In this work, some new kinds of nonlinear power integral inequalities in two-dimensional cases are introduced. With advanced analytical mathematical methods, many estimations are obtained in order to generalize to higher order, well known results in the literature for p=1 and p∈(0,1]. As an example, we apply these results to determine the boundedness of solutions of nonlinear bidimensional Volterra type integral equations for p>1.
Citation: Selma Mili, Ammar Boudeliou. Generalization of some retarded integral inequalities with power in two independent variables and applications[J]. AIMS Mathematics, 2025, 10(2): 4120-4138. doi: 10.3934/math.2025191
[1] | Mustafa Gürbüz, Yakup Taşdan, Erhan Set . Ostrowski type inequalities via the Katugampola fractional integrals. AIMS Mathematics, 2020, 5(1): 42-53. doi: 10.3934/math.2020004 |
[2] | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441 |
[3] | Hong Yang, Shahid Qaisar, Arslan Munir, Muhammad Naeem . New inequalities via Caputo-Fabrizio integral operator with applications. AIMS Mathematics, 2023, 8(8): 19391-19412. doi: 10.3934/math.2023989 |
[4] | Dazhao Chen . Weighted boundedness for Toeplitz type operator related to singular integral transform with variable Calderón-Zygmund kernel. AIMS Mathematics, 2021, 6(1): 688-697. doi: 10.3934/math.2021041 |
[5] | Haoliang Fu, Muhammad Shoaib Saleem, Waqas Nazeer, Mamoona Ghafoor, Peigen Li . On Hermite-Hadamard type inequalities for n-polynomial convex stochastic processes. AIMS Mathematics, 2021, 6(6): 6322-6339. doi: 10.3934/math.2021371 |
[6] | Tekin Toplu, Mahir Kadakal, İmdat İşcan . On n-Polynomial convexity and some related inequalities. AIMS Mathematics, 2020, 5(2): 1304-1318. doi: 10.3934/math.2020089 |
[7] | Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf . The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator. AIMS Mathematics, 2022, 7(4): 7040-7055. doi: 10.3934/math.2022392 |
[8] | Gültekin Tınaztepe, Sevda Sezer, Zeynep Eken, Sinem Sezer Evcan . The Ostrowski inequality for s-convex functions in the third sense. AIMS Mathematics, 2022, 7(4): 5605-5615. doi: 10.3934/math.2022310 |
[9] | Suriyakamol Thongjob, Kamsing Nonlaopon, Sortiris K. Ntouyas . Some (p, q)-Hardy type inequalities for (p, q)-integrable functions. AIMS Mathematics, 2021, 6(1): 77-89. doi: 10.3934/math.2021006 |
[10] | Chunyan Luo, Yuping Yu, Tingsong Du . Estimates of bounds on the weighted Simpson type inequality and their applications. AIMS Mathematics, 2020, 5(5): 4644-4661. doi: 10.3934/math.2020298 |
In this work, some new kinds of nonlinear power integral inequalities in two-dimensional cases are introduced. With advanced analytical mathematical methods, many estimations are obtained in order to generalize to higher order, well known results in the literature for p=1 and p∈(0,1]. As an example, we apply these results to determine the boundedness of solutions of nonlinear bidimensional Volterra type integral equations for p>1.
Applying integral inequalities to derive implicit bounds for unknown functions has become a crucial instrument in advancing the theory surrounding linear, nonlinear differential, and integral equations. These inequalities play an essential role in the analysis of the qualitative and quantitative properties of their solution (see [9,10,12]). Gronwall [11] was the pioneer in formalizing such an inequality with a single variable, which was later followed by the significant contributions of Bellman [3] and Bihari [4].
In recent years, there has been an increase in research focusing on integral inequalities that involve multiple independent variables, as seen in studies [2,5,6,7,17]. This rigorous approach helps to establish existence, uniqueness, and a stability analysis for solutions to numerous complex issues while also addressing practical challenges across diverse domains such as physics, engineering, and economics.
The following well-known fundamental Gronwall inequality [11] was used to estimate the solution of a linear differential equation:
u(x)≤∫xα(bu(s)+a)dx,x∈J, | (1.1) |
where J=[α,α+h].
The estimation of the unknown function u developed by Bellman [3] in 1943 for some constant c≥0 is given as follows:
u(x)≤c+∫xαf(s)ds,x∈J. | (1.2) |
Furthermore, Pachpatte's generalization of the inequalities (1.1) and (1.2) found in [15] pertains to a single variable, as outlined below:
u(x)≤c+∫x0[f(s)u(s)+h(s)]ds+∫x0f(s)(∫sαg(τ)u(τ)dτ)ds, | (1.3) |
which occurred in the nonlinear context.
Still, the work of Abdeldaim and El-Deeb in [1] on an integral inequality (1.3) with a delay α(x) is outlined below:
u(x)≤c+∫α(x)0[f(s)u(s)+h(s)]ds+∫α(x)0f(s)(∫sαg(τ)u(τ)dτ)ds, | (1.4) |
where α∈C1(R+,R+) is a nondecreasing function with α(x)≤x and α(0)=0.
We additionally reviewed the paper of Li and Wang [13], where they introduced the power under the same conditions on α(x), as shown below:
u(x)≤h(x)+∫α(x)0f(s)[um(s)+∫sαg(τ)un(τ)dτ]pds, | (1.5) |
where m,n,p∈(0,1].
Note that inequalities (1.3)–(1.5) have been proved in the cases p=1 and p∈(0,1], respectively, though not p>1? The aforementioned results are not covered, and it would also be interesting to generalize the inequalities considered in [8,14,16] to the more general nonlinearities. This document gives the sharp extensions to the nonlinear retarded integral inequalities with powers p>1 (and q>1), and furthermore in the bidimensional case. To keep our results in the context of the integral and differential equations, we state our results in the generalized types inequalities (1.6) and (1.7), as displayed below:
u(x,y)≤η(x,y)+∫α(x)0∫β(y)0f(s,t)(um(s,t)+∫s0∫t0g(r,l)un(r,l)[u(r,l)+∫r0∫l0h(τ,σ)uq(τ,σ)dσdτ]dldr)pdtds, | (1.6) |
and
u(x,y)≤η(x,y)+∫α(x)0∫β(y)0f(s,t)(um(s,t)+∫s0∫t0g(r,l)un(r,l)[u(r,l)+∫r0∫l0h(τ,σ)u(τ,σ)dσdτ]qdldr)pdtds. | (1.7) |
To resolve the complex calculation methods developed in this work, we introduce and prove two fundamental lemmas, namely Lemmas 2.3 and 2.4, to accurately estimate the unknown function u(x,y) in (1.6) and (1.7). As part of a direct application, an illustrative example is also provided to show the usefulness of our findings.
Throughout this paper, R denotes the set of real numbers, whereas R+=[0,∞) is the subset of R, and the derivative is presented through (′). Moreover, the sets of all continuous functions from R+ into R+ are denoted by C(R+,R+).
Lemma 2.1. [13] Let a≥0 and m≥n>0; then,
anm≤nma+m−nm. |
Lemma 2.2. [16] Assume that u,v≥0, and p≥0. Then, (u+v)p≤kp(up+vp), where
kp={1,0≤p≤1,2p−1,p>1. |
Now, let us state and prove our first principal lemma, which will be used in Theorem 2.1.
Lemma 2.3. Let p,q>1 be given constants, and consider the functions u,η,f,g,h∈C(R+,R+), and α,β∈C1(R+,R+). Assume that α(x) and β(y) are nondecreasing functions such that α(x)≤x and β(y)≤y for all x,y∈R+. If u satisfies
u(x,y)≤η(x,y)+∫α(x)0∫β(y)0f(s,t)[g(s,t)uq(s,t)+h(s,t)]pdtds, | (2.1) |
and
k1−pq(x,y)+(1−pq)2pq−1∫α(x)0∫β(y)0f(s,t)gp(s,t)dtds>0, |
then
u(x,y)≤η(x,y)+[k1−pq(x,y)+(1−pq)2pq−1∫α(x)0∫β(y)0f(s,t)gp(s,t)dtds]11−pq, | (2.2) |
where
k(x,y)=2p−1∫α(x)0∫β(y)0f(s,t)[2q−1g(s,t)aq(s,t)+h(s,t)]pdtds. | (2.3) |
Proof. Consider the following function:
z(x,y)=∫α(x)0∫β(y)0f(s,t)[g(s,t)uq(s,t)+h(s,t)]pdtds, |
with z(x,0)=z(0,y)=0. Then, z(x,y) is a nondecreasing function, and we have
u(x,y)≤η(x,y)+z(x,y). | (2.4) |
Using (2.4), and applying Lemma 2.2, we obtain the following:
z(x,y)≤∫α(x)0∫β(y)0f(s,t)[g(s,t)(η(s,t)+z(s,t))q+h(s,t)]pdtds≤∫α(x)0∫β(y)0f(s,t)[g(s,t)2q−1(ηq(s,t)+zq(s,t))+h(s,t)]pdtds≤∫α(x)0∫β(y)0f(s,t)[2q−1g(s,t)zq(s,t)+2q−1g(s,t)ηq(s,t)+h(s,t)]pdtds; |
then,
z(x,y)≤2p−1∫α(x)0∫β(y)0f(s,t)(2p(q−1)gp(s,t)zpq(s,t)+[2q−1g(s,t)ηq(s,t)+h(s,t)]p)dtds≤k(x,y)+2pq−1∫α(x)0∫β(y)0f(s,t)gp(s,t)zpq(s,t)dtds, |
given that k(x,y) is a nondecreasing function. Then, for (X,Y) fixed, we obtain the following:
z(x,y)≤k(X,Y)+2pq−1∫α(x)0∫β(y)0f(s,t)gp(s,t)zpq(s,t)dtds, | (2.5) |
for x∈[0,X],y∈[0,Y]. Define
v(x,y)=k(X,Y)+2pq−1∫α(x)0∫β(y)0f(s,t)gp(s,t)zpq(s,t)dtds, | (2.6) |
with v(0,y)=v(x,0)=k(X,Y), and v(x,y) is a nondecreasing function; then,
z(x,y)≤v(x,y). | (2.7) |
Differentiating Eq (2.6) with respect to x, and using Eq (2.7), we obtain the following:
∂∂xv(x,y)≤2pq−1α′(x)∫β(y)0f(α(x),t)gp(α(x),t)vpq(α(x),t)dt≤2pq−1α′(x)vpq(α(x),β(y))∫β(y)0f(α(x),t)gp(α(x),t)dt≤2pq−1α′(x)vpq(x,y)∫β(y)0f(α(x),t)gp(α(x),t)dt. |
Therefore,
∂∂xv(x,y)vpq(x,y)≤2pq−1α′(x)∫β(y)0f(α(x),t)gp(α(x),t)dt. | (2.8) |
From (2.8), we have the following:
v−pq(x,y)∂∂xv(x,y)=−1pq−1(∂∂xv−(pq−1)(x,y))≤2pq−1α′(x)∫β(y)0f(α(x),t)gp(α(x),t)dt. |
By integrating both sides of the final inequality with respect to x, we obtain
v1−pq(x,y)≥k1−pq(X,Y)+(1−pq)2pq−1∫α(x)0∫β(y)0f(s,t)gp(s,t)dtds, |
or
v(x,y)≤[1k1−pq(X,Y)+(1−pq)2pq−1∫α(x)0∫β(y)0f(s,t)gp(s,t)dtds]1pq−1. |
Since X,Y are arbitrary, therefore,
v(x,y)≤[k1−pq(x,y)+(1−pq)2pq−1∫α(x)0∫β(y)0f(s,t)gp(s,t)dtds]11−pq. | (2.9) |
From (2.4), (2.7), and (2.9), we obtain the desired result (2.2).
