Citation: A. M. Alghamdi, S. Gala, M. A. Ragusa. A regularity criterion of smooth solution for the 3D viscous Hall-MHD equations[J]. AIMS Mathematics, 2018, 3(4): 565-574. doi: 10.3934/Math.2018.4.565
[1] | Ahmad Mohammed Alghamdi, Sadek Gala, Maria Alessandra Ragusa . A regularity criterion of weak solutions to the 3D Boussinesq equations. AIMS Mathematics, 2017, 2(3): 451-457. doi: 10.3934/Math.2017.2.451 |
[2] | Sadek Gala, Maria Alessandra Ragusa . A logarithmically improved regularity criterion for the 3D MHD equations in Morrey-Campanato space. AIMS Mathematics, 2017, 2(1): 16-23. doi: 10.3934/Math.2017.1.16 |
[3] | Li Lu . One new blow-up criterion for the two-dimensional full compressible magnetohydrodynamic equations. AIMS Mathematics, 2023, 8(7): 15876-15891. doi: 10.3934/math.2023810 |
[4] | Sadek Gala, Mohamed Mechdene, Maria Alessandra Ragusa . Logarithmically improved regularity criteria for the Boussinesq equations. AIMS Mathematics, 2017, 2(2): 336-347. doi: 10.3934/Math.2017.2.336 |
[5] | Jae-Myoung Kim . Local interior regularity for the 3D MHD equations in nonendpoint borderline Lorentz space. AIMS Mathematics, 2021, 6(3): 2440-2453. doi: 10.3934/math.2021148 |
[6] | Yanping Zhou, Xuemei Deng, Qunyi Bie, Lingping Kang . Energy conservation for the compressible ideal Hall-MHD equations. AIMS Mathematics, 2022, 7(9): 17150-17165. doi: 10.3934/math.2022944 |
[7] | Sadek Gala . A note on the Liouville type theorem for the smooth solutions of the stationary Hall-MHD system. AIMS Mathematics, 2016, 1(3): 282-287. doi: 10.3934/Math.2016.3.282 |
[8] | Qiang Li, Mianlu Zou . A regularity criterion via horizontal components of velocity and molecular orientations for the 3D nematic liquid crystal flows. AIMS Mathematics, 2022, 7(5): 9278-9287. doi: 10.3934/math.2022514 |
[9] | Tariq Mahmood, Zhaoyang Shang . Blow-up criterion for incompressible nematic type liquid crystal equations in three-dimensional space. AIMS Mathematics, 2020, 5(2): 746-765. doi: 10.3934/math.2020051 |
[10] | Zhaoyang Shang . Osgood type blow-up criterion for the 3D Boussinesq equations with partial viscosity. AIMS Mathematics, 2018, 3(1): 1-11. doi: 10.3934/Math.2018.1.1 |
This work is devoted to the study of the regularity criterion of smooth solutions for the 3D Hall-magnetohydrodynamics (Hall-MHD) equations [1,29] :
{∂tu+u⋅∇u−B⋅∇B−Δu+∇(π+|B|22)=0,∂tB+u⋅∇B−B⋅∇u+curl[curlB×B]−ΔB=0,∇⋅u=∇⋅B=0,(u,B)(x,0)=(u0(x),B0(x)), | (1.1) |
where
The Hall term curl
The global existence of weak solutions and the local well-posedness of classical solution in the whole space
u∈L2pp−3(0,T;Lp(R3)) and ∇B∈L2ββ−3(0,T;Lβ(R3)) with 3<p,β≤∞ | (1.2) |
or
u∈L2(0,T;BMO(R3)) and ∇B∈L2(0,T;BMO(R3)), | (1.3) |
which is an improvement of the Prodi-Serrin condition (1.2). Here
u∈L2(0,T;⋅B0∞,∞(R3)) and ∇B∈L2(0,T;BMO(R3)). | (1.4) |
On the other hand, based on the well-known pressure-velocity-magnetic relation of the Hall-MHD equations (1.1) in
π∈L2pp−3(0,T;Lp(R3)) and ∇B∈L2pp−3(0,T;Lp(R3)) with 3<p≤∞, | (1.5) |
or
∇π∈L2p3p−3(0,T;Lp(R3)) and ∇B∈L2pp−3(0,T;Lp(R3)) with 3<p≤∞, | (1.6) |
with
π∈L1(0,T;⋅B0∞,∞(R3)) and ∇B∈L2ββ−3(0,T;Lβ(R3)) with 3<β≤∞ | (1.7) |
or
∇π∈L23(0,T;BMO(R3)) and ∇B∈L2ββ−3(0,T;Lβ(R3)) with 3<β≤∞. | (1.8) |
Motivated by the above cited works, our aim is to establish a regularity criterion of the smooth solution in terms of
L3(R3)⊂⋅B−1∞,∞(R3) and L3(R3)≠⋅B−1∞,∞(R3), |
and from a mathematical viewpoint, Besov space
First, we recall the definition and some properties of the space we are going to use (see e.g. [3]).
