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1. Introduction

In this paper, we are concerned with the Cauchy problem for the generalized Camassa-Holm
equation
(k+1D)(k+2) , k(k—=1) .,
— U, ———u" u

2 2
u(0, x) = uo(x), (1.2)

which is introduced by S. Hakkaev and K. Kirchev [14,15]. In Eq (1.1), u = u (¢, x) stands for the fluid
velocity at time ¢ > 0 in the spatial direction. Equation (1.1) admits following conservative laws

(1 =P, + 3 2k g — U, =0, keNY, (1.1)

1
E = j.—(ukJr2 + ufu?)dx, (1.3)
2

1
F = f —(? + u?)dx, (1.4)
)

and

Hzfudx. (1.5
R
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An important feature of Eq (1.1) is the existence of traveling solitary waves, interacting like solitons,
also called peakons

u(t, x) = ke, (1.6)

Since then, Eq (1.1) attracted lots of the attentions in the last few years. The well-posedness of the
solutions for Eq (1.1) is obtained by parabolic regularization method [14], Katos semigroup
approach [20] and by classical Friedrichss regularization method [21], respectively. In [17], Lai and
Wu obtained a sufficient condition for the existence of weak solutions of Eq (1.1) in lower order
Sobolev space H*(R) with 1 < s < 3/2. Yan [23] proved that Eq (1.1) does not depend uniformly
continuously on the initial data in H*(R) with s < 3/2 and that the Cauchy problem for the
generalized Camassa-Holm equation is locally well-posedness in B;/lz . In [24], Zhou focused on the
persistence property in weighted L? spaces.

When k = 1, Eq (1.1) reduced to the well-known Camassa-Holm equation

(1 = Py = =3ty + 20Uy + Uiy, (1.7)

which was derived by Camassa and Holm [1] and by Fokas and Fuchssteiner [11]. It describes the
motion of shallow water waves and possesses soliton solutions, a Lax pair, a bi-Hamiltonian
structures and infinitely many conserved integrals [1, 32], and it can be solved by the Inverse
Scattering Method. The dynamic properties related the equation can be found
in [3-5,10, 12-16, 18-20, 22, 25] and the references therein. It is well-known that a major interest in
water waves is the existence of breaking waves (solutions that remain bounded but whose slope
becomes unbounded in finite time [7]). Comparing with KdV equation, another important feature of
Camassa-Holm equation is that it possesses breaking wave [6-9].

To our best knowledge, blow-up, analyticity and analytical solutions have not been investigated

yet for the problems (1.1) and (1.2). Inspired by the ideas from [7], the objective of this paper is
to investigate the blow-up phenomenon, analyticity and analytical solutions for the problems (1.1)
and (1.2). In our blow-up phenomenon analysis, the quantity fR((uk)x)‘%dx plays a key role. Taking
advantage of complicated calculation, we obtain the Riccati inequality of quantity fR((uk)x)3dx to arrive
at a new blow-up result. In addition, we present some analytical solutions for the problems (1.1)
and (1.2). Finally, we prove the analyticity. The results we obtained complements earlier results in this
direction.
Notations. The space of all infinitely differentiable functions ¢(z, x) with compact support in [0, +c0) X
R is denoted by Cy’. Let L’ = LP(R)(1 < p < +o0) be the space of all measurable functions h
such that || A ||€,,: leh(t, X)Pdx < oco. We define L* = L*(R) with the standard norm || /& ||;~=
inf,,¢)=08Up g\ |A(2, X)|. For any real number s, H* = H*(R) denotes the Sobolev space with the norm
defined by

1
~ 2
| A= (f(l +|§|2)slh(t,€)lzd§) < o,
R
where h(t,€) = [[ e™h(t, x)dx.
We denote by * the convolution, using the green function G(x) = %e"x', we have (1 — 8%)7'f =

G(x) = f for all f € L?,and p * (u — uy,) = u. For T > 0 and nonnegative number s, C([0, T); H*(R))
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denotes the Frechet space of all continuous H*-valued functions on [0, 7). For simplicity, throughout
this article, we let ¢ denote any positive constant
The Cauchy problems (1.1) and (1.2) is equivalent to

i (k(k+3)
by = —9(1 — & ( S klz) 1
u;+uu 0,(1-097) 2(k+l) +2u uy ), (1.8)
u(0, x) = up(x), (1.9)
which is also equivalent to
k k 1

Ve + ulyy + 2k’ uy + ( )(u uudy = 0, (1.10)
Y = U= Uyy, M(O, .X) = M()(X). (111)

The rest sections are organized as follows. In the second section, we give a blow up criterion and a
new blow up phenomenon. Existence of weak solution (CH-type peakon) and analytical solutions are
studied in third section. In the forth section, we proved analyticity of strong solutions..

2. Blow-up criterion and blow-up phenomenon

We firstly give some useful Lemmas.
Lemma 2.1. Given u(x,0) = uy € H°(R), s > 3/2, then there exist a maximal T = T (up) and a unique
solution u to the problems (1.1) and (1.2) such that

u = u(-,up) € C([0,T); H'(R)) ﬂ C'([0,T); H™'(R)).

Moreover, the solution depends continuously on the initial data, i.e., the mapping uy — u(-,up) : H* —
C([0,T); H*(R)) N C'([0, T); H*"'(R)) is continuous.

Proof. Using the Kato’s theorem [27], we can prove the above theorem. Because there exist some
similarities, here we omit the proof of Lemma 2.1, a detailed proof can be found in [26].

Lemma 2.2. ( [2]) Let f € C'(R), a > 0, b > 0 and £(0) > \ﬁ If /() > af>(t) — b, then

(f(0)+ g)
OB

Lemma 2.3. (see [23]) Let ug € 821 and u be the corresponding solution to (1.1). Assume that T is
the maximal time of existence of the solution to the problems (1.1) and (1.2). If T < oo, then

f(t) > 400 as t—>T= log

2.1
N @D

T
f Il s = dT = +o0. (2.2)
0

3/2

Remark 1. For s > 2, it is well known that H* — 82 e

so we have the following result:
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Let uy € H* with s > % and u be the corresponding solution to (1.1). Assume that T is the maximal
time of existence of the solution to the problems (1.1) and (1.2). If T < oo, then

T
f | ux |l dt = +o0. (2.3)
0

Lemma 2.4. Let up € H(R) with s > % Let T > 0 be the maximum existence time of the solution u

to the problems (1.1) and (1.2) with the initial data uy. Then the corresponding solution u blows up in
finite time if and only if

lim || 5 'uy ||p= +o0.
t—T~

Proof. Applying Lemma 2.1 and a simple density argument, it suffices to consider the case s = 3.
Let T > 0 be the maximal time of existence of solution « to the problems (1.1) and (1.2) with initial
data uy € H*(R). From Lemma 2.1 we know that u € C([0,T); H*(R)) N\ C'([0, T); H*(R)). Due to
Y = U — U,,, by direct computation, one has

Iy li7.= f (U — uy)’dx = f (U + 2u? + u? )dx. (2.4)
R R
So,
lullF <l yIZ.< 20 ull, . (2.5)

Multiplying equation (1.10) by 2y and integrating by parts and using the interpolation || u, [|7.< C ||
u |l ]l y llz2, we obtain

d
7 |y IIiZ: 2fyy,dx = —3kfuk_1uxy2dx — k(k — l)fukuxydx + k(k — l)fuk_zuiydx
R

R R R
k-1 2 k k-2 2
<c(llu™ e =Nl y Nz + Vet el y el s e+ 00w el wg eIl y ezl s ll2)
k-1 2
<cllu ug = +CO Nl y g2 - (2.6)

where C; = Ci(|| uo [lg1)-
If there exists a constant M > 0 such that || u*~'u, ||.~< M, from (2.6) we deduce that

% Iy LS M +C) Nyl - (2.7)
By virtue of Gronwall’s inequality, one has

|y 17.<0 yo 7, €MV, (2.8)
On the other hand, due to u = p =y and u, = p, *y, then

k-1 k-1 k-1 k
Il ux e <ll v [z 1] e Nl <l p A2 2 Nzl y 11

This completes the proof of Lemma 2.4.
Now, we present the blow-up phenomenon.
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Theorem 2.5. Let uy € H°(R) for s > % Suppose that u(t, x) be corresponding solution of

problems (1.1) and (1.2) with the initial datum ug. If the slope of uf, satisfies

K
fR W) <~ 2.9)

2 _ . .
where K = 0k 27k2) || uo ||21 and K; = . Then there exists the lifespan T < oo such that the

S S
4(k+1) 20k||u0||’;l .
corresponding solution u(t, x) blows up in finite time T with

1 Kih(0) - K
T=-—1 ( ) 2.10
2KK, E\K.h0)+ K .10
Proof. Defining g(t) = u*(t, x), h(t) = fR g3dx, it follows that
g +88x = ku*'Q, (2.11)
where Q = —8,(1 — 6%)" (';El,:f; SRS )
Differentiating the above Eq (2.11) w1th respect x yields
1 2 k=2 kz(k+2) 2 _ kz(k+2) k 1 2\—1 . k+1
e+ 88 =—=g +k(k-1 0+ 1-0 "
k2
—Euk_] (1 -0H"" W "ud). (2.12)
Multiplying 3g> both sides of (2.12) and integrating with respect x over R, one has
d 3 1 in 3k (k + 2) f 5
dx = —= dx +3k(k -1 8. 0dx + ——— d
dtfg *= 2fgxx+ ( )f g 0d+ S L g s
3Kk (k + 2) 9 kel onels & 3k
_ 11 =% +1d__f2k11 aZ—lklZd
Sarty ST =T = S | g = ) W il
=+ +T3+14+1T5. (213)
Using the Holder’s inequality, Yong’s inequality and (1.4), from (2.13) we get
I, =3k(k—1) f U u g2 Qdx
R
< 3k(k =D I Q Iz ( f (U 2u) dx)7( f (8:)%dx)?
R
3k(k
|| uo |l (f(gx)‘ldx)2
3k(k—1) lluo Il € [(g0) dx
S R ks J ). (2.14)
3k*(k +2) 5
= — d
il
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3k (k + 2) N PN
< m(fg dx) (f(gx) dx)

3Kk +2
< Siar Il ([ Ga!
_ 3K+ 2) ol € fR(gx)“dx)’
2k+1) © 2¢ 2
_3K(k+2) u! 201, kel
I = m (1 =0 (™ )dx
3k*(k + 2) 1) kel %2y L 4l
< 20+ 1) 1A =6)" (™) [l (fRM dx) (fR(gx) dx)
_ 3k +2
< S o i ([ @otant
3K+ 2) o Wl € f]R(gx)4dx)’
2k+1) © 2€ 2
and
2
FS — &f 2 k 1(1 ai)—l(uk 1 Z)dx
2 J

<5 3 (=37 @ ) Nl (f 22gx)s (f(gx)4dX)2

<X || o Il (f(gx)4dX)2

3 3k2 (|| uo |12 L€ fR(g»“dx)
-2 2e 2 ’
Combining the above inequalities (2.14)—(2.17), we obtain

3k(6k> + Tk — 2) e €3k(6k* + Tk - 2) f 4
r r r Is|< L+ o)'d
[T [+ s |+ [Ty |+ [T |< Sk + 1) Il uo Il +5 Gt R( )'dx

2(k+1)

m, which results in

—f dx<——fgidx+K2.
R

. . 2 2 _72)2 . . . . .
in which K2 = % [l uo |I}5,. Using the Holder’s inequality, we get

f 3dx)? <cfg2dxfgideCk2 Il uo 1125 fgidx.
R

Combining (2.19) and (2.20), we have

Choosing € =

d
0 < ~Kih*(t) + K2,

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)
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2 _ 1
where K = N,

It is observed from assumption of Theorem that A(0) < —ﬁl, the continuity argument ensures that
h(t) < h(0). Lemma 2.1 (a = K} and b = K*) implies that h(t) > -~ ast — T = 21<111< log gzggilllg
On the other hand, by using the fact that

Ingidx < fR | &3 ldx < 11 u(t, x) |l fgidx =13 W (e, 20 sl o 3y - (2.22)

R

Lemma 2.4 implies that the Theorem 2.5 is true. This completes the proof of Theorem 2.5.

3. Analytical solutions

The solitons do not belong to the spaces H*(R) with s > % [28,29], so it motivates us to carry out

the study of analytical solutions to problems (1.1) and (1.2).

Definition 3.1. Given initial data uy € H*, s > %, the function u is said to be a weak solution to the

initial-value problems (1.8) and (1.9) if it satisfies the following identity

T
[ k(k+3) w1 Kk 41 o
fo fRutp,+ an 1u <px+G*(2(k+ 1)14 + 2u u, ). dxdt

+ fuo(x)go(O, x)dx =0 (3.1
R

for any smooth test function ¢(t, x) € C2([0, T) X R). If u is a weak solution on [0, T) for every T > 0,
then it is called a global weak solution.

Theorem 3.2 The peakon function of the form

u(t, x) = p(t)e 40 (3.2)

is a global weak solution to problems (1.1) and (1.2) in the sense of Definition 3.1. Assumed that the
functions p(t) and q(t) satisfy

P = pg (1) - p'(t) = 0,
and

P - p(Og (1) + p'(2) = 0.

where ' denotes differentiation.
Proof. We firstly claim that

u = p(t)e 40 (3.3)

is a peakon solution of (1.1) and

u; = p' (e + p(t)sign(x — q(0)g O™, u, = —p(®)sign(x — g(1))e™ 1. (3:4)

Hence, using (3.1), (3.4) and integration by parts, we derive that

r 1
f fugo, + U o dxdt + fuo(x)(p(O, x)dx
o Jr k+1 R
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T
= —f fcp(u,+ukux)dxdt
0 Jr

T
- f f elp' (e + sign(x — g(t))(p(D)g (e 1D — prlemCD=aOhaxdr.  (3.5)
0 R

On the other hand, using (3.4), we obtain

! k(k+3) 14 2
fo fRG (—2(k+1)u + 2 u, ) dxdt

T
k w1 o k(k+3) e
= - ad dxd
fothpGx*[zu ux+2(k+1) ] t
I

T k(k +2)
= -G, W dxdr. 3.6
‘L ¢ >'<[k+1 ] (3.6)

Note that G, = —1sign(x)e™. For x > ¢(1), directly calculate

k(k+2) 1y
G,*|[———
*l K+l " ]
1 k(k +2
= _EfRSign(x_y)e_lx & (k:I) k1 ()~ Db=a0) gy
| G k(k +2
= _E(f +‘f() +f Ysign(x — y)eIxyI%pkH(t)e(k+1)|yq(t)ldy
—00 q(t X
=L +5L+1 3.7)
We directly compute /; as follows
I k(k +2
I = _Ef sign(x — y)e "~ y'% (1)U Dv=a@l gy,
Lk(k+2) .
S P f (Dl oK+ g1y
Lk(k +2) . a0 ,
S P ()ex~krDaw j: ek gy
I k(k+2) 4000 i
— AT ‘I(’). 3.8
W+ kel b0e (38)

In a similar procedure,

I = 1 f ' sign(x — y)e k(k+2) ket ,~erny-go) dy

2 Juo k+1
1 k(k + 2) K+l fx —x+(k+1)q(t) —ky
= —_-———- x d
2 k+1 7 )¢ ©
_ _lk(k +2) ot ekt 1)g(0) fx e dy
2 k+1 q(
_ 1 k(k+2) k+1, —(k+1)(x—q(1)) —x+q(1)
" k1 P ) )
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and

4]

e k(k +2
5 j; sign(x — y)e ™! —(k 1 )PkJrl
1 k(k + 2) pk+1 f‘x’ ex+(k+1)q(l)e—(k+2))'dy

2 k+1
_Lktk+2) 44,4 kD0 f - e—(k+2)ydy
I k(k+2) 4, o~ Da-g(0).

T2 k+1
2(k+2) k+1

e—(k+1)|y—q(t)l dy

(3.10)

Substituting (3.8)—(3.10) into (3.7), we deduce that for x > g(¢)

Gyl

_ 1 k(k+2) k+1
where Q = —5 == (1).

For x < g(¢),

Gy [(———

R

k(k +2) ] = 2(k +1) Qe+l _
k+1

q(1)
‘5<L+fx *

:A1+A2+A3.

2(k+1)

k(k +2) k(k +2)
P10 4 k] () g~k Da—g@),

o~k D=g(0)

(3.11)

k(k +2) 1
k+1

! f sign(x — y)e "N (——=
2 k+1

k(k +2) PE () kD=0l gy

” k(k +2
)sign(x — y)e "™ % P () kD=l gy,
O]

(3.12)

We directly compute A; as follows

1 k(k +2
A = -5 f:oo sign(x — y)e—lx—yl(le)pkHe—(kH)ly—q(t)ldy

In a similar procedure,

Ay

AIMS Mathematics

lk(k +2) k+l() ) e~ Xkt Da(®) (k+2>ydy

2 k+1
D e [
1 k(k+2) P!

2 k+1
T2(k+2) k+1

L k(k +2
) fx sign(x — y)e‘““y'% pltle~trD=a®l gy,

1 k(k +2) k+1 f e (k+1)q(t) k}
T2 k41 © dy

1k(k +2) k+1( fes- (k+1)g(® IQ()ekydy

(k+2)y dy

()elk+ De=a(®) (3.13)

T2 k+1

Volume 8, Issue 5, 10728—-10744.
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1 k(k+2) S

= 2 - kD) | pr=a®)) (3.14)
and
1~ ey Kk +2) _
Aot B ol B8 2 e (k+Dly=q(] 7
3 5 fm sign(x — y)e a1 (e Y
L k(k+2) k+l +(k+1)q(t) ,—(k+2)y
=4 e’ d
T2 k+1 ® q(0) ‘ ’
Ltk +2) 4y o e foo ~(k+2)y
_ 21 e~ q(t) (k+2))d
2 ka1 P o
1 k(k+2) el 0}
_ - 3.15
20k+2) k+1 (©)e e
Therefore, from (3.8)—(3.10), we deduce that for x < g(¢)
k(k + 2) k+1
Gyx[——
T
_ 2kt D) g g _ 2K+ D o eyequy
T k(k+2) k(k +2)
= PFHI(1)e 10 ] (p)plkr DG=a0) (3.16)
where @ = 12 kel gy,

2 kel
Recalling u = p(t)e 97 we have

P (e ¢ sign(x — q(0)(p(H)q (1)e 4O — phtl o=kt Dlx=a(ly
B p/(t)e—x+q(t) + p(t)q/(t)e—x+q(t) _ pk+le—(k+1)(x—q(t)’ for x> Q(l),
= p/(t)ex—q(t) _ p(t)q'(t)ex_q(t) + pk+le(k+l)(x—q(z))’ for x< q(t).

To ensure that u = p(t)e 9" is a global weak solution of (1.1) in the sense of Definition 3.1, we infer
that
PO = p0g @) - p'(0)=0 (3.17)

and
k+1

) - pg' () + p'(1) = (3.18)

hold.
It completes the proof of Theorem 3.2.
Remark 2. Solving Egs (3.17) and (3.18), we get

p(t) =ct,and qf)=ct+xy c>O0. (3.19)
Therefore, we conclude that peakon solution for problems (1.1) and (1.2)
u=cte -l o5, (3.20)
Remark 3. For x > ¢(¢), the solution of problems (1.1) and (1.2) is of following form

u = p(t)e +10, (3.21)
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where p(¢) and ¢(¢) satisfy

PO~ pg' (1) - p'(0) = 0. (3.22)
For x < ¢(t), the solution of problems (1.1) and (1.2) is of following form
u = p(t)e™ 1, (3.23)
where p(¢) and ¢(¢) satisfy
P = p(g' (1) + p'(1) = 0. (3.24)
Example. For x > g(¢), letting g(f) = vt + ¢,c > 0, from (3.17) we derive that
1 k+1
"+ —p-— =0. (3.25)
p > \/;P p
(3.25) implies that
2 1
p=@%+zrﬂ (3.26)
Hence, we obtain from (3.3) the solution of (1.1) for x > g(¢).
2
u:QW+Pﬁf“WR (3.27)
For x < ¢(?), letting g(t) = Vit +¢,c > 0, from (3.18) we derive that
’ 1 k+1
- —p+ =0. (3.28)
p ) \/;P p
(3.28) implies that
2 1
p=CNi- % (3.29)

Therefore, we obtain from (3.3) the solution of (1.1) for x < g(?).
2 1 .
u:@%-@ﬁfwf (3.30)
4. Analyticity of solution

In this section, we focus on the analyticity of the Cauchy problems (1.1) and (1.2) based on a
contraction type argument in a suitably chosen scale of the Banach spaces. In order to state the main
result, we will need a suitable scale of the Banach spaces as follows. For any s > 0, we set

} 416 ull g2
E, = {ueCR): lulll, = sup “

S e+ 1~k

where H%(R) is the Sobolev space of order two on the real line and N, is the set nonnegative integers.
One can easily verify that E; equipped with the norm ||| - |||; is a Banach space and that, for any
0 < s’ < s, E is continuously embedded in E, with

laallly < Mlaalll.
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Another simple consequence of the definition is that any u in E; is a real analytic function on R. Our
main theorem is stated as follows.
Theorem 4.1. If the initial data uy is analytic and belongs to a space E,, for some 0 < sy < 1, then
there exist an € > 0 and a unique solution u(t, x) to the Cauchy problems (1.1) and (1.2) that is analytic
on (—¢g,&) X R.

For the proof of Theorem 4.1, we need the following lemmas
Lemma 4.2. ( [30]) Let 0 < s < 1. There is a constant C > 0, independent of s, such that for any u
and v in E, we have

leevllls < ClllulllslVII]s-

Lemma 4.3. ( [30]) There is a constant C > 0 such that for any 0 < s’ < s < 1, we have |||0,ul|ly <
< and ||I(1 = 827" ullls < [llullly, 1101 = 2 ullls < Illelll,-

Lemma 4.4. ( [31]) Let {X}o<s<1 be a scale of decreasing Banach spaces, namely for any s* < s we
have X; € Xy and ||| - |||y < ||| - |lls- Consider the Cauchy problem

du
i F(t, u(1)), 4.1)
u(0,x) =0. 4.2)

Let T, R and C be positive constants and assume that F satisfies the following conditions:
(1) If for 0 < s" < s < 1 the function ¢ — u(?) is holomorphic in |f| < T and continuous on || < T
with values in X, and
sup [lu(llls < R,
=T
then # — F(¢,u(t)) is a holomorphic function on |¢f| < T with values in X .
(2) Forany 0 < s < s < 1 and only u,v € X with |||ulll, < R, |[Vlll; < R,

sup [|F (7, u) = F(t,v)llly <

[fl<T

~llee = vll;-
(3) There exists M > 0 such that forany 0 < s < 1,

M
sup [[[F, O)llls < T+
lfl<T -

then there exist a Ty € (0,7) and a unique function u(#), which for every s € (0, 1) is holomorphic
in [¢f| < (1 — s)T, with values in X, and is a solution to the Cauchy problems (1.1) and (1.2).
Let u; = u and u, = u,, then the problems (1.1) and (1.2) can be written as a system for u#; and u,.
\ k(k—3)
wy = —uuy — 0,(1 - 837" GE=D™ it + zu'f ") = Fi(uy,u), (4.3)
k=3) ok
+ —_
2k—1t TN
uy(x,0) = u(x,0) = up(x), ur(x, 0) = uy(x,0) = up(x). (4.5)

Uy = =kt "5 — uhuy, — (1 - %) 7'( ) = Fy(uy, ), 4.4)

AIMS Mathematics Volume 8, Issue 5, 10728—-10744.



10740

To apply Lemma 4.4 to prove Theorem 4.1, we rewrite the system (4.3)-(4.5) as

du
E = F(Ltl, uz), (46)
U(0) = (uo, up), 4.7)

where U = (I/ll, I/tz) and F(l, U) = F(I/tl, I/lz) = (F](I/tl, I/tz), Fg(ul, I/lg))

Proof of Theorem 4.1. Theorem 4.1 is a straightforward consequence of the Cauchy-Kowalevski
theorem [31]. We only need verify the conditions (1)—(3) in the statement of the abstract
Cauchy-Kowalevski theorem (see Lemma 4.4) for both Fi(uj,u;) and F,(u;,u;) in the
systems (4.3)—(4.5), since neither F| nor F, depends on ¢ explicitly. For 0 < s’ < s < 1, we derive
from Lemmas 4.2 and 4.3 that

k k+1 k-1 2
I1E s Gar, u)llly < Naallfllaallls + Cllldllls™ + Clllaaa 1l ezl

k-1 2 k k+1
F2 G, u)lll < Cllleellly™ Moeallly + ==l Hlleezllls + = S,IIIM1IIIS+

+

k-1 2
Ml el

where the constant C depends only on R, so condition (1) holds.
Notice that to verify the second condition it is sufficient to estimate

F e, uz) = Foi, v)llly < I1F1(ur, un) = Fr(vi, v)llly + I1F2(u, uz) — Fa(vi, va)llls
< Cllluiu = vivallly + CllIOLL = D)~ @™ = vi™Hllly
+Cl10:(1 = 87" (uy "3 = v W)l + Cllly™ w3 — ViVl
+Clludiuz, — Vivaullly + CIIOAL — D)~ it = vi™Hlly
+CIO31 = )~y w3 — v WDy

Using Lemmas 4.2 and 4.3, we get the following estimates

k k k k k k
iy = vivallly < lllujuz = uyvallly + [lluyvy = vivallly
k-1

k k—1-i i
< Cllluz = walllslluellls + Mlleer = V1||ISIIIVz|||s(Z(||Iu1IIIS v ll),
0

2y—1 ¢ k+1 k+1 k+1 k+1
10:(1 = )7 @™ = v llly < g™ = vl

k
o
< ey =il e v 1)),
0

k—1_72 k—1_2 k=172 k—1_2 k—1.2 k—1_2
|||”1 Uy, =V V2|||s’ < |||u1 Uy — Uy V2|||s’ + |||”1 V) =V Vz”ls’
k-2

k-1 2 k—2—i i
< Clllua = vallls(llleez + valllDHeerllls + [Mleer = Vl|||s|||v2|||x(2(|””l”ls vl
0
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and

2N-1¢ k=12 k-1 2
10:(1 = 0™ (uy uz = vi” W)llls
k=2

k—1 2 k—2—i ,
< Cllluz = valllsClllsez + valllleeal [l + llleer = willlsllvallliC E (Ueel 15~ Mvalll),
0

k k k k k k
sz = vivadlly < lllujus = uyvailly + [lluyvae = vivallly

C

s— 5

<

k
lllez = walllsllluallls +

s— 5

k-1
k—1—i '
llue _Vllllslll‘}Zl”s(E (e lllg~ " Mvalll))s
0

c k+1 _ |kl
lley™ =i lly

2 21 kel _ ke
101 =3 (™ = Dlly < P

C

s—

<

k
o
ey = vl >l 11 1)),
0

I02(1 = 87 k" — VD)1
c

s— 5

k-1
< llluz = vallls(llleez + valllH e Il +

k-2
2 k=2-i i
ey = vl vl W IEHvlE).
0

s—

Therefore, we arrive at

k-1
k k—1-i i
WF @1, uz2) = Fvi, vo)llly < Cllluz = vallllllunllls + MMl — V1||ISIIIV2IIIS(Z(|IIM1IIIS Mvalll)
0

C

s— 5

k
o
ey = willls > Ul 1w 1)
0

k-2
k-1 2 k=2—i i
+2Cluz = valllsllleez + valllslllees Il + [lleey — V1||ISIIIVz|||s(Z(||Iu1|||s v i)
0

k
L
#Cllaey = villls Qa1 1)) +
0

k=1
C . .
k k-1-
+ -l — valllslllees [1f5 + ~llleer = valllslv2lllsC E (Meer 115" Mvalll5))
s—5 s—5 -
c k=2
k-1 2 k-2-i :
T S,|||M2 = Valllsllleez + walllllunllly + P lleer = walllslv2lllsC § (el v lll),
0

where the constant C depends only on R and k. The conditions (1)—(3) above are easily verified once
our system is transformed into a new system with zero initial data as (4.1) and (4.2). So, we have
completed the proof of Theorem 4.1.
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5. Conclusions

In this paper, we focus on several dynamic properties of the Cauchy problems (1.1) and (1.2). We
first establish a new blow-up criterion and a blow-up phenomenon for the problem, then we study
analytical solutions for the equation by using a new method, here, we present two analytical solutions
for the problems (1.1) and (1.2) for the first time. Finally, we study the analyticity in a suitable scale
of the Banach spaces . The properties of the problems (1.1) and (1.2) not only present fundamental
importance from mathematical point of view but also are of great physical interest.
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