Loading [MathJax]/jax/element/mml/optable/MathOperators.js
Research article

Osgood type blow-up criterion for the 3D Boussinesq equations with partial viscosity

  • Received: 27 October 2017 Accepted: 12 November 2017 Published: 27 December 2017
  • MSC : 35B44, 35B65, 76D03

  • This paper is dedicated to studying the blow-up criterion of smooth solutions to the three-dimensional Boussinesq equations with partial viscosity. By means of the Littlewood-Paley decomposition, we give an improved logarithmic Sobolev inequality and through this, we obtain the corresponding blow-up criterion in a space larger than ˙B0,, which extends several previous works.

    Citation: Zhaoyang Shang. Osgood type blow-up criterion for the 3D Boussinesq equations with partial viscosity[J]. AIMS Mathematics, 2018, 3(1): 1-11. doi: 10.3934/Math.2018.1.1

    Related Papers:

    [1] Chenchen Lu, Lin Chen, Shaoyong Lai . Local well-posedness and blow-up criterion to a nonlinear shallow water wave equation. AIMS Mathematics, 2024, 9(1): 1199-1210. doi: 10.3934/math.2024059
    [2] Tariq Mahmood, Zhaoyang Shang . Blow-up criterion for incompressible nematic type liquid crystal equations in three-dimensional space. AIMS Mathematics, 2020, 5(2): 746-765. doi: 10.3934/math.2020051
    [3] Ahmad Mohammed Alghamdi, Sadek Gala, Maria Alessandra Ragusa . A regularity criterion of weak solutions to the 3D Boussinesq equations. AIMS Mathematics, 2017, 2(3): 451-457. doi: 10.3934/Math.2017.2.451
    [4] Sen Ming, Jiayi Du, Yaxian Ma . The Cauchy problem for coupled system of the generalized Camassa-Holm equations. AIMS Mathematics, 2022, 7(8): 14738-14755. doi: 10.3934/math.2022810
    [5] Huafei Di, Yadong Shang . Blow-up phenomena for a class of metaparabolic equations with time dependent coeffcient. AIMS Mathematics, 2017, 2(4): 647-657. doi: 10.3934/Math.2017.4.647
    [6] Ying Wang, Yunxi Guo . Blow-up solution and analyticity to a generalized Camassa-Holm equation. AIMS Mathematics, 2023, 8(5): 10728-10744. doi: 10.3934/math.2023544
    [7] Xi Wang . Blow-up criterion for the 3-D inhomogeneous incompressible viscoelastic rate-type fluids with stress-diffusion. AIMS Mathematics, 2025, 10(1): 1826-1841. doi: 10.3934/math.2025084
    [8] Yaojun Ye, Lanlan Li . Global existence and blow-up of solutions for logarithmic Klein-Gordon equation. AIMS Mathematics, 2021, 6(7): 6898-6914. doi: 10.3934/math.2021404
    [9] Yina Lin, Qian Zhang, Meng Zhou . Global existence of classical solutions for the 2D chemotaxis-fluid system with logistic source. AIMS Mathematics, 2022, 7(4): 7212-7233. doi: 10.3934/math.2022403
    [10] Xiaochun Sun, Yulian Wu, Gaoting Xu . Global well-posedness for the 3D rotating Boussinesq equations in variable exponent Fourier-Besov spaces. AIMS Mathematics, 2023, 8(11): 27065-27079. doi: 10.3934/math.20231385
  • This paper is dedicated to studying the blow-up criterion of smooth solutions to the three-dimensional Boussinesq equations with partial viscosity. By means of the Littlewood-Paley decomposition, we give an improved logarithmic Sobolev inequality and through this, we obtain the corresponding blow-up criterion in a space larger than ˙B0,, which extends several previous works.


    1. Introduction

    In this paper we consider the following Cauchy problem of 3D Boussinesq system:

    {utνΔu+uu+P=θe3,θtκΔθ+uθ=0,u=0,u(x,0)=u0(x),θ(x,0)=θ0(x), (1.1)

    where, u=(u1(x,t),u2(x,t),u3(x,t)) is a vector field denoting the velocity, θ=θ(x,t) is a scalar function denoting either the temperature in the content of thermal convection, or the density in the modeling of geophysical fluids, P=P(x,t) the scalar pressure and e3=(0,0,1) is the unit vector in the x3 direction. The parameters ν,κ0 represent the kinematic viscosity and molecular diffusion coefficients, respectively, while u0 and b0 are the given initial data.

    The Boussinesq system has widely been used in atmospheric sciences and oceanic fluids[13,18]. Local existence and uniqueness theories of solutions have been studied by many mathematicians and physicists (see, e.g., [1,2,14]). Chae established the global regularity criteria for the 2D Boussinesq equations with partial dissipation in celebrated paper [3]. Recently, Ye [23] considered the case with horizontal dissipation in the horizontal velocity equation and vertical dissipation in the temperature equation. Similar results about global regularity for 2D incompressible fluid models please refer to [11,12], and the reference therein. However, for the 3D Boussinesq equations, whether the unique local strong solution can exists globally for general large initial data is an outstanding challenging open problem. Therefore, it is important to study the mechanism of blow-up and structure of possible singularities of strong or smooth solutions to the system (1.1). Ishimura and Morimoto [16] proved the following blow-up criterion

    uL1(0,T;L(R3)). (1.2)

    Fan and Ozawa [9] and Fan and Zhou [10] established the following refined blow-up criterion for system (1.1) as

    curluL1(0,T;˙B0,), (1.3)

    with ν=1,κ=0 (zero-diffusive case) and ν=0,κ=1 (zero-viscosity case), respectively. By means of the Littlewood-Paley theory and Bony's paradifferential calculus, Qiu-Du-Yao [19] extended the condition to

    uLq(0,T;Bsp,(R3)),2q+3p=1+s,31+s<p,1<s1,(p,s)(,1), (1.4)

    and further studied by Dong-Jia-Zhang [5] in the case of κ=0. Zhang and Gala [24] gave an Osgood type regularity criterion for the Newton-Boussinesq equation, that is,

    supq2T0ˉSqu(τ)Lqlnqdτ=, (1.5)

    where ˉSq=ql=q˙Δl, ˙Δl being the homogenous Fourier localization operator.

    Recently, Wu-Hu-Liu [21] established the blow-up criterion (1.5) for the Boussinesq equation with full viscosities (ν=1,κ=1) and Ren [20] obtained the following blow-up criterion

    T0sup2q<Δqcurlu(τ)Llogqdτ=, (1.6)

    with the zero-viscosity constant. Here, Δq stands for nonhomegenous Littlewood-Paley projector operator. For more results about blow-up criterion for the system (1.1), we refer to [4,6,7,15] and the reference therein.

    Motivated by above-mentioned results, the purpose of this paper is to establish a blow-up criterion in a space (see definition 2.1) larger than ˙B0,. We should point out that, in the thesis [22], the author gave the blow-up criterion (1.3) for the fractional Boussinesq equations in n-dimensions(n2) by using commutator operator estimate and the inequality

    θ(t)Lpθ(T0)Lpexp{tT0u(τ)dτ},p[2,], (1.7)

    where L-norm of the gradient of velocity can be controlled as

    uC(1+uL2+×u˙B0,log(e+ΛsuL2)),s>1+n2.

    However, for our cases, the logarithmic Sobolev inequality becomes

    uLC(1+u˙VΘln(uHm+e)ln(ln(uHm+e)+e)),m>32, (1.8)

    then we can not apply the inequality (1.7) in [22]. Therefore, some new estimates need to be developed. In this paper, we will take use of the L-norm of the temperature due to the special structure of the temperature equation. Through the boundness of θL and elaborate energy estimate which together with the logarithmic Sobolev inequality, we obtain our main results. As a consequence, we improve the results in reference [9,10,20,21].

    The paper is organized as follows. In section 2, we recall the definition of Besov space and state our main results. The commutator operator estimate and the logarithmic Sobolev inequality are presented in Lemma 2.1 and Lemma 2.2, respectively. Section 3 is devoted to proving Theorem 2.1.

    Through this paper, C stands for some real positive constants which may be different in each occurrence.


    2. Preliminaries and main results

    Before presenting our results, we introduce some function spaces and some notations. First, we are going to recall some basic facts on Littlewood-Paley theory. Let S(R3) be the Schwartz class of rapidly decreasing functions. Given fS, its Fourier transform Ff=ˆf is defined by

    ˆf(ξ)=2π32R3eixξf(ξ)dx.

    Choose two nonnegative radial functions χ and φ, valued in the interval [0, 1], supported in B={ξR3,|ξ|43}, C={ξR3,34|ξ|83}, respectively, such that

    χ(ξ)+j0φ(2jξ)=1,ξR3
    jZφ(2jξ)=1,ξR3{0}.

    Let h=F1φ and ˜h=F1χ. The homogeneous dyadic blocks ˙Δj and the homogeneous low-frequency cut-off operators ˙Sj are defined for all jZ by

    ˙Δju=φ(2jD)u=23jR3h(2jy)u(xy)dy,

    and

    ˙Sju=χ(2jD)u=23jR3˜h(2jy)u(xy)dy.

    Formally, ˙Δj is a frequency projection to the annulus{|ξ|2j}, and ˙Sj is a frequency projection to the ball {|ξ|. By using of Littlewood-Paley's decomposition, we give the definition of the homogenous Besov space.