Definition 2.1. Let
∑j∈Zˆφj(ξ)=1 for any ξ≠0, |
where
˙Bsp,q={f∈S′/P:‖f‖˙Bsp,q<∞} |
with norm
‖f‖˙Bsp,q=(∑j∈Z‖2jsφj∗f‖qLp)1q |
for
The following is a key lemma to prove Theorem 2.7 due to Meyer–Gerard–Oru [31], which a simple proof can be found in [24].
Lemma 2.2. For any function
‖f‖2L4≤C‖∇f‖L2‖f‖⋅B−1∞,∞. |
It is well known that
Next, we give the definition of the Morrey spaces. For more details see [28].
Definition 2.3. For
⋅M2,3r(R3)={f∈L2loc(R3):‖f‖⋅M2,3r<+∞}, |
where
‖f‖⋅M2,3r=supx∈R3sup0<R<∞Rr−32(∫B(x,R)|f(y)|2)12. |
Here
In order to prove our result, we need the following lemma which plays a very important role in the proof. This lemma can be found in [28] (see also [20,21,36,37]) which gives an equivalence between
Lemma 2.4. For
‖f‖Zr=sup‖g‖.Br2,1≤1‖fg‖L2<∞. |
Then
The following simple lemma is fundamental and shows that any function in
Lemma 2.5. Let
Proof: Let
‖fg‖L2≤‖f‖L3r‖g‖Lq≤‖f‖L3r‖g‖⋅Hr≤‖f‖L3r‖g‖.Br2,1, |
Then, it follows that
‖f‖⋅M2,3r≈‖f‖Zr=sup‖g‖.Br2,1≤1‖fg‖L2≤C‖f‖L3r. |
While
|x|−r∈⋅M2,3r(R3), |
but this function is not an element of
Remark 2.1. By the embedding
We will use the following inequality (see [23,36,37]).
Lemma 2.6. If
‖f‖2L2q≤C‖f‖L2‖f‖BMO≤C‖f‖L2‖∇f‖⋅M2,3, 1<q<∞. |
Our result on the regularity criterion now reads as follows.
Theorem 2.7 (Regularity criterion). Assume that
π∈L2(0,T;⋅B−1∞,∞(R3)) | (2.1) |
and
∇B∈L21−r(0,T;⋅M2,3r(R3))∩L2(0,T;⋅M2,3(R3)) | (2.2) |
with
Our result (2.2) is just refer to Morrey space with the combined assumption (2.1). As an application of Theorem 2.7, we also obtain the following regularity criterion
Corollary 2.8. Let
π∈L1(0,T;BMO(R3)) |
and
∇B∈L21−r(0,T;⋅M2,3r(R3))∩L2(0,T;⋅M2,3(R3)) |
with
Remark 2.2. Therefore, Corollary 2.8 is a further improvement of the result of work [10].
Since
Corollary 2.9. Let
π∈L2(0,T;⋅M2,3(R3)) |
and
∇B∈L21−r(0,T;⋅M2,3r(R3))∩L2(0,T;⋅M2,3(R3)) |
with
Now we are in a position to prove Theorem 2.7.
Proof: Firstly, we derive the energy inequality. For this purpose, we take the
12ddt∫R3(|u|2+|B|2)dx+∫R3(|∇u|2+|∇B|2)dx=0, |
where we used
‖(u,B)‖L∞(0,T;L2)+‖(u,B)‖L2(0,T;H1)≤C. |
In the following, from Serrin type criteria (1.2) with
u∈L∞(0,T;L4(R3))⊂L8(0,T;L4(R3)). |
To this end, let
14ddt‖u‖4L4+‖|u||∇u|‖2L2+12‖∇|u|2‖2L2=∫R3(B⋅∇B−12∇|B|2)⋅|u|2udx−∫R3u⋅∇π|u|2dx=−3∑i=1∫R3BiB∂i(|u|2u)dx+12∫R3|B|2(∇⋅(|u|2u))dx−∫R3u⋅∇π|u|2dx≤C‖|B|2‖L4‖u‖L4‖|u||∇u|‖L2+|∫R3u⋅∇π|u|2dx|≤C‖B‖2L8‖u‖L4‖|u||∇u|‖L2+2|∫R3πu|u|⋅∇udx|≤C‖B‖L4‖∇B‖.M2,3‖u‖L4‖|u||∇u|‖L2+2‖πu‖L2‖|u||∇u|‖L2≤C‖∇B‖2.M2,3(‖B‖4L4+‖u‖4L4)+12‖|u||∇u|‖2L2+C‖π‖2L4‖u‖2L4≤C‖∇B‖2.M2,3(‖B‖4L4+‖u‖4L4)+14‖|u||∇u|‖2L2+C‖π‖.B−1∞,∞‖∇π‖L2‖u‖2L4≤C‖∇B‖2.M2,3(‖B‖4L4+‖u‖4L4)+14‖|u||∇u|‖2L2+C‖π‖.B−1∞,∞(‖|u||∇u|‖L2+‖|B||∇B|‖L2)‖u‖2L4≤C‖∇B‖2.M2,3(‖B‖4L4+‖u‖4L4)+12‖|u||∇u|‖2L2+12‖|B||∇B|‖2L2+C‖π‖2.B−1∞,∞‖u‖4L4, | (3.1) |
where we have used the Lemma 2.6 and the fact :
∫R3(u⋅∇u)⋅|u|2udx=0,(∇u)⋅(∇(|u|2u))=|∇u|2|u|2+12||∇u|2|2. |
In a similar way, multipying (1.1)
14ddt‖B‖4L4+12‖|B||∇B|‖2L2+12‖∇|B|2‖2L2=∫R3(B⋅∇)u⋅|B|2Bdx+∫R3(B×curl B)curl(|B|2B)dx=−∫R3(B⋅∇)|B|2B⋅udx+∫R3(B×curl B)(∇|B|2×B)dx≤C∫R3|u||B|3|∇B|dx+C∫R3|B|3|∇B|2dx≤C‖|B|2|∇B|‖L2‖B‖L4‖u‖L4+C‖|∇B||B|2‖L2‖|B||∇B|‖L2≤C‖∇B‖.M2,3r‖|B|2‖.Br2,1‖B‖L4‖u‖L4+C‖|B||∇B|‖L2‖∇B‖.M2,3r‖|B|2‖.Br2,1≤C‖∇B‖.M2,3r‖|B|2‖1−rL2‖∇|B|2‖rL2‖B‖L4‖u‖L4+C‖|B||∇B|‖L2‖∇B‖.M2,3r‖|B|2‖1−rL2‖∇|B|2‖rL2≤C‖∇B‖.M2,3r‖B‖3−2rL4‖∇|B|2‖rL2‖u‖L4+C‖|B||∇B|‖L2‖∇B‖.M2,3r‖B‖2(1−r)L4‖∇|B|2‖rL2≤C‖∇B‖22−r.M2,3r‖B‖2(3−2r)2−rL4‖u‖22−rL4+18‖∇|B|2‖2L2+18‖|B||∇B|‖2L2+C‖∇B‖21−r.M2,3r‖B‖4L4+18‖∇|B|2‖2L2≤C‖∇B‖22−r.M2,3r(‖B‖4L4+‖u‖4L4)+14‖∇|B|2‖2L2+12‖|B||∇B|‖2L2+C‖∇B‖21−r.M2,3r‖B‖4L4≤C(1+‖∇B‖21−r.M2,3r)(‖B‖4L4+‖u‖4L4)+14‖∇|B|2‖2L2+12‖|B||∇B|‖2L2+C‖∇B‖21−r.M2,3r‖B‖4L4≤C(1+‖∇B‖21−r.M2,3r)(‖B‖4L4+‖u‖4L4)+14‖∇|B|2‖2L2+12‖|B||∇B|‖2L2, | (3.2) |
where we have used the following interpolation inequality due to [30]:
‖f‖.Br2,1≤C‖f‖1−rL2‖∇f‖rL2 with 0<r<1. |
Summing (3.1) and (3.2), we get
14ddt(‖u‖4L4+‖B‖4L4)+12‖|u||∇u|‖2L2+12‖|B|∇|B|‖2L2+12(‖∇|u|2‖2L2+‖∇|B|2‖2L2)≤C(1+‖∇B‖2.M2,3+‖∇B‖21−r.M2,3r)(‖B‖4L4+‖u‖4L4)+‖π‖2⋅B−1∞,∞‖u‖4L4. |
Using Gronwall's inequality, we obtain
sup0<t<T(‖u(⋅,t)‖4L4+‖B(⋅,t)‖4L4)≤(‖u0‖4L4+‖B0‖4L4)exp(t∫0{‖∇B(⋅,τ)‖2.M2,3+‖∇B(⋅,τ)‖21−r.M2,3r+‖π(⋅,τ)‖2⋅B−1∞,∞+1}dτ)<∞. |
This implies that
u∈L∞(0,T;L4(R3))⊂L8(0,T;L4(R3)). |
Now due to regularity criterion (1.2), the proof of Theorem 2.7 is complete.