Theorem 2.1. Assume that m,n,p, and q are nonnegative constants satisfying m,n,p, and q>1 with m<n+q, and let u,η,f,g,h∈C(R+,R+), and α,β as in Lemma 2.3, and
u(x,y)≤η(x,y)+∫α(x)0∫β(y)0f(s,t)(um(s,t)+∫s0∫t0g(r,l)un(r,l)[u(r,l)+∫r0∫l0h(τ,σ)u(τ,σ)dσdτ]qdldr)pdtds. | (2.10) |
Then, for
l1−p(n+q)(x,y)+(1−p(n+q))2p(n+q)−1∫α(x)0∫β(y)0f(s,t)Rp(s,t)dtds>0, |
we obtain
u(x,y)≤η(x,y)+[l1−p(n+q)(x,y)+(1−p(n+q))2p(n+q)−1∫α(x)0∫β(y)0f(s,t)Rp(s,t)dtds]11−p(n+q), | (2.11) |
where
l(x,y)=2p−1∫α(x)0∫β(y)0f(s,t)Np(s,t)dtds, | (2.12) |
N(s,t)=M(s,t)+2m−1n+q−mn+q+2n+q−2nn+q∫s0∫t0g(r,l)ηn(r,l)(1+∫r0∫l0h(τ,σ)dσdτ)qdldr+2n+q−2qn+q∫s0∫t0g(r,l)(η(r,l)+∫r0∫l0h(τ,σ)η(τ,σ)dσdτ)qdldr, | (2.13) |
M(s,t)=2m−1ηm(s,t)+2q+n−2∫s0∫t0g(r,l)ηn(r,l)(η(r,l)+∫r0∫l0h(τ,σ)η(τ,σ)dσdτ)qdldr, | (2.14) |
and
R(s,t)=2m−1mn+q+2n+q−2qn+q∫s0∫t0g(r,l)ηn(r,l)(1+∫r0∫l0h(τ,σ)dσdτ)qdldr+2n+q−2nn+q∫s0∫t0g(r,l)(η(r,l)+∫r0∫l0h(τ,σ)η(τ,σ)dσdτ)qdldr+2q+n−2∫s0∫t0g(r,l)(1+∫r0∫l0h(τ,σ)dσdτ)qdldr. | (2.15) |
Proof. Let
z(x,y)=∫α(x)0∫β(y)0f(s,t)(um(s,t)+∫s0∫t0g(r,l)un(r,l)×[u(r,l)+∫r0∫l0h(τ,σ)u(τ,σ)dσdτ]qdldr)pdtds, |
with z(x,0)=z(0,y)=0. Then, z(x,y) is a nonnegative and nondecreasing function, and
u(x,y)≤η(x,y)+z(x,y). | (2.16) |
Using Lemma 2.2, and from (2.16), we obtain the following:
z(x,y)≤∫α(x)0∫β(y)0f(s,t)[2m−1(ηm(s,t)+zm(s,t))+2n−1∫s0∫t0g(r,l)(ηn(r,l)+zn(r,l))×[η(r,l)+z(r,l)+∫r0∫l0h(τ,σ)(η(τ,σ)+z(τ,σ))dσdτ]qdldr]pdtds≤∫α(x)0∫β(y)0f(s,t)[2m−1(ηm(s,t)+zm(s,t))+2n−1∫s0∫t0g(r,l)(ηn(r,l)+zn(r,l))2q−1[(η(r,l)+∫r0∫l0h(τ,σ)η(τ,σ)dσdτ)q+(z(r,l)+∫r0∫l0h(τ,σ)z(τ,σ)dσdτ)q]dldr]pdtds≤∫α(x)0∫β(y)0f(s,t)[M(s,t)+2m−1zm(s,t)+2q+n−2zq(s,t)∫s0∫t0g(r,l)ηn(r,l)(1+∫r0∫l0h(τ,σ)dσdτ)qdldr+2q+n−2zn(s,t)∫s0∫t0g(r,l)(η(r,l)+∫r0∫l0h(τ,σ)η(τ,σ)dσdτ)qdldr+2q+n−2zn+q(s,t)∫s0∫t0g(r,l)(1+∫r0∫l0h(τ,σ)dσdτ)qdldr]pdtds, | (2.17) |
where M(s,t) is defined by (2.14).
Let zn+q(x,y)=v(x,y); therefore, (2.17) can be reformulated as follows:
v1n+q(x,y)≤∫α(x)0∫β(y)0f(s,t)[M(s,t)+2m−1vmn+q(s,t)+2q+n−2vqn+q(s,t)∫s0∫t0g(r,l)ηn(r,l)(1+∫r0∫l0h(τ,σ)dσdτ)qdldr+2q+n−2vnn+q(s,t)∫s0∫t0g(r,l)(η(r,l)+∫r0∫l0h(τ,σ)η(τ,σ)dσdτ)qdldr+2q+n−2v(s,t)∫s0∫t0g(r,l)(1+∫r0∫l0h(τ,σ)dσdτ)qdldr]pdtds. |
Using Lemma 2.1, we have the following:
v1n+q(x,y)≤∫α(x)0∫β(y)0f(s,t)[M(s,t)+2m−1(mn+qv(s,t)+n+q−mn+q)+2n+q−2(qn+qv(s,t)+nn+q)∫s0∫t0g(r,l)ηn(r,l)(1+∫r0∫l0h(τ,σ)dσdτ)qdldr+2n+q−2(nn+qv(s,t)+qn+q)∫s0∫t0g(r,l)(η(r,l)+∫r0∫l0h(τ,σ)η(τ,σ)dσdτ)qdldr+2q+n−2v(s,t)∫s0∫t0g(r,l)(1+∫r0∫l0h(τ,σ)dσdτ)qdldr]pdtds≤∫α(x)0∫β(y)0f(s,t)[M(s,t)+2m−1mn+qv(s,t)+2m−1n+q−mn+q+2n+q−2qn+qv(s,t)∫s0∫t0g(r,l)ηn(r,l)(1+∫r0∫l0h(τ,σ)dσdτ)qdldr+2n+q−2nn+q∫s0∫t0g(r,l)ηn(r,l)(1+∫r0∫l0h(τ,σ)dσdτ)qdldr+2n+q−2nn+qv(s,t)∫s0∫t0g(r,l)(η(r,l)+∫r0∫l0h(τ,σ)η(τ,σ)dσdτ)qdldr+2n+q−2qn+q∫s0∫t0g(r,l)(η(r,l)+∫r0∫l0h(τ,σ)η(τ,σ)dσdτ)qdldr+2q+n−2v(s,t)∫s0∫t0g(r,l)(1+∫r0∫l0h(τ,σ)dσdτ)qdldr]pdtds≤∫α(x)0∫β(y)0f(s,t)[v(s,t)R(s,t)+N(s,t)]pdtds, |
where N and R are defined by (2.13) and (2.15) respectively. Then,
z(x,y)≤∫α(x)0∫β(y)0f(s,t)[R(s,t)zn+q(s,t)+N(s,t)]pdtds. | (2.18) |
Now, applying Lemma 2.3 with η(x,y)=0, and n+q instead of q to (2.18), we obtain the following:
z(x,y)≤[l1−p(n+q)(x,y)+(1−p(n+q))2p(n+q)−1∫α(x)0∫β(y)0f(s,t)Rp(s,t)dtds]11−p(n+q). | (2.19) |
From (2.16) and (2.19), we obtain the upper bound of u(x,y) given in (2.11).
Remark 2.1. It is essential to note that we obtain the same form as (2.9) in Theorem 2.1 of [16] for h=0 in (2.10); however, in our context, it is given in the general nonlinear bidimensional case. Our results may also generalize those identified in [1] and [13].
The next fundamental lemma which we shall use in the next theorem is as follows.
Lemma 2.4. Suppose that p,r>1 are constants and u,η,f,g,h,e∈C(R+,R+), and α,β are as in Lemma 2.3, and
u(x,y)≤η(x,y)+(∫α(x)0∫β(y)0f(s,t)[g(s,t)u2(s,t)+h(s,t)u(s,t)+e(s,t)]pdtds)r. | (2.20) |
Then, for
D1−2rp(x,y)+(1−2rp)∫α(x)0∫β(y)0f(s,t)B(s,t)dtds>0, |
we have
u(x,y)≤η(x,y)+(D1−2rp(x,y)+(1−2rp)∫α(x)0∫β(y)0f(s,t)B(s,t)dtds)r1−2rp, | (2.21) |
where
D(x,y)=∫α(x)0∫β(y)0f(s,t)C(s,t)dtds, | (2.22) |
C(x,y)=2p−1Ap(x,y)+22p−3hp(x,y), | (2.23) |
A(x,y)=2g(x,y)η2(x,y)+h(x,y)η(x,y)+e(x,y), | (2.24) |
and
B(x,y)=23p−2gp(x,y)+22p−3hp(x,y). | (2.25) |
Proof. Take in (2.20) as follows:
z(x,y)=∫α(x)0∫β(y)0f(s,t)[g(s,t)u2(s,t)+h(s,t)u(s,t)+e(s,t)]pdtds, |
with z(x,0)=z(0,y)=0; then, z(x,y) is a nondecreasing function, and
u(x,y)≤η(x,y)+zr(x,y). | (2.26) |
From Lemma 2.2 and (2.26), we have the following:
z(x,y)≤∫α(x)0∫β(y)0f(s,t)[2g(s,t)[η2(s,t)+z2r(s,t)]+h(s,t)[η(s,t)+zr(s,t)]+e(s,t)]pdtds≤∫α(x)0∫β(y)0f(s,t)[A(s,t)+2g(s,t)z2r(s,t)+h(s,t)zr(s,t)]pdtds≤∫α(x)0∫β(y)0f(s,t)2p−1[Ap(s,t)+[2g(s,t)z2r(s,t)+h(s,t)zr(s,t)]p]dtds≤∫α(x)0∫β(y)0f(s,t)2p−1[Ap(s,t)+2p−1[2pgp(s,t)z2rp(s,t)+hp(s,t)zrp(s,t)]]dtds≤∫α(x)0∫β(y)0f(s,t)2p−1[Ap(s,t)+22p−1gp(s,t)z2rp(s,t)+2p−1hp(s,t)zrp(s,t)]dtds, | (2.27) |
where A(x,y) is defined by (2.24). Take in (2.28) as follows:
z2rp(x,y)=v(x,y). | (2.28) |
We obtain the following:
v12rp(x,y)≤∫α(x)0∫β(y)0f(s,t)2p−1[Ap(s,t)+22p−1gp(s,t)v(s,t)+2p−1hp(s,t)v12(s,t)]dtds. | (2.29) |
Applying Lemma 2.1 to (2.29), we obtain the following:
v12rp(x,y)≤∫α(x)0∫β(y)0f(s,t)2p−1[Ap(s,t)+22p−1gp(s,t)v(s,t)+2p−1hp(s,t)(12v(s,t)+12)]dtds≤∫α(x)0∫β(y)0f(s,t)[B(s,t)v(s,t)+g(s,t)]dtds≤D(x,y)+∫α(x)0∫β(y)0f(s,t)B(s,t)v(s,t)dtds, | (2.30) |
where B(x,y), C(x,y), and D(x,y) are defined by (2.25), (2.23), and (2.22), respectively.
Since D(x,y) is a nondecreasing function, then for (X,Y) fixed and 0≤x≤X, 0≤y≤Y, we have the following:
v12rp(x,y)≤D(X,Y)+∫α(x)0∫β(y)0f(s,t)B(s,t)v(s,t)dtds. | (2.31) |
Take in (2.31) as follows:
j(x,y)=D(X,Y)+∫α(x)0∫β(y)0f(s,t)B(s,t)v(s,t)dtds, | (2.32) |
with j(x,0)=j(0,y)=D(X,Y). Then, j(x,y) is a nondecreasing function, and
v12rp(x,y)≤j(x,y). | (2.33) |
Differentiating (2.32) with respect to x, and using (2.33), we obtain the following:
∂∂xj(x,y)=α′(x)∫β(y)0f(α(x),t)B(α(x),t)v(α(x),t)dt≤α′(x)v(α(x),β(y))∫β(y)0f(α(x),t)B(α(x),t)dt≤α′(x)j2rp(α(x),β(y))∫β(y)0f(α(x),t)B(α(x),t)dt. |
The function j(x,y) is positive and nondecreasing, and p,r>1 are constants; then, j2rp(x,y) is a positive and nondecreasing function. Moreover, we have α(x)≤x,β(y)≤y; then, j2rp(α(x),β(y))≤j2rp(x,y), so the last inequality can be rephrased as follows:
∂∂xj(x,y)≤α′(x)j2rp(x,y)∫β(y)0f(α(x),t)B(α(x),t)dt. |
Therefore,
∂∂xj(x,y)j2rp(x,y)≤α′(x)∫β(y)0f(α(x),t)B(α(x),t)dt. |
Since
∂∂xj(x,y)j2rp(x,y)=11−2rp∂∂xj(1−2rp)(x,y), |
then,
∂∂xj1−2rp(x,y)≥(1−2rp)α′(x)∫β(y)0f(α(x),t)B(α(x),t)dt. |
Integrating both sides of the last inequality with respect to s from 0 to x, we obtain the following:
j(x,y)≤(D1−2rp(X,Y)+(1−2rp)∫α(x)0∫β(y)0f(s,t)B(s,t)dtds)11−2rp, |
where
D1−2rp(X,Y)+(1−2rp)∫α(x)0∫β(y)0f(s,t)B(s,t)dtds>0. |
Since (X,Y) is arbitrary, then,
j(x,y)≤(D1−2rp(x,y)+(1−2rp)∫α(x)0∫β(y)0f(s,t)B(s,t)dtds)11−2rp. | (2.34) |
From (2.33), (2.34), (2.26), and (2.28), we obtain the desired result (2.21).
Theorem 2.2. Assume that m,n,p,q are as in Theorem 2.1, u,η,f,g,h∈C(R+,R+), α,β are as in Lemma 2.3, and
u(x,y)≤η(x,y)+∫α(x)0∫β(y)0f(s,t)(um(s,t)+∫s0∫t0g(r,l)un(r,l)[u(r,l)+∫r0∫l0h(τ,σ)uq(τ,σ)dσdτ]dldr)pdtds. | (2.35) |
Then, for
F1−2(n+q)p(x,y)+(1−2(n+q)p)∫α(x)0∫β(y)0f(s,t)G(s,t)dtds>0, |
we obtain
u(x,y)≤η(x,y)+(F1−2(n+q)p(x,y)+(1−2(n+q)p)∫α(x)0∫β(y)0f(s,t)G(s,t)dtds)11−2(n+q)p, | (2.36) |
where
F(x,y)=∫α(x)0∫β(y)0f(s,t)H(s,t)dtds, | (2.37) |
H(x,y)=22p−3Rp(x,y)+2p−1Qp(x,y), | (2.38) |
G(x,y)=23p−2Np(x,y)+22p−3Rp(x,y), | (2.39) |
Q(s,t)=M(s,t)+2m−1n+q−mn+q+2n−1n+q−1n+q∫s0∫t0g(r,l)ηn(r,l)dldr+2n+q−2nn+q∫s0∫t0g(r,l)ηn(r,l)(∫r0∫l0h(τ,σ)dσdτ)dldr+2n−1qn+q∫s0∫t0g(r,l)(η(r,l)+2q−1∫r0∫l0h(τ,σ)ηq(τ,σ)dσdτ)dldr+2n−1q(n+q−1)(n+q)2∫s0∫t0g(r,l)dldr, | (2.40) |
M(s,t)=2m−1ηm(s,t)+2n−1∫s0∫t0g(r,l)ηn(r,l)×(η(r,l)+2q−1∫r0∫l0h(τ,σ)ηq(τ,σ)dσdτ)dldr, | (2.41) |
R(s,t)=2m−1mn+q+2n−11n+q∫s0∫t0g(r,l)ηn(r,l)dldr+2n+q−2qn+q∫s0∫t0g(r,l)ηn(r,l)(∫r0∫l0h(τ,σ)dσdτ)dldr+2n−1nn+q∫s0∫t0g(r,l)(η(r,l)+2q−1∫r0∫l0h(τ,σ)ηq(τ,σ)dσdτ)dldr+2n−1(q+n(n+q−1)(n+q)2)∫s0∫t0g(r,l)dldr+2n+q−2∫s0∫t0g(r,l)(∫r0∫l0h(τ,σ)dσdτ)dldr, | (2.42) |
and
N(s,t)=n2n−1(n+q)2∫s0∫t0g(r,l)dldr. | (2.43) |
Proof. Let in (2.35) as follows:
z(x,y)=∫α(x)0∫β(y)0f(s,t)(um(s,t)+∫s0∫t0g(r,l)un(r,l)[u(r,l)+∫r0∫l0h(τ,σ)uq(τ,σ)dσdτ]dldr)pdtds, | (2.44) |
with z(x,0)=z(0,y)=0. Then, z(x,y) is a nondecreasing function, and
u(x,y)≤η(x,y)+z(x,y). | (2.45) |
Using (2.45) in (2.44), and applying Lemma 2.2, we obtain the following:
z(x,y)≤∫α(x)0∫β(y)0f(s,t)[2m−1(ηm(s,t)+zm(s,t))+2n−1∫s0∫t0g(r,l)(ηn(r,l)+zn(r,l))[η(r,l)+z(r,l)+2q−1∫r0∫l0h(τ,σ)(ηq(τ,σ)+zq(τ,σ))dσdτ]dldr]pdtds≤∫α(x)0∫β(y)0f(s,t)[2m−1ηm(s,t)+2m−1zm(s,t)+2n−1∫s0∫t0(g(r,l)ηn(r,l)+g(r,l)zn(r,l))×[(η(r,l)+2q−1∫r0∫l0h(τ,σ)ηq(τ,σ)dσdτ)+(z(r,l)+2q−1∫r0∫l0h(τ,σ)zq(τ,σ)dσdτ)]dldr]pdtds≤∫α(x)0∫β(y)0f(s,t)[M(s,t)+2m−1zm(s,t)+2n−1∫s0∫t0g(r,l)ηn(r,l)z(r,l)dldr+2n+q−2∫s0∫t0g(r,l)ηn(r,l)(∫r0∫l0h(τ,σ)zq(τ,σ)dσdτ)dldr+2n−1∫s0∫t0g(r,l)zn(r,l)(η(r,l)+2q−1∫r0∫l0h(τ,σ)ηq(τ,σ)dσdτ)dldr+2n−1∫s0∫t0g(r,l)zn+1(r,l)dldr+2n+q−2∫s0∫t0g(r,l)zn(r,l)(∫r0∫l0h(τ,σ)zq(τ,σ)dσdτ)dldr]pdtds≤∫α(x)0∫β(y)0f(s,t)[M(s,t)+2m−1zm(s,t)+2n−1z(s,t)∫s0∫t0g(r,l)ηn(r,l)dldr+2n+q−2zq(s,t)∫s0∫t0g(r,l)a0n(r,l)(∫r0∫l0h(τ,σ)dσdτ)dldr+2n−1zn(s,t)∫s0∫t0g(r,l)(η(r,l)+2q−1∫r0∫l0h(τ,σ)ηq(τ,σ)dσdτ)dldr+2n−1zn+1(s,t)∫s0∫t0g(r,l)dldr+2n+q−2zn+q(s,t)∫s0∫t0g(r,l)(∫r0∫l0h(τ,σ)dσdτ)dldr]pdtds, |
where M(s,t) is defined by (2.41).
Let zn+q(x,y)=v(x,y) in the last inequality; then, we obtain the following:
v1n+q(x,y)≤∫α(x)0∫β(y)0f(s,t)[M(s,t)+2m−1vmn+q(s,t)+2n−1v1n+q(s,t)∫s0∫t0g(r,l)ηn(r,l)dldr+2n+q−2vqn+q(s,t)∫s0∫t0g(r,l)ηn(r,l)(∫r0∫l0h(τ,σ)dσdτ)dldr+2n−1vnn+q(s,t)∫s0∫t0g(r,l)(η(r,l)+2q−1∫r0∫l0h(τ,σ)ηq(τ,σ)dσdτ)dldr+2n−1vn+1n+q(s,t)∫s0∫t0g(r,l)dldr+2n+q−2v(s,t)∫s0∫t0g(r,l)(∫r0∫l0h(τ,σ)dσdτ)dldr]pdtds. |
Using Lemma 2.1, we have the following:
v1n+q(x,y)≤∫α(x)0∫β(y)0f(s,t)[M(s,t)+2m−1(mn+qv(s,t)+n+q−mn+q)+2n−1(1n+qv(s,t)+n+q−1n+q)∫s0∫t0g(r,l)ηn(r,l)dldr+2n+q−2(qn+qv(s,t)+nn+q)∫s0∫t0g(r,l)ηn(r,l)(∫r0∫l0h(τ,σ)dσdτ)dldr+2n−1(nn+qv(s,t)+qn+q)∫s0∫t0g(r,l)(η(r,l)+2q−1∫r0∫l0h(τ,σ)ηq(τ,σ)dσdτ)dldr+2n−1vnn+q(s,t)v1n+q(s,t)∫s0∫t0g(r,l)dldr+2n+q−2v(s,t)∫s0∫t0g(r,l)(∫r0∫l0h(τ,σ)dσdτ)dldr]pdtds≤∫α(x)0∫β(y)0f(s,t)[M(s,t)+2m−1mn+qv(s,t)+2m−1n+q−mn+q+2n−1n+qv(s,t)∫s0∫t0g(r,l)ηn(r,l)dldr+2n−1n+q−1n+q∫s0∫t0g(r,l)ηn(r,l)dldr+2n+q−2qn+qv(s,t)∫s0∫t0g(r,l)ηn(r,l)(∫r0∫l0h(τ,σ)dσdτ)dldr+2n+q−2nn+q∫s0∫t0g(r,l)ηn(r,l)(∫r0∫l0h(τ,σ)dσdτ)dldr+2n−1nn+qv(s,t)∫s0∫t0g(r,l)(η(r,l)+2q−1∫r0∫l0h(τ,σ)ηq(τ,σ)dσdτ)dldr+2n−1qn+q∫s0∫t0g(r,l)(η(r,l)+2q−1∫r0∫l0h(τ,σ)ηq(τ,σ)dσdτ)dldr+2n−1(nn+qv(s,t)+qn+q)(1n+qv(s,t)+n+q−1n+q)∫s0∫t0g(r,l)dldr+2n+q−2v(s,t)∫s0∫t0g(r,l)(∫r0∫l0h(τ,σ)dσdτ)dldr]pdtds,≤∫α(x)0∫β(y)0f(s,t)[M(s,t)+2m−1mn+qv(s,t)+2m−1n+q−mn+q+2n−11n+qv(s,t)∫s0∫t0g(r,l)ηn(r,l)dldr+2n−1n+q−1n+q∫s0∫t0g(r,l)ηn(r,l)dldr+2n+q−2qn+qv(s,t)∫s0∫t0g(r,l)ηn(r,l)(∫r0∫l0h(τ,σ)dσdτ)dldr+2n+q−2nn+q∫s0∫t0g(r,l)ηn(r,l)(∫r0∫l0h(τ,σ)dσdτ)dldr+2n−1nn+qv(s,t)∫s0∫t0g(r,l)(η(r,l)+2q−1∫r0∫l0h(τ,σ)ηq(τ,σ)dσdτ)dldr+2n−1qn+q∫s0∫t0g(r,l)(η(r,l)+2q−1∫r0∫l0h(τ,σ)ηq(τ,σ)dσdτ)dldr+2n−1(n(n+q)2v2(s,t)+(q(n+q)2+n(n+q−1)(n+q)2)v(s,t)+q(n+q−1)(n+q)2)∫s0∫t0g(r,l)dldr+2n+q−2v(s,t)∫s0∫t0g(r,l)(∫r0∫l0h(τ,σ)dσdτ)dldr]pdtds. |
Then,
v1n+q(x,y)≤∫α(x)0∫β(y)0f(s,t)[Q(s,t)+R(s,t)v(s,t)+N(s,t)v2(s,t)]pdtds, |
or
v(x,y)≤[∫α(x)0∫β(y)0f(s,t)[Q(s,t)+R(s,t)v(s,t)+N(s,t)v2(s,t)]pdtds]n+q, | (2.46) |
where N(s,t),R(s,t), and Q(s,t) are defined by (2.43), (2.42), and (2.40), respectively.
By applying Lemma 2.4 with a(x,y)=0, f(s,t) instead of b(s,t), N(s,t) instead of c(s,t), R(s,t) instead of d(s,t), Q(s,t) instead of e(s,t), and n+q>1 instead of r>1 to (2.46), we obtain the following:
v(x,y)≤(F1−2(n+q)p(x,y)+(1−2(n+q)p)∫α(x)0∫β(y)0f(s,t)G(s,t)dtds)n+q1−2(n+q)p. | (2.47) |
Finally, using (2.45), (2.47), and the fact that zn+q(x,y)=v(x,y), we obtain (2.36) and the proof is complete.
Remark 2.2. Inequality (2.35) enhances the results found in [1,13,15,16] by introducing a more general bidimensional nonlinear context.
Remark 2.3. Note that Theorems 2.1 and 2.2 generalize the results obtained in [1,15], which were proven in the case p=1. Additionally, they generalize the findings from [13,14] in the case p∈(0,1], and they provide a generalization of the findings from [8,16] in the case p>1.
In this section, we apply our results to study the boundedness of the solution of a retarded integral equation of a bidimensional Volterra type, which arises in various problems.
Example 3.1. We consider the following retarded integral equation of Volterra type:
χ(x,y)+∫α(x)0∫β(y)0f(s,t)χ6(s,t)dtds+∫α(x)0∫β(y)0f(s,t)(∫s0∫t0g(r,l)χ7(r,l)dldr+∫s0∫t0g(r,l)χ4(r,l)(∫r0∫l0h(τ,σ)χ(τ,σ)dσdτ)3dldr)2dtds=c(x,y), | (3.1) |
where χ,f,g,h, and c be continuous functions on R, and produces the following result.
Theorem 3.1. Let α(x) and β(y) be continuous, differentiable, and nondecreasing functions on [0,+∞) with α(x)≤x, and β(y)≤y. If χ(x,y) satisfies (3.1), and for
l−13(x,y)−13×212∫α(x)0∫β(y)0|f(s,t)|R2(s,t)dtds>0, |
we have
|χ(x,y)|≤|c(x,y)|+[l−13(x,y)−13×212∫α(x)0∫β(y)0|f(s,t)|R2(s,t)dtds]−113, | (3.2) |
then,
l(x,y)=∫α(x)0∫β(y)0|f(s,t)|N2(s,t)dtds, | (3.3) |
N(s,t)=M(s,t)+167+327∫s0∫t0|g(r,l)|c4(r,l)(1+∫r0∫l0|h(τ,σ)|dσdτ)3dldr+247∫s0∫t0|g(r,l)|(|c(r,l)|+∫r0∫l0|h(τ,σ)||c(τ,σ)|dσdτ)3dldr, | (3.4) |
M(s,t)=4|c3(s,t)|+8∫s0∫t0|g(r,l)|c4(r,l)×(|c(r,l)|+∫r0∫l0|h(τ,σ)||c(τ,σ)|dσdτ)3dldr, | (3.5) |
and
R(s,t)=127+247∫s0∫t0|g(r,l)|c4(r,l)(1+∫r0∫l0|h(τ,σ)|dσdτ)3dldr+327∫s0∫t0|g(r,l)|(|c(r,l)|+∫r0∫l0|h(τ,σ)||c(τ,σ)|dσdτ)3dldr+8∫s0∫t0|g(r,l)|(1+∫r0∫l0|h(τ,σ)|dσdτ)3dldr. | (3.6) |
Proof. By using Lemma 2.2 on the left hand side of (3.1), we obtain the following:
χ(x,y)+∫α(x)0∫β(y)0f(s,t)(χ6(s,t)+(∫s0∫t0g(r,l)×(χ7(r,l)+χ4(r,l)(∫r0∫l0h(τ,σ)χ(τ,σ)dσdτ)3)dldr)2)dtds=χ(x,y)+12∫α(x)0∫β(y)02f(s,t)((χ3(s,t))2+(∫s0∫t0g(r,l)×(χ7(r,l)+χ4(r,l)(∫r0∫l0h(τ,σ)χ(τ,σ)dσdτ)3)dldr)2)dtds≥χ(x,y)+12∫α(x)0∫β(y)0f(s,t)[χ3(s,t)+∫s0∫t0g(r,l)×(χ7(r,l)+χ4(r,l)(∫r0∫l0h(τ,σ)χ(τ,σ)dσdτ)3)dldr]2dtds≥χ(x,y)+12∫α(x)0∫β(y)0f(s,t)[χ3(s,t)+14∫s0∫t0g(r,l)χ4(r,l)×[22(χ3(r,l)+(∫r0∫l0h(τ,σ)χ(τ,σ)dσdτ)3)]dldr]2dtds≥χ(x,y)+12∫α(x)0∫β(y)0f(s,t)[χ3(s,t)+∫s0∫t014g(r,l)χ4(r,l)×[χ(r,l)+∫r0∫l0h(τ,σ)χ(τ,σ)dσdτ]3dldr]2dtds. |
From (3.1) and the last inequality, we obtain the following:
χ(x,y)≤c(x,y)−12∫α(x)0∫β(y)0f(s,t)[χ3(s,t)+∫s0∫t014g(r,l)χ4(r,l)×[χ(r,l)+∫r0∫l0h(τ,σ)χ(τ,σ)dσdτ]3dldr]2dtds. |
Therefore,
|χ(x,y)|≤|c(x,y)|+∫α(x)0∫β(y)012|f(s,t)|[|χ3(s,t)|+∫s0∫t014|g(r,l)|χ4(r,l)[|χ(r,l)|+∫r0∫l0|h(τ,σ)||χ(τ,σ)|dσdτ]3dldr]2dtds. |
Then, an application of Theorem 2.1 to the last inequality yields (3.2), and the proof is complete.
Integral inequalities play a robust role in the development of mathematical sciences. Most integral inequalities are useful to study the qualitative properties of solutions to differential and integral equations. The Gronwall-Bellman inequality plays a considerable role in the study of qualitative properties of the solutions of certain differential equations. This inequality has attracted and continues to attract considerable attention in the literature. Recently, many authors have been interested in generalizing the Gronwall-Bellman inequality to other forms such as nonlinear integral inequalities with a delay, of the Volterra-Fredholm type, and nonlinear retarded integral inequalities with power. Following this trend and to develop the study of integral inequalities, we proved some new nonlinear integral inequalities with power in two variables, which generalized certain results given in [1,8,13,14,15,16] in a more general context. The obtained results can be employed to study the boundedness and uniqueness of solutions of some integral equation with power. As an application, an illustrative example was presented to study the boundedness of solution.
Mili Selma: Software, Writing–original draft, Writing–review and editing, Conceptualization, Methodology; Ammar Boudeliou: Supervision, Validation, Data curation, Software, Writing–review and editing. All authors have read and approved the final version of the manuscript for publication.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors declare that there are no conflicts of interest.
[1] |
A. Abdeldaim, A. A. El-Deeb, On generalized of certain retarded nonlinear integral inequalities and its applications in retarded integro-differential equations, Appl. Math. Comput., 256 (2015), 375–380. https://doi.org/10.1016/j.amc.2015.01.047 doi: 10.1016/j.amc.2015.01.047
![]() |
[2] | D. Bainov, P. Simeonov, Integral inequalities and applications, Dordrecht: Springer, 1992. https://doi.org/10.1007/978-94-015-8034-2 |
[3] |
R. Bellman, The stability of solutions of linear differentialequations, Duke Math. J., 10 (1943), 643–647. https://doi.org/10.1215/S0012-7094-43-01059-2 doi: 10.1215/S0012-7094-43-01059-2
![]() |
[4] |
I. Bihari, A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations, Acta Math. Acad. Sci. Hung., 7 (1956), 81–94. https://doi.org/10.1007/bf02022967 doi: 10.1007/bf02022967
![]() |
[5] |
A. Boudeliou, H. Khellaf, On some delay nonlinear integral inequalities in two independent variables, J. Inequal. Appl., 2015 (2015), 1–14. https://doi.org/10.1186/s13660-015-0837-7 doi: 10.1186/s13660-015-0837-7
![]() |
[6] |
A. Boudeliou, On certain new nonlinear retarded integral inequalities in two independent variables and applications, Appl. Math. Comput., 335 (2018), 103–111. https://doi.org/10.1016/j.amc.2018.04.041 doi: 10.1016/j.amc.2018.04.041
![]() |
[7] | A. Boudeliou, Some generalized nonlinear Volterra-Fredholm type integral inequalities with delay of several variables and applications, Nonlinear Dyn. Syst. Theory, 23 (2023), 261–272. |
[8] | A. Boudeliou, Some nonlinear Gronwall-Bellman type retarded integral inequalities with power and their applications, Aust. J. Math. Anal. Appl., 21 (2024), 1–15. |
[9] |
A. A. El-Deeb, R. G. Ahmed, On some generalizations of certain nonlinear retarded integral inequalities for Volterra-Fredholm integral equations and their applications in delay differential equations, J. Egypt. Math. Soc., 25 (2017), 279–285. https://doi.org/10.1016/j.joems.2017.02.001 doi: 10.1016/j.joems.2017.02.001
![]() |
[10] |
H. El-Owaidy, A. Ragab, A. Abdeldaim, On some new integral inequalities of Gronwall-Bellman type, Appl. Math. Comput., 106 (1999), 289–303. https://doi.org/10.1016/S0096-3003(98)10131-5 doi: 10.1016/S0096-3003(98)10131-5
![]() |
[11] |
T. H. Gronwall, Note on the derivatives with respect to a parameter of the solutions of a system of differential equations, Ann. Math., 20 (1919), 292–296. https://doi.org/10.2307/1967124 doi: 10.2307/1967124
![]() |
[12] |
Z. A. Khan, Analysis on some powered integral inequalities with retarded argument and application, J. Taibah Univ. Sci., 14 (2020), 488–495. https://doi.org/10.1080/16583655.2020.1747218 doi: 10.1080/16583655.2020.1747218
![]() |
[13] |
Z. Z. Li, W. S. Wang, Some nonlinear Gronwall-Bellman type retarded integral inequalities with power and their applications, Appl. Math. Comput., 347 (2019), 839–852. https://doi.org/10.1016/j.amc.2018.10.019 doi: 10.1016/j.amc.2018.10.019
![]() |
[14] | S. Mili, A. Boudeliou, Refinements of some retarded integral inequalities with power and their applications, Nonlinear Stud., 31 (2024), 913–925. |
[15] | B. G. Pachpatte, Inequalities for differential and integral equations, Academic Press, 1998. |
[16] |
Y. Z. Tian, M. Fan, Nonlinear integral inequality with power and its application in delay integro-differential equations, Adv. Differ. Equ., 2020 (2020), 142. https://doi.org/10.1186/s13662-020-02596-y doi: 10.1186/s13662-020-02596-y
![]() |
[17] |
Y. H. Xie, Y. Y. Li, Z. H. Liu, Extensions of Gronwall-Bellman type integral inequalities with two independent variables, Open Math., 20 (2022), 431–446. https://doi.org/10.1515/math-2022-0029 doi: 10.1515/math-2022-0029
![]() |