    Let s\in{\mathbb{R}}, 1\leqslant{p}, {q}\leqslant\infty. \mathcal{S}^{'}_h = \big\{u\in\mathcal{S}^{'}(\mathbb{R}^3);\lim\limits_{j\to-\infty}\dot{S}_j = 0\big\} which can be identified by the quotient space of \mathcal{S}^{'}/\mathcal{P} with the polynomials space \mathcal{P}. Then the homogenous Besov space \dot{B}^s_{p, q} is defined by

    \dot{B}^s_{p, q} = \{u\in\mathcal{S}^{'}_h(\mathbb{R}^3);\|u\|_{\dot{B}^s_{p, q}}<\infty\}

    where

    \begin{equation*} \|u\|_{\dot{B}^s_{p, q}} = \label{eq:1.2} \begin{cases} \displaystyle (\sum\limits_{j = -\infty}^{\infty}2^{jsq}\|\dot\Delta_j{u}\|^q_{L^p})^\frac{1}{q}, \quad for \quad q<\infty, \\ \displaystyle \quad\sup\limits_{j\in\mathbb{Z}}2^{js}\|\dot\Delta_j{u}\|_{L^p}, \quad \quad \, \, \, \, for \quad q = \infty. \end{cases} \end{equation*}

    Next, we introduce the space of Besov type, see [17].

    Definition 2.1. Let \Theta(\alpha)(\geqslant1) be a nondecreasing function on [1, \infty]. We denote by \dot{V}_\Theta the set of tempered distributions u such that \{u\in\mathcal{S}^{'}_h(\mathbb{R}^3);\| {u} \|_{V_\Theta} < \infty\} and the norm is defined by

    \| {u} \|_{\dot{V}_\Theta} = \sup\limits_{N = 1, 2\cdots}\frac{\|\sum\limits_{j = -N}^{N}\dot\Delta_j{u}\|_{L^\infty}}{\Theta(N)}.

    Remark 2.1. We can easily see that \|u\|_{\dot{V}_\Theta}\leqslant{C}\|u\|_{\dot{B}^0_{\infty, \infty}}\leqslant{C}\|u\|_{BMO} \leqslant{C}\|u\|_{L^\infty}, provided \Theta(N)\geqslant{N}. In this paper, we will take \Theta(N) = N\ln(N+e).

    Next, we present the following well-know commutator estimate and we can find the details in [8] for example.

    Lemma 2.1. Suppose that s>0 and p\in(1, \infty). Let f, g be two smooth functions such that \nabla{f}\in{L}^{{p}_1}, \Lambda^{s}{f}\in{L}^{{p}_3}, \Lambda^{s-1}{g}\in{L}^{{p}_2} and {g}\in{L}^{{p}_4}, then there exist a constant C independent of f and g such that

    \|[\Lambda^{s}, f]g\|_{L^p}\leqslant{C}(\|\nabla{f}\|_{L^{p_1}}\|\Lambda^{s-1}{g}\|_{L^{p_2}}+\|\Lambda^{s}{f}\|_{L^{p_3}}\|g\|_{L^{p_4}}) (2.1)

    with p_2, p_3 \in(1, \infty) such that

    \frac{1}{p} = \frac{1}{p_1}+\frac{1}{p_2} = \frac{1}{p_3}+\frac{1}{p_4}.

    Here [\Lambda^{s}, f]g = \Lambda^{s}(fg)-f\Lambda^{s}{g}.

    Next, we give the following logarithmic Sobolev inequality which plays an important role in the proof of the blow-up criterion for the classic solutions.

    Lemma 2.2. Let m >\frac{3}{2}, then there exists constant C depending only on s, p and \Theta such that

    \|u\|_{{L^\infty}(\mathbb{R}^3)}\leqslant C\big(1+\|u\|_{\dot{V}_\Theta}\Theta(\ln(\|u\|_{{H^m}(\mathbb{R}^3)}+e))\big) (2.2)

    for all u \in H^m(\mathbb{R}^3).

    Proof. By using Littlewood-Paley theory, we decompose the function into three parts. More precisely, we write

    u(x) = \sum\limits_{j\in{\mathbb{Z}}}\dot{\Delta}_j{u} = u_l(x)+u_m(x)+u_h(x) (2.3)

    where

    u_l(x) = \sum\limits_{j<-N}\dot\Delta_j{u}, \quad u_m(x) = \sum\limits_{-N\leqslant{j}\leqslant{N}}\dot\Delta_j{u} \quad \text{and} \quad u_m(x) = \sum\limits_{j>N}\dot\Delta_j{u}. (2.4)

    For the low-frequency part u_l(x), we can show that

    \|u_l(x)\|_\infty \leqslant \sum\limits_{j<-N}\|\dot\Delta_j{u}\|_\infty \leqslant \sum\limits_{j<-N}C2^{3j/2}\|\dot\Delta_j{u}\|_{L^2} \leqslant C\sum\limits_{j<-N}2^{3j/2}\|{u}\|_{L^2} \leqslant C2^{-\frac{3}{2}N}\|u\|_{H^s}. (2.5)

    For the high-frequency part

    \begin{align}\label{4.4} \|u_h(x)\|_\infty &\leqslant \sum\limits_{j>N}\|\dot\Delta_j{u}\|_\infty \nonumber \\ &\leqslant \sum\limits_{j>N}C2^{3j/2}\|\dot\Delta_j{u}\|_{L^2} \nonumber \\ & = C\sum\limits_{j>N}2^{sj}\|\dot\Delta_j{u}\|_{L^2}2^{-sj+3j/2} \nonumber \\ &\leqslant C2^{-(s-3/2)N} \|u\|_{H^s}, \end{align} (2.6)

    for s>\frac{3}{2}, where we have used the following Bernstein estimate

    \|\dot\Delta_j{u}\|_{L^{p_2}}\leqslant C2^{jd(\frac{1}{p_1}-\frac{1}{p_2})}\|\dot\Delta_j{u}\|_{L^{p_1}}, \quad \text{for} \quad 1\leqslant p_1 \leqslant p_2\leqslant\infty,

    and the norm equivalent between \|\cdot\|_{\dot{H}^s} and \|\cdot\|_{\dot{B}_{2, 2}^s}.

    Next, we consider u_m(x), by definition 2.1 we have

    \|u_m(x)\|_\infty \leqslant \sum\limits_{j = -N}^{N}\|\dot\Delta_j{u}\|_\infty \leqslant \Theta(N)\|u\|_{\dot{V}_\Theta}. (2.7)

    Taking from (2.3) to (2.7) into consideration, we get

    \|u(x)\|_\infty \leqslant C(2^{-\frac{3}{2}N}\|u\|_{H^s}+2^{-(s-3/2)N} \|u\|_{H^s}+\Theta(N)\|u\|_{\dot{V}_\Theta}). (2.8)

    If we take N = [\frac{\ln(\|u\|_{H^s}+e)}{min(s-3/2, 3/2)\ln2}]+1, where [\, \cdot\, ] denotes Gausss symbol, then we have the desired estimate (2.2).

    Now, we state our main results.

    Theorem 2.1. Suppose \nu>0, \kappa = 0 with (u_0, \theta_0)\in{H}^3(\mathbb{R}^3)\times {H}^3(\mathbb{R}^3). Let T>0 be the maximum time such that (u, \theta) be a local smooth solution to the system (1.1). If T < \infty, then

    \limsup\limits_{t\nearrow{T}}(\|u(t)\|_{H^s}+\|\theta(t)\|_{H^s}) = \infty, (2.9)

    if and only if

    \int_0^T \| \nabla{u} \|_{\dot{V}_\Theta}d\tau = \infty. (2.10)

    Remark 2.2. For the zero-diffusion case, that is, \nu>0, \kappa = 0, the stiuation becomes more difficult. The main obstacle is that the temperature \theta(x, t) in the transport equation does not gain any smoothness. Hence, the blow-up issue of the zero-diffusive Boussinesq equations is more difficult than that of full viscous Boussinesq system. The result (2.10) is an improvement of (1.5) in [21].

    Remark 2.3. After some slight modifications, our methods can also be applied to the zero-viscosity case, that is, \nu = 0, \kappa = 1. More precisely, J_2 and K_2 in (3.10) and (3.15) can be estimated as

    \begin{align}\label{2.5} J_2&\leqslant C\left(\|\nabla{u}\|_{L^\infty}\|\nabla^2{\theta}\|_{L^2}^2+\|\nabla{u}\|_{L^\infty}^\frac{1}{2}\|\nabla{u}\|_{L^2}^\frac{1}{2}\|\nabla{\theta}\|_{L^4}\|\nabla^3{\theta}\|_{L^2}\right)\nonumber \\ &\leqslant\|\nabla^3{\theta}\|_{L^2}^2+C\left(\|\nabla{u}\|_{L^\infty}\|\nabla^2{\theta}\|_{L^2}^2+\|\nabla{u}\|_{L^\infty}\|{u}\|_{L^2}^\frac{1}{2}\|\nabla^2{u}\|_{L^2}^\frac{1}{2}\|{\theta}\|_{L^\infty}\|\nabla^2{\theta}\|_{L^2}\right) \nonumber \\ &\leqslant\|\nabla^3{\theta}\|_{L^2}^2+C\|\nabla{u}\|_{L^\infty}\left(\|\nabla^2{\theta}\|_{L^2}^2+\|\nabla^2{u}\|_{L^2}^2+1\right), \end{align} (2.11)

    similarily

    \begin{align}\label{2.6} K_2&\leqslant C\left(\|\nabla^3{u}\|_{L^2}\|\nabla{\theta}\|_{L^3}\|\nabla^3{\theta}\|_{L^6}+\|\nabla^2{u}\|_{L^2}\|\nabla^2{\theta}\|_{L^3}\|\nabla^3{\theta}\|_{L^6}+\|\nabla{u}\|_{L^\infty}\|\nabla^3{\theta}\|_{L^2}^2\right) \nonumber \\ &\leqslant\|\nabla^4{\theta}\|_{L^2}^2+C\|\nabla{u}\|_{L^\infty}\left(\|\nabla^2{\theta}\|_{L^2}^2+\|\nabla^2{u}\|_{L^2}^2+1\right). \end{align} (2.12)

    Remark 2.4. From the Biot-Savart law, we have \|\nabla{u}\|_{\dot{V}_\Theta}\leqslant{C}\|\nabla{u}\|_{\dot{B}^0_{\infty, \infty}}\leqslant{C}\|w\|_{\dot{B}^0_{\infty, \infty}}, which refined the results in [9,10].

    Remark 2.5. For the nonhomogenous case, our space becomes V_\Theta = \{u\in\mathcal{S}^{'}(\mathbb{R}^3);\| {u} \|_{V_\Theta} < \infty\}, where

    \| {u} \|_{V_\Theta} = \sup\limits_{N\geq2}\frac{\left\|\sum\limits_{j = -1}^{N}\Delta_j{u}\right\|_{L^\infty}}{\Theta(N)}.

    Then our results is an improvement of (1.6) in [20], since

    \sup\limits_{N\geq2}\frac{\left\|\sum\limits_{j = -1}^{N}\Delta_j{u}\right\|_{L^\infty}}{N\ln(N+e)}\leqslant{C}\sup\limits_{2\leqslant{q}<\infty}\frac{\|\Delta_qu\|_{L^\infty}}{\ln{q}}\leqslant{C}\|{u}\|_{{B}^0_{\infty, \infty}}.

    Moreover, we give the following function for example

    f(x) = \log\left(\frac{1}{|x|}+e\right)\log\log\left(\frac{1}{|x|}+e\right)\in V_\Theta,

    but does not belongs to {B}^{0}_{\infty, \infty}, please refer to [17,20] for details.


    3. Proof of theorem 2.1

    Proof. We consider the 3D Boussinesq equations (1.1) with \nu>0, \kappa = 0. It is easy to see that (2.10) implies (2.9), since \| \nabla{u} \|_{\dot{V}_\Theta}\leqslant C\|\nabla{u}\|_\infty \leqslant C\|u(t)\|_{H^3}. Hence, we only need to prove that (2.9) implies (2.10). If (2.10) is false, then there exists a constant C such that

    \int_{0}^T \| \nabla{u} \|_{\dot{V}_\Theta}d\tau<C. (3.1)

    Multiplying the second equation of (1.1) by u and \theta , respectively, integrating and using the divergence-free condition \nabla\cdot u = 0, we immediately have

    \|u(t)\|_{L^2}\leqslant C\left(\|u_0\|_{L^2}+\|\theta_0\|_{L^2}\right), \quad \|\theta(t)\|_{L^2}\leqslant\|\theta_0\|_{L^2}, (3.2)

    for any t\in[0, T]. Furthermore, we have \|\theta(t)\|_{L^p}\leqslant\|\theta_0\|_{L^p}, for p\in [2, \infty].

    Next, we are going to give H^1, H^2 and H^3 estimates to complete our proof.

    (H^1 estimate). Multiplying the first two equations of (1.1) by \Delta{u} and \Delta{\theta}, respectively, after integrating by parts and taking the divergence-free property into account, we have

    \begin{align}\label{3.3} &\frac{1}{2}\frac{d}{dt}( \|\nabla u(t)\|_{L^2}^2+\|\nabla \theta(t)\|_{L^2}^2)+ \| \nabla^2{u(t)} \|_{L^2}^2 \nonumber \\ & = \int_{\mathbb{R}^3}(u\cdot\nabla{u})\cdot\Delta{u} \, dx+\int_{\mathbb{R}^3}(u\cdot\nabla{\theta})\cdot\Delta{\theta} \, dx-\int_{\mathbb{R}^3}(\theta{e_n})\cdot\Delta{u}\, dx \nonumber \\ &: = I_1+I_2+I_3. \end{align} (3.3)

    After integrating by parts several times, one can conclude that the three terms above can be bounded as

    \begin{align} \label{3.4} I_1& = \int_{\mathbb{R}^3}(u\cdot\nabla{u})\cdot\Delta{u} \, dx \nonumber \\ %& = \int_{\mathbb{R}^3}u_i\partial_iu_j\Delta u_j\, dx \nonumber \\ & = -\int_{\mathbb{R}^3}\partial_k(u_i\partial_iu_j)\partial_k u_j\, dx \nonumber \\ & = -\int_{\mathbb{R}^3}\partial_k u_i\partial_iu_j\partial_k u_j+u_i\partial_i\partial_ku_j\partial_k u_j\, dx \nonumber \\ &\leqslant C\|\nabla{u}\|_\infty \|\nabla{u}\|_{L^2}^2. \end{align} (3.4)

    Similarly, we have

    I_2 = \int_{\mathbb{R}^3}(u\cdot\nabla{\theta})\cdot\Delta{\theta} \, dx (3.5)

    and for the third term, we can show as

    I_3 = -\int_{\mathbb{R}^3}(\theta{e_n})\cdot\Delta{u}\, dx\leqslant \|\nabla{\theta}\|_{L^2} \|\nabla{u}\|_{L^2} \leqslant \|\nabla{\theta}\|_{L^2}^2+ \|\nabla{u}\|_{L^2}^2. (3.6)