The part of the work was carried out while the second author was long-term visitor at University of Catania. The hospitality and support of Catania University are graciously acknowledged. The authors would like to expresses gratitude to reviewer(s) for careful reading of the manuscript, useful comments and suggestions for its improvement which greatly improved the presentation of the paper. The research of M.A. Ragusa is partially supported by the Ministry of Education and Science of the Russian Federation (Agreement number N. 02.03.21.0008).
All authors declare no conflicts of interest in this paper.
[1] | M. Acheritogaray, P. Degond, A. Frouvelle, et al. Kinetic fomulation and global existence for the Hall-magneto-hydrodynamics system, Kinet. Relat. Mod., 4 (2011), 901–918. |
[2] | S. A. Balbus and C. Terquem, Linear analysis of the Hall e_ect in protostellar disks, The Astrophysical Journal, 552 (2001), 235–247. |
[3] | J. Bergh and J. L¨ofstrom, Inerpolation Spaces. An Introduction, Springer-Verlag, New York, 1976. |
[4] | D. Chae, P. Degond and J. G. Liu, Well-posedness for Hall-magnetohydrodynamics, Ann. I. H. Poincaré-An, 31 (2014), 555–565 |
[5] | D. Chae and J. Lee, On the blow-up criterion and small data global existence for the Hallmagnetohydrodynamics, J. Di_er. Equations, 256 (2014), 3835–3858. |
[6] | D. Chae and M. Schonbek, On the temporal decay for the Hall-magnetohydrodynamic equations, J. Di_er. Equations, 255 (2013), 3971–3982. |
[7] | D. Chae and S. Weng, Singularity formation for the incompressible Hall-MHD equations without resistivity, Ann. I. H. Poincaré-An, 33 (2016), 1009–1022. |
[8] | D. Chae and J. Wolf, On partial regularity for the steady Hall-magnetohydrodynamics system, Commun. Math. Phys., 339 (2015), 1147–1166. |
[9] | D. Chae and J. Wolf, On partial regularity for the 3D nonstationary Hall magnetohydrodynamics equations on the plane, SIAM J. Math. Anal., 48 (2016), 443–469. |
[10] | J. Fan, Y. Fukumoto, G. Nakamura, et al. Regularity criteria for the incompressible Hall-MHD system, Zamm-Z Angew. Math. Me., 95 (2015), 1156–1160. |
[11] | J. Fan, X. Jia, G. Nakamura, et al. On well-posedness and blowup criteria for the |
[12] | magnetohydrodynamics with the Hall and ion-slip e_ects, Z. Angew. Math. Phys., 66 (2015), 1695–1706. |
[13] | J. Fan, A. Alsaedi, T. Hayat, et al. On strong solutions to the compressible Hallmagnetohydrodynamic system, Nonlinear Anal-Real, 22 (2015), 423–434. |
[14] | J. Fan, H. Malaikah, S. Monaquel, et al. Global Cauchy problem of 2D generalized MHD equations, Monatsh. Math., 175 (2014), 127–131. |
[15] | J. Fan and T. Ozawa, Regularity criteria for the incompressible MHD with the Hall or Ion-Slip e_ects, International Journal of Mathematical Analysis, 9 (2015), 1173–1186. |
[16] | J. Fan, F. Li and G. Nakamura, Regularity criteria for the incompressible Hallmagnetohydrodynamic equations, Nonlinear Anal-Theor, 109 (2014), 173–179. |
[17] | J. Fan, B. Samet and Y. Zhou, A regularity criterion for a generalized Hall-MHD system, Comput. Math. Appl., 74 (2017), 2438–2443. |
[18] | J. Fan, B. Ahmad, T. Hayat, et al. On well-posedness and blow-up for the full compressible Hall-MHD system, Nonlinear Anal-Real, 31 (2016), 569–579. |
[19] | M. Fei and Z. Xiang, On the blow-up criterion and small data global existence for the Hallmagnetohydrodynamics with horizontal dissipation, J. Math. Phys., 56 (2015), 051504. |
[20] | T. G. Forbes, Magnetic reconnection in solar flares, Geophys. Astro. Fluid, 62 (1991), 15–36. |
[21] | S. Gala, Regularity criterion for the 3D magneto-micropolar fluid equations in the Morrey-Campanato space, NoDEA-Nonlinear Di_., 17 (2010), 181–194. |
[22] | S. Gala, On the regularity criteria for the three-dimensional micropolar fluid equations in the critical Morrey-Campanato space, Nonlinear Anal-Real, 12 (2011), 2142–2150. |
[23] | S. Gala, A new regularity criterion for the 3D MHD equations in R3 , Commun. Pur. Appl. Anal., 11 (2012), 973–980. |
[24] | J. Geng, X. Chen and S. Gala, On regularity criteria for the 3D magneto-micropolar fluid equations in the critical Morrey-Campanato space, Commun. Pur. Appl. Anal., 10 (2011), 583–592. |
[25] | Z. Guo and S. Gala, Remarks on logarithmical regularity criteria for the Navier-Stokes equations, J. Math. Phys., 52 (2011), 063503. |
[26] | F. He, B. Ahmad, T. Hayat, et al. On regularity criteria for the 3D Hall-MHD equations in terms of the velocity, Nonlinear Anal-Real, 32 (2016), 35–51. |
[27] | X. Jia and Y. Zhou, Ladyzhenskaya-Prodi-Serrin type regularity criteria for the 3D incompressible MHD equations in terms of 3 × 3 mixture matrices, Nonlinearity, 28 (2015), 3289–3307. |
[28] | Z. Jiang, Y. Wang and Y. Zhou, On regularity criteria for the 2D generalized MHD system, J. Math. Fluid Mech., 18 (2016), 331–341. |
[29] | P. G. Lemarié-Rieusset, The Navier-Stokes equations in the critical Morrey-Campanato space, Rev. Mat. Iberoam., 23 (2007), 897–930. |
[30] | M. J. Lighthill, Studies on magneto-hydrodynamic waves and other anisotropic wave motions, Philos. T. R. Soc. A, 252 (1960), 397–430. |
[31] | S. Machihara and T. Ozawa, Interpolation inequalities in Besov spaces, Proc. Amer. Math. Soc., 131 (2003), 1553–1556. |
[32] | Y. Meyer, P. Gerard and F. Oru, Inégalités de Sobolev précisées, Séminaire sur les équations aux Dérivées Partielles (Polytechnique), 1996 (1997), 1–8. |
[33] | D. A. Shalybkov and V. A. Urpin, The Hall e_ect and the decay of magnetic fields, Astronomy and Astrophysics, 321 (1997), 685–690. |
[34] | R.Wan and Y. Zhou, On global existence, energy decay and blow up criterions for the Hall-MHD system, J. Di_er. Equations, 259 (2015), 5982–6008. |
[35] | Y. Wang and W. Zuo, On the blow-up criterion of smooth solutions for Hallmagnetohydrodynamics system with partial viscosity, Commun. Pur. Appl. Anal., 13 (2014), 1327–1336. |
[36] | Z. Ye, Regularity criterion for the 3D Hall-magnetohydrodynamic equations involving the vorticity, Nonlinear Anal-Theor, 144 (2016), 182–193. |
[37] | Y. Zhou and S. Gala, A new regularity criterion for weak solutions to the viscous MHD equations in terms of the vorticity field, Nonlinear Anal-Theor, 72 (2010), 3643–3648. |
[38] | Y. Zhou and S. Gala, Regularity criteria in terms of the pressure for the Navier-Stokes Equations in the critical Morrey-Campanato space, Z. Anal. Anwend., 30 (2011), 83–93. |
[39] | R. Wan and Y. Zhou, Low regularity well-posedness for the 3D generalized Hall-MHD system, Acta Appl. Math., 147 (2017), 95–111. |
[40] | R. Wan and Y. Zhou, On global existence, energy decay and blow-up criteria for the Hall-MHD system, J. Di_er. Equations, 259 (2015), 5982–6008. |
1. | Q. Rubbab, Y. Mahsud, S. Irshad, M. A. Imran, A. Ahmadian, S. Salahshour, M. Ferrara, Numerical simulations of unsteady flows in a rotating channel using a novel eigenfunction expansion method, 2020, 10, 2158-3226, 065035, 10.1063/5.0012874 | |
2. | Maria Alessandra Ragusa, Fan Wu, Regularity Criteria for the 3D Magneto-Hydrodynamics Equations in Anisotropic Lorentz Spaces, 2021, 13, 2073-8994, 625, 10.3390/sym13040625 | |
3. | Sadek Gala, Eugeny Galakhov, Maria Alessandra Ragusa, Olga Salieva, Beale–Kato–Majda Regularity Criterion of Smooth Solutions for the Hall-MHD Equations with Zero Viscosity, 2021, 1678-7544, 10.1007/s00574-021-00256-7 | |
4. | Sharad K. Yadav, Hideaki Miura, Rahul Pandit, Statistical properties of three-dimensional Hall magnetohydrodynamics turbulence, 2022, 34, 1070-6631, 095135, 10.1063/5.0107434 | |
5. | Sadek Gala, Michel Théra, Logarithmically improved regularity criterion for the 3D Hall-MHD equations, 2021, 40, 2238-3603, 10.1007/s40314-021-01585-5 | |
6. | Baoying Du, On three-dimensional Hall-magnetohydrodynamic equations with partial dissipation, 2022, 2022, 1687-2770, 10.1186/s13661-022-01587-0 |