This work studies the blow up result of the solution of a coupled nonlocal singular viscoelastic equation with damping and general source terms under some suitable conditions.
Citation: Salah Boulaaras, Abdelbaki Choucha, Bahri Cherif, Asma Alharbi, Mohamed Abdalla. Blow up of solutions for a system of two singular nonlocal viscoelastic equations with damping, general source terms and a wide class of relaxation functions[J]. AIMS Mathematics, 2021, 6(5): 4664-4676. doi: 10.3934/math.2021274
This work studies the blow up result of the solution of a coupled nonlocal singular viscoelastic equation with damping and general source terms under some suitable conditions.
[1] | M. M. Al-Gharabli, A. M. Al-Mahdi, S. A. Messaoudi, New general decay result for a system of two singular nonlocal viscoelastic equations with general source terms and a wide class of relaxation functions, Boundary Value Probl., 2020 (2020), 1–17. doi: 10.1186/s13661-019-01311-5 |
[2] | J. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolutions equation, Q. J. Math., 28 (1977), 473–486. doi: 10.1093/qmath/28.4.473 |
[3] | S. Boulaaras, R. Guefaifia, N. Mezouar, Global existence and decay for a system of two singular one-dimensional nonlinear viscoelastic equations with general source terms, Appl. Anal., 2020. Available from: https://doi.org/10.1080/00036811.2020.1760250. |
[4] | S. Boulaaras, A. Choucha, D. Ouchenane, B. Cherif, Blow up of solutions of two singular nonlinear viscoelastic equations with general source and localized frictional damping terms, Adv. Differ. Equations, 2020 (2020), 310. Available from: https://doi.org/10.1186/s13662-020-02772-0. |
[5] | M. M. Cavalcanti, D. Cavalcanti, J. Ferreira, Existence and uniform decay for nonlinear viscoelastic equation with strong damping, Math. Methods Appl. Sci., 24 (2001), 1043–1053. doi: 10.1002/mma.250 |
[6] | Y. S. Choi, K. Y. Chan, A parabolic equation with nonlocal boundary conditions arising from electrochemistry, Nonlinear Anal.: Theory Methods Appl., 18 (1992), 317–331. doi: 10.1016/0362-546X(92)90148-8 |
[7] | A. Choucha, D. Ouchenane, S. Boulaaras, Blow-up of a nonlinear viscoelastic wave equation with distributed delay combined with strong damping and source terms, J. Nonlinear Funct. Anal., 2020 (2020), 1–10. |
[8] | A. Choucha, S. Boulaaras, D. Ouchenane, A. Allahem, Global existence for two singular one-dimensional nonlinear viscoelastic equations with respect to distributed delay term, J. Funct. Spaces, 2021 (2021), 6683465. Available from: https://doi.org/10.1155/2021/6683465. |
[9] | G. Liang, Y. Zhaoqin, L. Guonguang, Blow up and global existence for a nonlinear viscoelastic wave equation with strong damping and nonlinear damping and source terms, Appl. Math., 6 (2015), 806–816. doi: 10.4236/am.2015.65076 |
[10] | M. R. Li, L. Y. Tsai, Existence and nonexistence of global solutions of some systems of semilinear wave equations, Nonlinear Anal.: Theory Methods Appl., 54 (2003), 1397–1415. doi: 10.1016/S0362-546X(03)00192-5 |
[11] | S. Mesloub, A nonlinear nonlocal mixed problem for a second order parabolic equation, J. Math. Anal. Appl., 316 (2006), 189–209. doi: 10.1016/j.jmaa.2005.04.072 |
[12] | S. Mesloub, A. Bouziani, Mixed problem with a weighted integral condition for a parabolic equation with Bessel operator, J. Appl. Math. Stochastic Anal., 15 (2002), 277–286. doi: 10.1155/S1048953302000242 |
[13] | S. Mesloub, N. Lekrine, On a nonlocal hyperbolic mixed problem, Acta Sci. Math., 70 (2004), 65–75. |
[14] | S. A. Messaoudi, Blow up of positive-initial-energy solutions of a nonlinear viscoelastic hyperbolic equation, J. Math. Anal. Appl., 320 (2006), 902–915. doi: 10.1016/j.jmaa.2005.07.022 |
[15] | S. Mesloub, S. A. Messaoudi, Global existence, decay, and blow up of solutions of a singular nonlocal viscoelastic problem, Acta Appl. Math., 110 (2010), 705–724. doi: 10.1007/s10440-009-9469-6 |
[16] | M. I. Mustafa, General decay result for nonlinear viscoelastic equations, J. Math. Anal. Appl., 457 (2018), 134–152. doi: 10.1016/j.jmaa.2017.08.019 |
[17] | D. Ouchenane, Kh. Zennir, M. Bayoud, Global nonexistence of solutions for a system of nonlinear viscoelastic wave equation with degenerate damping and source terms, Ukrainian Math. J., 65 (2013), 1–17. doi: 10.1007/s11253-013-0761-2 |
[18] | L. S. Pulkina, On solvability in L2 of nonlocal problem with integral conditions for a hyperbolic equation, Differ. Equations, 36 (2000), 316–318. doi: 10.1007/BF02754219 |
[19] | P. Shi, M. Shillor, On design of contact patterns in one dimensional thermoelasticity, In: D. A. Field, V. Konkov, Theoretical Aspects of Industrial Design, Society for Industrial and Applied Mathematics, Philadelphia, (1992), 76–82. |
[20] | H. T. Song, D. S. Xue, Blow up in a nonlinear viscoelastic wave equation with strong damping, Nonlinear Anal.: Theory Methods Appl., 109 (2014), 245–251. doi: 10.1016/j.na.2014.06.012 |
[21] | H. T. Song, C. K. Zhong, Blow-up of solutions of a nonlinear viscoelastic wave equation, Nonlinear Analysis: Real World Appl., 11 (2010), 3877–3883. doi: 10.1016/j.nonrwa.2010.02.015 |
[22] | A. Zarai, A. Draifia, S. Boulaaras, Blow up of solutions for a system of nonlocal singular viscoelastic equations, Appl. Anal., 97 (2018), 2231–2245. doi: 10.1080/00036811.2017.1359564 |