    Plugging the estimates (3.4), (3.5), (3.6) into (3.3), we arrive at

    \begin{align}\label{3.7} &\frac{1}{2}\frac{d}{dt} (\|\nabla u(t)\|_{L^2}^2+\|\nabla \theta(t)\|_{L^2}^2)+\| \nabla^2{u(t)} \|_{L^2}^2 \nonumber \\ &\leqslant C\|\nabla{u}\|_\infty \|\nabla{u}\|_{L^2}^2+C\|\nabla{u}\|_\infty \|\nabla{\theta}\|_{L^2}^2+\|\nabla{\theta}\|_{L^2}^2+ \|\nabla{u}\|_{L^2}^2 \nonumber \\ &\leqslant C(1+\|\nabla{u}\|_\infty) (\|\nabla{u}\|_{L^2}^2+ \|\nabla{\theta}\|_{L^2}^2). \end{align} (3.7)

    (H^2 estimate) applying \nabla^2 to the first two equations of (1.1), respectively, integrating and adding the resulting equations together it follows that

    \begin{align}\label{3.9} &\frac{1}{2}\frac{d}{dt}( \|\nabla^2 u(t)\|_{L^2}^2+\|\nabla^2 \theta(t)\|_{L^2}^2)+ \| \nabla^3{u(t)} \|_{L^2}^2 \nonumber \\ & = -\int_{\mathbb{R}^3}\nabla^2(u\cdot\nabla{u})\cdot\nabla^2{u} \, dx-\int_{\mathbb{R}^3}\nabla^2(u\cdot\nabla{\theta})\cdot\nabla^2{\theta} \, dx +\int_{\mathbb{R}^3}\nabla^2(\theta{e_n})\cdot\nabla^2{u}\, dx \nonumber \\ &: = J_1+J_2+J_3. \end{align} (3.8)

    In what follows, we will deal with each term on the right-hand side of (3.8) separately below

    \begin{align}\label{3.10} J_1& = -\int_{\mathbb{R}^3}\nabla^2(u\cdot\nabla{u})\cdot\nabla^2{u} \, dx = -\int_{\mathbb{R}^3}[\nabla^2, u\cdot\nabla]u\cdot\nabla^2{u}\, dx \nonumber \\ &\leqslant \|[\nabla^2, u\cdot\nabla]u\|_{L^2}\|\nabla^2{u}\|_{L^2} \nonumber \\ &\leqslant C\|\nabla{u}\|_{\infty}\|\nabla^2{u}\|_{L^2}^2, \end{align} (3.9)

    where we have used the Lemma 2.1 commutator estimate.

    \begin{align}\label{3.11} J_2& = -\int_{\mathbb{R}^3}\nabla^2(u\cdot\nabla{\theta})\cdot\nabla^2{\theta} \, dx \nonumber \\ &\leqslant \|\nabla^3{u}\|_{L^2}\|\nabla{\theta}\|_{L^4}^2+\|\nabla{u}\|_{L^\infty}\|\nabla^2{\theta}\|_{L^2}^2\nonumber \\ &\leqslant C\left( \|\nabla^3{u}\|_{L^2}\|{\theta}\|_{L^\infty}\|\nabla^2{\theta}\|_{L^2}+\|\nabla{u}\|_{L^\infty}\|\nabla^2{\theta}\|_{L^2}^2\right) \nonumber \\ &\leqslant \|\nabla^3{u}\|_{L^2}^2+ C\left(1+\|\nabla{u}\|_{\infty}\right)\|\nabla^2{\theta}\|_{L^2}, \end{align} (3.10)

    where we have used the following Gagliardo-Nirenberg inequality

    \|\nabla{\theta}\|_{L^4}^2\leqslant C \|\theta \|_{L^\infty}\|\nabla^{2}{\theta }\|_{L^2}.

    The third term can be estimated as

    J_3 = \int_{\mathbb{R}^3}\nabla^2(\theta{e_n})\cdot\nabla^2{u}\, dx \leqslant \|\nabla^2{\theta}\|_{L^2} \|\nabla^2{u}\|_{L^2}. (3.11)

    Combining the above estimates (3.9), (3.10), (3.11) with (3.8), we get

    \frac{d}{dt}( \|\nabla^2 u(t)\|_{L^2}^2+\|\nabla^2 \theta(t)\|_{L^2}^2) \leqslant C\left(1+\|\nabla{u}\|_\infty)(\|\nabla^2{u}\|_{L^2}^{2}+\|\nabla^2{\theta}\|_{L^2}^{2}\right). (3.12)

    (H^3 estimate) applying \nabla^3 to the first two equations of (1.1), respectively, integrating and adding the resulting equations together, it follows that

    \begin{align}\label{3.14} &\frac{1}{2}\frac{d}{dt}( \|\nabla^3 u(t)\|_{L^2}^2+\|\nabla^3 \theta(t)\|_{L^2}^2)+ \|\nabla^4{u(t)} \|_{L^2}^2 \nonumber \\ & = -\int_{\mathbb{R}^3}\nabla^3(u\cdot\nabla{u})\cdot\nabla^3{u} \, dx-\int_{\mathbb{R}^3}\nabla^3(u\cdot\nabla{b})\cdot\nabla^3{b} \, dx+\int_{\mathbb{R}^3}\nabla^3(\theta{e_n})\cdot\nabla^3{u}\, dx\nonumber \\ &: = K_1+K_2+K_3. \end{align} (3.13)

    K_i(i = 1, 2, 3) can be bounded as

    \begin{align}\label{3.15} K_1& = -\int_{\mathbb{R}^3}\nabla^3(u\cdot\nabla{u})\cdot\nabla^3{u} \, dx = -\int_{\mathbb{R}^3}[\nabla^3, u\cdot\nabla]u\cdot\nabla^3{u}\, dx \nonumber \\ &\leqslant \|[\nabla^3, u\cdot\nabla]u\|_{L^2}\|\nabla^3{u}\|_{L^2} \nonumber \\ &\leqslant C\|\nabla{u}\|_\infty\|\nabla^3{u}\|_{L^2}^2, \end{align} (3.14)

    and

    \begin{align}\label{3.16} K_2& = -\int_{\mathbb{R}^3}\nabla^3(u\cdot\nabla{\theta})\cdot\nabla^3{\theta} \, dx\nonumber \\ &\leqslant C\left(\|\nabla^4{u}\|_{L^2}\|\nabla{\theta}\|_{L^4}\|\nabla^2{\theta}\|_{L^4}+\|\nabla^3{u}\|_{L^6}\|\nabla^2{\theta}\|_{L^2}\|\nabla^2{\theta}\|_{L^3}+\|\nabla{u}\|_{L^\infty}\|\nabla^3{\theta}\|_{L^2}^2\right) \nonumber \\ &\leqslant C\left(\|\nabla^4{u}\|_{L^2}\|{\theta}\|_{L^\infty}\|\nabla^3{\theta}\|_{L^2}+\|\nabla{u}\|_{L^\infty}\|\nabla^3{\theta}\|_{L^2}^2\right) \nonumber \\ &\leqslant \|\nabla^4{u}\|_{L^2}^2+ C\left(1+\|\nabla{u}\|_{\infty}\right)\|\nabla^3{\theta}\|_{L^2}, \end{align} (3.15)

    where we have used Young's inequality and the following Gagliardo-Nirenberg inequality in the three dimension

    \|\nabla{\theta }\|_{L^4}\leqslant C \|\theta \|_{L^\infty}^{\frac{5}{6}}\|\nabla^{3}{\theta }\|_{L^2}^{\frac{1}{6}}, \quad \|\nabla^2{\theta }\|_{L^4}\leqslant C \|\theta \|_{L^\infty}^{\frac{1}{6}}\|\nabla^{3}{\theta }\|_{L^2}^{\frac{5}{6}},
    \|\nabla^2{\theta }\|_{L^2}\leqslant C \|\theta \|_{L^\infty}^{\frac{2}{3}}\|\nabla^{3}{\theta }\|_{L^2}^{\frac{1}{3}}, \quad \|\nabla^2{\theta }\|_{L^3}\leqslant C \|\theta \|_{L^\infty}^{\frac{1}{3}}\|\nabla^{3}{\theta }\|_{L^2}^{\frac{2}{3}},

    and

    \|\nabla^3{u}\|_{L^6}\leqslant C\|\nabla^4{u}\|_{L^2}.

    The third term can be estimated as

    K_3 = \int_{\mathbb{R}^3}\nabla^3(\theta{e_n})\cdot\nabla^3{u}\, dx \leqslant \|\nabla^3{\theta}\|_{L^2} \|\nabla^3{u}\|_{L^2}. (3.16)

    Combining the above estimates into (3.13), we get

    \frac{d}{dt}( \|\nabla^3 u(t)\|_{L^2}^2+\|\nabla^3 \theta(t)\|_{L^2}^2)\leqslant C\left(1+\|\nabla{u}\|_\infty)(\|\nabla^3{u}\|_{L^2}^{2}+\|\nabla^3{\theta}\|_{L^2}^{2}\right). (3.17)

    Taking (3.2), (3.7), (3.12), (3.17) into account and adding them up, integrating the resulting inequality from 0 to T, which together with Lemma 2.2, we can infer that

    \ln\left(M(T)+e\right)\leqslant \ln\left(M(0)+e\right)+C\int_0^T(1+\|\nabla{u}\|_{\dot{V}_\Theta})\ln\ln(M(\tau)+e)\ln(M(\tau)+e)d\tau, (3.18)

    where M(t): = \max\limits_{\tau\in[0, t]}(\|u(\tau)\|_{H^3}^2+\|b(\tau)\|_{H^3}^2) for any t\in[0, T]. Then, we take use of Gronwall's inequality, finally we have

    \ln\left(M(T)+e\right)\leqslant \exp\bigg\{\exp C\int_0^T \|\nabla{u}\|_{\dot{V}_\Theta}\, d\tau\bigg\}.

