A generalized Camassa-Holm equation with higher order nonlinear term was studied. First, we give a new blow-up criterion and a new blow-up phenomenon to the Cauchy problem for the equation under some conditions. Then, we focus on the analytical solutions for the equation. Finally, we prove the analyticity of solution for the equation.
Citation: Ying Wang, Yunxi Guo. Blow-up solution and analyticity to a generalized Camassa-Holm equation[J]. AIMS Mathematics, 2023, 8(5): 10728-10744. doi: 10.3934/math.2023544
A generalized Camassa-Holm equation with higher order nonlinear term was studied. First, we give a new blow-up criterion and a new blow-up phenomenon to the Cauchy problem for the equation under some conditions. Then, we focus on the analytical solutions for the equation. Finally, we prove the analyticity of solution for the equation.
[1] | R. Camassa, D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661–1664. http://dx.doi.org/10.1103/PhysRevLett.71.1661 doi: 10.1103/PhysRevLett.71.1661 |
[2] | R. M. Chen, F. Guo, Y. Liu, C. Z. Qu, Analysis on the blow-up of solutions to a class of integrable peakon equations, J. Funct. Anal., 270 (2016), 2343–2374. http://dx.doi.org/10.1016/j.jfa.2016.01.017 doi: 10.1016/j.jfa.2016.01.017 |
[3] | G. M. Coclite, H. Holden, K. H. Karlsen, Well-posedness of a parabolic-elliptic system, Discrete Cont. Dyn. syst., 13 (2005), 659–682. http://dx.doi.org/10.3934/dcds.2005.13.659 doi: 10.3934/dcds.2005.13.659 |
[4] | G. M. Coclite, H. Holden, Stability of solutions of quasilinear parabolic equations, J. Math. Anal. Appl., 308 (2005), 221–239. http://dx.doi.org/10.1016/j.jmaa.2005.01.026 doi: 10.1016/j.jmaa.2005.01.026 |
[5] | G. M. Coclite, H. Holden, K. H. Karlsen, Global weak solutions to a generalized hyperelastic-rod wave equation, SIAM J. Math. Anal., 37 (2005), 1044–1069. http://dx.doi.org/10.1137/040616711 doi: 10.1137/040616711 |
[6] | A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. I. Fourier, 50 (2000), 321–362. http://dx.doi.org/10.5802/aif.1757 doi: 10.5802/aif.1757 |
[7] | A. Constantin, J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229–243. http://dx.doi.org/10.1007/BF02392586 doi: 10.1007/BF02392586 |
[8] | A. Constantin, J. Escher, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Math. Z., 233 (2000), 75–91. http://dx.doi.org/10.1007/PL00004793 doi: 10.1007/PL00004793 |
[9] | A. Constantin, J. Escher, Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sci., 26 (1998), 303–328. |
[10] | R. Danchin, A note on well-posedness for Camassa-Holm equation, J. Differ. Equations, 192 (2003), 429–444. http://dx.doi.org/10.1016/S0022-0396(03)00096-2 doi: 10.1016/S0022-0396(03)00096-2 |
[11] | B. Fuchssteiner, A. S. Fokas, Symplectic structures, their B$\ddot{a}$klund transformations and hereditary symmetries, Physica D, 4 (1981), 47–66. http://dx.doi.org/10.1016/0167-2789(81)90004-X doi: 10.1016/0167-2789(81)90004-X |
[12] | Y. P. Fu, B. L. Guo, Time periodic solution of the viscous Camassa-Holm equation, J. Math. Anal. Appl., 313 (2006), 311–321. http://dx.doi.org/10.1016/j.jmaa.2005.08.073 doi: 10.1016/j.jmaa.2005.08.073 |
[13] | Z. Guo, M. Jiang, Z. Wang, G. Zheng, Global weak solutions to the Camassa-Holm equation, Discrete Cont. Dyn. Syst., 21 (2008), 883–906. http://dx.doi.org/10.3934/dcds.2008.21.883 doi: 10.3934/dcds.2008.21.883 |
[14] | S. Hakkaev, K. Kirchev, Local well-posedness and orbital stability of solitary wave solutions for the generalized Camassa-Holm equation, Commun. Part. Diff. Eq., 30 (2005), 761–781. http://dx.doi.org/10.1081/PDE-200059284 doi: 10.1081/PDE-200059284 |
[15] | S. Hakkaev, K. Kirchev, On the well-posedness and stability of peakons for a generalized Camassa-Holm equation, Int. J. Nonlinear Sci., 1 (2006), 139–148. |
[16] | A. A. Himonas, C. Kenig, Non-uniform dependence on initial data for the CH equation on the line, Differ. Integral Equ., 22 (2009), 201–224. http://dx.doi.org/10.57262/die/1356019770 doi: 10.57262/die/1356019770 |
[17] | S. Lai, Y. Wu, The local well-posedness and existence of weak solutions for a generalized Camassa-Holm equation, J. Differ. Equations, 248 (2010), 2038–2063. http://dx.doi.org/10.1016/j.jde.2010.01.008 doi: 10.1016/j.jde.2010.01.008 |
[18] | J. Lenells, Stability of periodic peakons, Int. Math. Res. Notices, 2004 (2004), 485–499. http://dx.doi.org/10.1155/S1073792804132431 doi: 10.1155/S1073792804132431 |
[19] | Y. A. Li, P. J. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differ. Equations, 162 (2000), 27–63. http://dx.doi.org/10.1006/jdeq.1999.3683 doi: 10.1006/jdeq.1999.3683 |
[20] | X. X. Liu, Z. Y. Yin, Local well-posedness and stability of peakons for a generalized Dullin-Gottwald-Holm equation, Nonlinear Anal. Theor., 74 (2011), 2497–2507. http://dx.doi.org/10.1016/j.na.2010.12.005 doi: 10.1016/j.na.2010.12.005 |
[21] | Y. S. Mi, C. L. Mu, Well-posedness and analyticity for the Cauchy problem for the generalized Camassa-Holm equation, J. Math. Anal. Appl., 405 (2013), 173–182. http://dx.doi.org/10.1016/j.jmaa.2013.03.020 doi: 10.1016/j.jmaa.2013.03.020 |
[22] | Z. Xin, P. Zhang, On the weak solutions to a shallow water equation, Commun. Pure Appl. Math., 53 (2000), 1411–1433. http://dx.doi.org/10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5 doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5 |
[23] | W. Yan, Y. Li, Y. Zhang, The Cauchy problem for the generalized Camassa-Holm equation in Besov space, J. Differ. Equations, 256 (2014), 2876–2901. http://dx.doi.org/10.1016/j.jde.2014.01.023 doi: 10.1016/j.jde.2014.01.023 |
[24] | S. Zhou, Persistence properties for a generalized Camassa-Holm equation in weighted $L^{p}$ spaces, J. Math. Anal. Appl., 410 (2014), 932–938. http://dx.doi.org/10.1016/j.jmaa.2013.09.022 doi: 10.1016/j.jmaa.2013.09.022 |
[25] | Y. Zhou, J. Fan, Regularity criteria for the viscous Camassa-Holm equation, Int. Math. Res. Notices, 2009 (2009), 2508-2518. http://dx.doi.org/10.1093/imrn/rnp023 doi: 10.1093/imrn/rnp023 |
[26] | L. Ni, Y. Zhou, Well-posedness and persistence properties for the Novikov equation, J. Differ. Equations, 250 (2011), 3002–3021. http://dx.doi.org/10.1016/j.jde.2011.01.030 doi: 10.1016/j.jde.2011.01.030 |
[27] | T. Kato, Quasi-linear equations of evolution with application to partial differential equations, In: Spectral theory and differential equations, Berlin: Springer, 1975. http://dx.doi.org/10.1007/BFb0067080 |
[28] | A. Himonas, K. Grayshan, C. Holliman, Ill-posedness for the b-family of equations, J. Nonlinear Sci., 26 (2016), 1175–1190. http://dx.doi.org/10.1007/s00332-016-9302-0 doi: 10.1007/s00332-016-9302-0 |
[29] | E. Novruzov, Construction of peakon-antipeakon solutions and ill-posedness for the b-family of equations, J. Differ. Equations, 272 (2021), 544–559. http://dx.doi.org/10.1016/j.jde.2020.10.013 doi: 10.1016/j.jde.2020.10.013 |
[30] | A. Himonas, G. Misiolek, Analyticity of the Cauchy problem for an integrable evolution equation, Math. Ann., 327 (2003), 575–584. https://doi.org/10.1007/s00208-003-0466-1 doi: 10.1007/s00208-003-0466-1 |
[31] | M. Baouendi, C. Goulaouic, Sharp estimates for analytic pseudodifferential operators and application to the Cauchy problems, J. Differ. Equations, 48 (1983), 241–268. https://doi.org/10.1016/0022-0396(83)90051-7 doi: 10.1016/0022-0396(83)90051-7 |
[32] | E. G. Reyes, Geometric integrability of the Camassa-Holm equation, Lett. Math. Phys., 59 (2002), 117–131. https://doi.org/10.1023/A:1014933316169 doi: 10.1023/A:1014933316169 |