Research article

Logarithmically improved regularity criteria for the Boussinesq equations

  • Received: 24 April 2017 Accepted: 22 May 2017 Published: 06 June 2017
  • In this paper, logarithmically improved regularity criteria for the Boussinesq equations are established under the framework of Besov space $\overset{.}{B}_{\infty, \infty }.{-r}$. We prove the solution $(u, \theta)$ is smooth up to time $T>0$ provided that $ \int_0 . T\frac{{{{\left\| {u( \cdot ,t)} \right\|}_{{{\mathop B\limits^. }_{\infty ,\infty }}. - r}}\;.\frac{2}{{1 - r}}}}{{\log (e + {{\left\| {u(t,.)} \right\|}_{{{\mathop B\limits^. }_{\infty ,\infty }}. - r\;}})}}dt < \infty $ for some $0\leq r < 1$ or $||u( \cdot ,t){||_{{L^\infty }(0,T;{\mathop B\limits^{·}}{_{\infty ,\infty }^{ - 1}}\;\;({{\mathbb{R} }^3}))}}<<1.$ This result improves some previous works.

    Citation: Sadek Gala, Mohamed Mechdene, Maria Alessandra Ragusa. Logarithmically improved regularity criteria for the Boussinesq equations[J]. AIMS Mathematics, 2017, 2(2): 336-347. doi: 10.3934/Math.2017.2.336

    Related Papers:

  • In this paper, logarithmically improved regularity criteria for the Boussinesq equations are established under the framework of Besov space $\overset{.}{B}_{\infty, \infty }.{-r}$. We prove the solution $(u, \theta)$ is smooth up to time $T>0$ provided that $ \int_0 . T\frac{{{{\left\| {u( \cdot ,t)} \right\|}_{{{\mathop B\limits^. }_{\infty ,\infty }}. - r}}\;.\frac{2}{{1 - r}}}}{{\log (e + {{\left\| {u(t,.)} \right\|}_{{{\mathop B\limits^. }_{\infty ,\infty }}. - r\;}})}}dt < \infty $ for some $0\leq r < 1$ or $||u( \cdot ,t){||_{{L^\infty }(0,T;{\mathop B\limits^{·}}{_{\infty ,\infty }^{ - 1}}\;\;({{\mathbb{R} }^3}))}}<<1.$ This result improves some previous works.


    加载中
    [1] J. R. Cannon and E. Dibenedetto, The initial problem for the Boussinesq equation with data in Lp, in: Lecture Notes in Mathematics, Springer, Berlin, 771 (1980), 129-144.
    [2] D. Chae and H.-S. Nam, Local existence and blow-up criterion for the Boussinesq equations, Proc. Roy. Soc. Edinburgh, Sect. A, 127 (1997), 935-946.
    [3] B. Q. Dong, J. Song and W. Zhang, Blow-up criterion via pressure of three-dimensional Boussinesq equations with partial viscosity (in Chinese), Sci. Sin. Math., 40 (2010), 1225-1236.
    [4] J. Fan and Y. Zhou, A note on regularity criterion for the 3D Boussinesq system with partial viscosity, Appl. Math. Lett., 22 (2009), 802-805.
    [5] J. Fan and T. Ozawa, Regularity criteria for the 3D density-dependent Boussinesq equations, Nonlinearity, 22 (2009), 553-568.
    [6] S. Gala, On the regularity criterion of strong solutions to the 3D Boussinesq equations, Applicable Analysis, 90 (2011), 1829-1835.
    [7] S. Gala and M.A. Ragusa, Logarithmically improved regularity criterion for the Boussinesq equations in Besov spaces with negative indices, Applicable Analysis, 95 (2016), 1271-1279.
    [8] S. Gala, Z. Guo and M. A. Ragusa, A remark on the regularity criterion of Boussinesq equations with zero heat conductivity, Appl. Math. Lett., 27 (2014), 70-73.
    [9] Z. Guo and S. Gala, Regularity criterion of the Newton-Boussinesq equations in $\mathbb{R}^3$, Commun. Pure Appl. Anal., 11 (2012), 443-451.
    [10] J. Geng and J. Fan, A note on regularity criterion for the 3D Boussinesq system with zero thermal conductivity, Appl. Math. Lett., 25 (2012), 63-66.
    [11] Y. Jia, X. Zhang and B. Dong, Remarks on the blow-up criterion for smooth solutions of the Boussinesq equations with zero diffusion, C.P.A.A., 12 (2013), 923-937.
    [12] T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Commun. Pure Appl. Math., 41 (1988), 891-907.
    [13] C. Kenig, G. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de-Vries equation, J. Amer. Math. Soc., 4 (1991), 323-347.
    [14] A. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean, Courant Lecture Notes in Mathematics, 9 (2003).
    [15] M. Mechdene, S. Gala, Z. Guo and M.A. Ragusa, Logarithmical regularity criterion of the threedimensional Boussinesq equations in terms of the pressure, Z. Angew. Math. Phys., 67 (2016), 67-120.
    [16] Y. Meyer, P. Gerard and F. Oru, Inégalités de Sobolev précisées, Séminaire équations aux dérivées partielles (Polytechnique), 4,1996-1997.
    [17] N. Ishimura and H. Morimoto, Remarks on the blow-up criterion for the 3D Boussinesq equations, Math. Meth. Appl. Sci., 9 (1999), 1323-1332.
    [18] H. Triebel, Theory of Function Spaces, Birkhäuser Verlag, Basel, 1983.
    [19] H. Qiu, Y. Du and Z. Yao, Blow-up criteria for 3D Boussinesq equations in the multiplier space, Communications in Nonlinear Science and Numerical Simulation, 16 (2011), 1820-1824.
    [20] H. Qiu, Y. Du and Z. Yao, A blow-up criterion for 3D Boussinesq equations in Besov spaces, Nonlinear Analysis TMA, 73 (2010), 806-815.
    [21] Z. Xiang, The regularity criterion of the weak solution to the 3D viscous Boussinesq equations in Besov spaces, Mathematical Methods in the Applied Sciences, 34 (2011), 360-372.
    [22] F. Xu, Q. Zhang and X. Zheng, Regularity Criteria of the 3D Boussinesq Equations in the Morrey-Campanato Space, Acta Appl. Math., 121 (2012), 231-240.
    [23] Z. Ye, A Logarithmically improved regularity criterion of smooth solutions for the 3D Boussinesq equations, Osaka J. Math., 53 (2016), 417-423.
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4272) PDF downloads(955) Cited by(2)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog