Citation: A. M. Alghamdi, S. Gala, M. A. Ragusa. A regularity criterion of smooth solution for the 3D viscous Hall-MHD equations[J]. AIMS Mathematics, 2018, 3(4): 565-574. doi: 10.3934/Math.2018.4.565
[1] | M. Acheritogaray, P. Degond, A. Frouvelle, et al. Kinetic fomulation and global existence for the Hall-magneto-hydrodynamics system, Kinet. Relat. Mod., 4 (2011), 901–918. |
[2] | S. A. Balbus and C. Terquem, Linear analysis of the Hall e_ect in protostellar disks, The Astrophysical Journal, 552 (2001), 235–247. |
[3] | J. Bergh and J. L¨ofstrom, Inerpolation Spaces. An Introduction, Springer-Verlag, New York, 1976. |
[4] | D. Chae, P. Degond and J. G. Liu, Well-posedness for Hall-magnetohydrodynamics, Ann. I. H. Poincaré-An, 31 (2014), 555–565 |
[5] | D. Chae and J. Lee, On the blow-up criterion and small data global existence for the Hallmagnetohydrodynamics, J. Di_er. Equations, 256 (2014), 3835–3858. |
[6] | D. Chae and M. Schonbek, On the temporal decay for the Hall-magnetohydrodynamic equations, J. Di_er. Equations, 255 (2013), 3971–3982. |
[7] | D. Chae and S. Weng, Singularity formation for the incompressible Hall-MHD equations without resistivity, Ann. I. H. Poincaré-An, 33 (2016), 1009–1022. |
[8] | D. Chae and J. Wolf, On partial regularity for the steady Hall-magnetohydrodynamics system, Commun. Math. Phys., 339 (2015), 1147–1166. |
[9] | D. Chae and J. Wolf, On partial regularity for the 3D nonstationary Hall magnetohydrodynamics equations on the plane, SIAM J. Math. Anal., 48 (2016), 443–469. |
[10] | J. Fan, Y. Fukumoto, G. Nakamura, et al. Regularity criteria for the incompressible Hall-MHD system, Zamm-Z Angew. Math. Me., 95 (2015), 1156–1160. |
[11] | J. Fan, X. Jia, G. Nakamura, et al. On well-posedness and blowup criteria for the |
[12] | magnetohydrodynamics with the Hall and ion-slip e_ects, Z. Angew. Math. Phys., 66 (2015), 1695–1706. |
[13] | J. Fan, A. Alsaedi, T. Hayat, et al. On strong solutions to the compressible Hallmagnetohydrodynamic system, Nonlinear Anal-Real, 22 (2015), 423–434. |
[14] | J. Fan, H. Malaikah, S. Monaquel, et al. Global Cauchy problem of 2D generalized MHD equations, Monatsh. Math., 175 (2014), 127–131. |
[15] | J. Fan and T. Ozawa, Regularity criteria for the incompressible MHD with the Hall or Ion-Slip e_ects, International Journal of Mathematical Analysis, 9 (2015), 1173–1186. |
[16] | J. Fan, F. Li and G. Nakamura, Regularity criteria for the incompressible Hallmagnetohydrodynamic equations, Nonlinear Anal-Theor, 109 (2014), 173–179. |
[17] | J. Fan, B. Samet and Y. Zhou, A regularity criterion for a generalized Hall-MHD system, Comput. Math. Appl., 74 (2017), 2438–2443. |
[18] | J. Fan, B. Ahmad, T. Hayat, et al. On well-posedness and blow-up for the full compressible Hall-MHD system, Nonlinear Anal-Real, 31 (2016), 569–579. |
[19] | M. Fei and Z. Xiang, On the blow-up criterion and small data global existence for the Hallmagnetohydrodynamics with horizontal dissipation, J. Math. Phys., 56 (2015), 051504. |
[20] | T. G. Forbes, Magnetic reconnection in solar flares, Geophys. Astro. Fluid, 62 (1991), 15–36. |
[21] | S. Gala, Regularity criterion for the 3D magneto-micropolar fluid equations in the Morrey-Campanato space, NoDEA-Nonlinear Di_., 17 (2010), 181–194. |
[22] | S. Gala, On the regularity criteria for the three-dimensional micropolar fluid equations in the critical Morrey-Campanato space, Nonlinear Anal-Real, 12 (2011), 2142–2150. |
[23] | S. Gala, A new regularity criterion for the 3D MHD equations in R3 , Commun. Pur. Appl. Anal., 11 (2012), 973–980. |
[24] | J. Geng, X. Chen and S. Gala, On regularity criteria for the 3D magneto-micropolar fluid equations in the critical Morrey-Campanato space, Commun. Pur. Appl. Anal., 10 (2011), 583–592. |
[25] | Z. Guo and S. Gala, Remarks on logarithmical regularity criteria for the Navier-Stokes equations, J. Math. Phys., 52 (2011), 063503. |
[26] | F. He, B. Ahmad, T. Hayat, et al. On regularity criteria for the 3D Hall-MHD equations in terms of the velocity, Nonlinear Anal-Real, 32 (2016), 35–51. |
[27] | X. Jia and Y. Zhou, Ladyzhenskaya-Prodi-Serrin type regularity criteria for the 3D incompressible MHD equations in terms of 3 × 3 mixture matrices, Nonlinearity, 28 (2015), 3289–3307. |
[28] | Z. Jiang, Y. Wang and Y. Zhou, On regularity criteria for the 2D generalized MHD system, J. Math. Fluid Mech., 18 (2016), 331–341. |
[29] | P. G. Lemarié-Rieusset, The Navier-Stokes equations in the critical Morrey-Campanato space, Rev. Mat. Iberoam., 23 (2007), 897–930. |
[30] | M. J. Lighthill, Studies on magneto-hydrodynamic waves and other anisotropic wave motions, Philos. T. R. Soc. A, 252 (1960), 397–430. |
[31] | S. Machihara and T. Ozawa, Interpolation inequalities in Besov spaces, Proc. Amer. Math. Soc., 131 (2003), 1553–1556. |
[32] | Y. Meyer, P. Gerard and F. Oru, Inégalités de Sobolev précisées, Séminaire sur les équations aux Dérivées Partielles (Polytechnique), 1996 (1997), 1–8. |
[33] | D. A. Shalybkov and V. A. Urpin, The Hall e_ect and the decay of magnetic fields, Astronomy and Astrophysics, 321 (1997), 685–690. |
[34] | R.Wan and Y. Zhou, On global existence, energy decay and blow up criterions for the Hall-MHD system, J. Di_er. Equations, 259 (2015), 5982–6008. |
[35] | Y. Wang and W. Zuo, On the blow-up criterion of smooth solutions for Hallmagnetohydrodynamics system with partial viscosity, Commun. Pur. Appl. Anal., 13 (2014), 1327–1336. |
[36] | Z. Ye, Regularity criterion for the 3D Hall-magnetohydrodynamic equations involving the vorticity, Nonlinear Anal-Theor, 144 (2016), 182–193. |
[37] | Y. Zhou and S. Gala, A new regularity criterion for weak solutions to the viscous MHD equations in terms of the vorticity field, Nonlinear Anal-Theor, 72 (2010), 3643–3648. |
[38] | Y. Zhou and S. Gala, Regularity criteria in terms of the pressure for the Navier-Stokes Equations in the critical Morrey-Campanato space, Z. Anal. Anwend., 30 (2011), 83–93. |
[39] | R. Wan and Y. Zhou, Low regularity well-posedness for the 3D generalized Hall-MHD system, Acta Appl. Math., 147 (2017), 95–111. |
[40] | R. Wan and Y. Zhou, On global existence, energy decay and blow-up criteria for the Hall-MHD system, J. Di_er. Equations, 259 (2015), 5982–6008. |