys., 66 (2014), 129–134. |
[16] | G. A. Philippin, S.Vernier Piro, Lower bound for the lifespan of solutions for a class of fourth order wave equations, Appl. Math. Lett., 50 (2015), 141–145. |
[17] | B. Guo, F. Liu, A lower bound for the blow-up time to a viscoelastic hyperbolic equation with nonlinear sources, Appl. Math. Lett., 60 (2016), 115–119. |
[18] | K. Baghaei, Lower bounds for the blow-up time in a superlinear hyperbolic equation with linear damping term, Comput. Math. Appl., 73 (2017), 560–564. |
[19] | L. Yang, F. Liang, Z. H. Guo, Lower bounds for blow-up time of a nonlinear viscoelastic wave equation, Bound. Value Probl., 2015 (2015), 219. |
[20] | S. Y. Tian, Bounds for blow-up time in a semilinear parabolic problem with viscoelastic term, Comput. Math. Appl., 74 (2017), 736–743. |
[21] | X. M. Peng, Y. D. Shang, X. X. Zheng, Lower bounds for the blow-up time to a nonlinear viscoelastic wave equation with strong damping, Appl. Math. Lett., 76 (2018), 66–73. |
[22] | R. A. Adams, J. J. F. Fournier, Sobolev Spaces, 2Eds., New York: Academic Press, 2003. |