    Therefore, we get the boundness of H^3\times H^3-norm of (u, \theta) for all t \in [0, T] which leads a contradiction, this completes the proof of Theorem 2.1.


    Acknowledgments

    The author would like to thank Professor Yachun Li for her helpful discussion and constant encouragement. The research of Z. Shang was supported in part by National Natural Science Foundation of China under grant 11571232. The author also would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper.


    Conflict of Interest

    The author declare no conflicts of interest in this paper.


    [1] D. Chae and H. S. Nam, Local existence and blow-up criterion for the Boussinesq equations, Proc. Roy. Soc. Edinburgh Sect. A., 127 (1997), 935-946.
    [2] D. Chae, S.K. Kim and H. S. Nam, Local existence and blow-up criterion of Hlder continuous solutions of the Boussinesq equations, Nagoya Math. J., 155 (1999), 55-80.
    [3] D. Chae, Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. Math., 203 (2006), 497-513.
    [4] B. Dong, S. Jiang and W. Zhang, Blow-up criterion via pressure of three-dimensional Boussinesq equations with partial viscosity, Scientia Sinica Mathematica, 40 (2010), 1225-1236.
    [5] B. Dong, Y. Jia and X. Zhang, Remarks on the blow-up criterion for smooth solutions of the Boussinesq equations with zero diffusion, Commun. Pur. Appl. Anal., 12 (2012), 923-937.
    [6] M. Fu and C. Cai, Remarks on Pressure Blow-Up Criterion of the 3D Zero-Diffusion Boussinesq Equations in Margin Besov Spaces, Adv. Math. Phys., 2017 (2017), 1-7.
    [7] S. Gala, M. Mechdene and M. A. Ragusa, Logarithmically improved regularity criteria for the Boussinesq equations, AIMS Math., 2 (2017), 336-347.
    [8] T. Kato and G. Ponce, Commutator estimates and Euler and Navier-Stokes equations, Commun. Pur. Appl. Math., 41 (1988), 891-907.
    [9] J. Fan and T. Ozawa, Regularity criterion for 3D density-dependent Boussinesq equations, Nonlinearity, 22 (2009), 553-568.
    [10] J. Fan and Y. Zhou, A note on regularity criterion for the 3D Boussinesq systems with partial viscosity, Appl. Math. Lett., 22 (2009), 802-805.
    [11] J. Fan, H. Malaikah, S. Monaquel, et al. Global Cauchy problem of 2D generalized MHD equations, Monatsh. Math., 175 (2014), 127-131.
    [12] J. Fan, F. S. Alzahrani, T. Hayat, et al. Global regularity for the 2D liquid crystal model with mixed partial viscosity, Anal. Appl. (Singap.), 13 (2015), 185-200.
    [13] A. Majda, Introduction to PDEs and waves for the atmosphere and ocean, Courant lecture notes in mathematics, Vol. 9, New York (NY), AMS/CIMS, 2003.
    [14] A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge Univ. Press, Cambridge, 2002.
    [15] M. Mechdene, S. Gala, Z. Guo and A. M. Ragusa, Logarithmical regularity criterion of the three-dimensional Boussinesq equations in terms of the pressure, Z. Angew. Math. Phys., 67 (2016), 120.
    [16] N. Ishihara and H. Morimoto, Remarks on the blow-up criterion for the 3D Boussinesq equations, Math. Mod. Meth. Appl. S., 9 (1999), 1323-1332.
    [17] T. Ogawa and Y. Taniuchi, On blow-up criteria of smooth solutions to the 3-D Euler equations in a bounded domain, J. Differ. Equations, 190 (2003), 39-63.
    [18] J. Pedlosky, Geophysical Fluid Dynamics, New York: Springer-Verlag, 1987.
    [19] H. Qiu, Y. Du and Z. Yao, A blow-up criterion for 3D Boussinesq equations in Besov spaces, Nonlinear Anal-Theor, 73 (2010), 806-815.
    [20] W. Ren, On the blow-up criterion for the 3D Boussinesq system with zero viscosity constant, Appl. Anal., 94 (2015), 856-862.
    [21] Q. Wu, H. Lin and G. Liu, An Osgood Type Regularity Criterion for the 3D Boussinesq Equations, The Scientific World J., 2014 (2014), 563084.
    [22] Z. Ye, Blow-up criterion of smooth solutions for the Boussinesq equations, Nonlinear Anal-Theor, 110 (2014), 97-103.
    [23] Z. Ye, On the regularity criteria of the 2D Boussinesq equations with partial dissipation, Comput. Math. Appl., 72 (2016), 1880-1895.
    [24] Z. Zhang and S. Gala, Osgood type regularity criterion for the 3D Newton-Boussinesq equation, Electron. J. Differ. Equ., 2013 (2013), 1-6.
  • This article has been cited by:

    1. Tariq Mahmood, Zhaoyang Shang, Blow-up criterion for incompressible nematic type liquid crystal equations in three-dimensional space, 2020, 5, 2473-6988, 746, 10.3934/math.2020051
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4503) PDF downloads(919) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog