Citation: Sadek Gala, Mohamed Mechdene, Maria Alessandra Ragusa. Logarithmically improved regularity criteria for the Boussinesq equations[J]. AIMS Mathematics, 2017, 2(2): 336-347. doi: 10.3934/Math.2017.2.336
[1] | J. R. Cannon and E. Dibenedetto, The initial problem for the Boussinesq equation with data in Lp, in: Lecture Notes in Mathematics, Springer, Berlin, 771 (1980), 129-144. |
[2] | D. Chae and H.-S. Nam, Local existence and blow-up criterion for the Boussinesq equations, Proc. Roy. Soc. Edinburgh, Sect. A, 127 (1997), 935-946. |
[3] | B. Q. Dong, J. Song and W. Zhang, Blow-up criterion via pressure of three-dimensional Boussinesq equations with partial viscosity (in Chinese), Sci. Sin. Math., 40 (2010), 1225-1236. |
[4] | J. Fan and Y. Zhou, A note on regularity criterion for the 3D Boussinesq system with partial viscosity, Appl. Math. Lett., 22 (2009), 802-805. |
[5] | J. Fan and T. Ozawa, Regularity criteria for the 3D density-dependent Boussinesq equations, Nonlinearity, 22 (2009), 553-568. |
[6] | S. Gala, On the regularity criterion of strong solutions to the 3D Boussinesq equations, Applicable Analysis, 90 (2011), 1829-1835. |
[7] | S. Gala and M.A. Ragusa, Logarithmically improved regularity criterion for the Boussinesq equations in Besov spaces with negative indices, Applicable Analysis, 95 (2016), 1271-1279. |
[8] | S. Gala, Z. Guo and M. A. Ragusa, A remark on the regularity criterion of Boussinesq equations with zero heat conductivity, Appl. Math. Lett., 27 (2014), 70-73. |
[9] | Z. Guo and S. Gala, Regularity criterion of the Newton-Boussinesq equations in $\mathbb{R}^3$, Commun. Pure Appl. Anal., 11 (2012), 443-451. |
[10] | J. Geng and J. Fan, A note on regularity criterion for the 3D Boussinesq system with zero thermal conductivity, Appl. Math. Lett., 25 (2012), 63-66. |
[11] | Y. Jia, X. Zhang and B. Dong, Remarks on the blow-up criterion for smooth solutions of the Boussinesq equations with zero diffusion, C.P.A.A., 12 (2013), 923-937. |
[12] | T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Commun. Pure Appl. Math., 41 (1988), 891-907. |
[13] | C. Kenig, G. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de-Vries equation, J. Amer. Math. Soc., 4 (1991), 323-347. |
[14] | A. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean, Courant Lecture Notes in Mathematics, 9 (2003). |
[15] | M. Mechdene, S. Gala, Z. Guo and M.A. Ragusa, Logarithmical regularity criterion of the threedimensional Boussinesq equations in terms of the pressure, Z. Angew. Math. Phys., 67 (2016), 67-120. |
[16] | Y. Meyer, P. Gerard and F. Oru, Inégalités de Sobolev précisées, Séminaire équations aux dérivées partielles (Polytechnique), 4,1996-1997. |
[17] | N. Ishimura and H. Morimoto, Remarks on the blow-up criterion for the 3D Boussinesq equations, Math. Meth. Appl. Sci., 9 (1999), 1323-1332. |
[18] | H. Triebel, Theory of Function Spaces, Birkhäuser Verlag, Basel, 1983. |
[19] | H. Qiu, Y. Du and Z. Yao, Blow-up criteria for 3D Boussinesq equations in the multiplier space, Communications in Nonlinear Science and Numerical Simulation, 16 (2011), 1820-1824. |
[20] | H. Qiu, Y. Du and Z. Yao, A blow-up criterion for 3D Boussinesq equations in Besov spaces, Nonlinear Analysis TMA, 73 (2010), 806-815. |
[21] | Z. Xiang, The regularity criterion of the weak solution to the 3D viscous Boussinesq equations in Besov spaces, Mathematical Methods in the Applied Sciences, 34 (2011), 360-372. |
[22] | F. Xu, Q. Zhang and X. Zheng, Regularity Criteria of the 3D Boussinesq Equations in the Morrey-Campanato Space, Acta Appl. Math., 121 (2012), 231-240. |
[23] | Z. Ye, A Logarithmically improved regularity criterion of smooth solutions for the 3D Boussinesq equations, Osaka J. Math., 53 (2016), 417-423. |