Research article

$ (m, n) $-Harmonically polynomial convex functions and some Hadamard type inequalities on the co-ordinates

  • Received: 12 December 2020 Accepted: 18 February 2021 Published: 24 February 2021
  • MSC : 26D10, 26D15

  • In this study, we have introduced a new concept called $ (m, n) $-harmonically polynomial convex functions on the co-ordinates. Then, we have demonstrated some properties of this definition. Based on the definition and some elementary analysis process, we have proved a new Hadamard type integral inequality on the coordinates for $ (m, n) $-harmonically polynomial convex functions. Finally, we have established Hadamard type inequality for differentiable $ (m, n) $-Harmonically polynomial convex functions. We have also given some special cases for bounded functions.

    Citation: Saad Ihsan Butt, Ahmet Ocak Akdemir, Muhammad Nadeem, Nabil Mlaiki, İşcan İmdat, Thabet Abdeljawad. $ (m, n) $-Harmonically polynomial convex functions and some Hadamard type inequalities on the co-ordinates[J]. AIMS Mathematics, 2021, 6(5): 4677-4690. doi: 10.3934/math.2021275

    Related Papers:

  • In this study, we have introduced a new concept called $ (m, n) $-harmonically polynomial convex functions on the co-ordinates. Then, we have demonstrated some properties of this definition. Based on the definition and some elementary analysis process, we have proved a new Hadamard type integral inequality on the coordinates for $ (m, n) $-harmonically polynomial convex functions. Finally, we have established Hadamard type inequality for differentiable $ (m, n) $-Harmonically polynomial convex functions. We have also given some special cases for bounded functions.



    加载中


    [1] M. Alomari, M. Darus, Hadamard-type inequalities for $s$-convex functions, Inter. Math. Forum, 3 (2008), 1965–1975.
    [2] M. Alomari, M. Darus, The Hadamard's inequality for $s$-convex functions of $2$-variables, International Journal of Mathematical Analysis, 2 (2008), 629–638.
    [3] M. U. Awan, N. Akhtar, S. Iftikhar, M. A. Noor, Y. Chu, New Hermite-Hadamard type inequalities for $n$-polynomial harmonically convex functions, J. Inequal. Appl., 2020 (2020), 1–12. doi: 10.1186/s13660-019-2265-6
    [4] T. Abdeljawad, M. A. Ali, P. O. Mohammed, A. Kashuri, On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals, AIMS Mathematics, 6 (2020), 712–725.
    [5] M. K. Bakula, J. Pečarić, On the Jensen's inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwan. J. Math., 5 (2006), 1271–1292.
    [6] S. S. Dragomir, On Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese J. Math., 5 (2001), 775–788. doi: 10.11650/twjm/1500574995
    [7] J. Han, P. O. Mohammed, H. Zeng, Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function, Open Math., 18 (2020), 794–806. doi: 10.1515/math-2020-0038
    [8] P. O. Mohammed, T. Abdeljawad, D. Baleanu, A. Kashuri, F. Hamasalh, P. Agarwal, New fractional inequalities of Hermite-Hadamard type involving the incomplete gamma functions, J. Inequal. Appl., 2020 (2020), 1–16. doi: 10.1186/s13660-019-2265-6
    [9] P. O. Mohammed, I. Brevik, A new version of the Hermite-Hadamard inequality for Riemann-Liouville fractional integrals, Symmetry, 12 (2020), 1–11.
    [10] M. E. Ozdemir, M. A. Latif, A. O. Akdemir, On some Hadamard-type inequalities for product of two $s$-convex functions on the co-ordinates, J. Inequal. Appl., 2012 (2012), 1–13. doi: 10.1186/1029-242X-2012-1
    [11] M. E. Ozdemir, M. A. Latif, A. O. Akdemir, On some Hadamard-type inequalities for product of two $h$-convex functions on the co-ordinates, Turkish Journal of Science, 1 (2016), 41–58.
    [12] M. E. Ozdemir, A. O. Akdemir, C. Yildiz, On co-ordinated quasi-convex functions, Czech. Math. J., 62 (2012), 889–900. doi: 10.1007/s10587-012-0072-z
    [13] M. E. Ozdemir, C. Yildiz, A. O. Akdemir, On some new Hadamard-type inequalities for co-ordinated quasi-convex functions, Hacet. J. Math. Stat., 41 (2012), 697–707.
    [14] M. E. Özdemir, E. Set, M. Z. Sarıkaya, Some new Hadamard's type inequalities for co-ordinated $m$-convex and ($\alpha, m)$-convex functions, Hacet. J. Math. Stat., 40 (2011), 219–229.
    [15] M. Z. Sarıkaya, E. Set, M. E. Özdemir, S. S. Dragomir, New some Hadamard's type inequalities for co-ordinated convex functions, Tamsui Oxford Journal of Information and Mathematical Sciences, 28 (2012), 137–152.
    [16] T. Toplu, M. Kadakal, I. Iscan, On $n$-Polynomial convexity and some related inequalities, AIMS Mathematics, 5 (2020), 1304–1318. doi: 10.3934/math.2020089
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2378) PDF downloads(191) Cited by(11)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog