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1. Introduction

Applying integral inequalities to derive implicit bounds for unknown functions has become a crucial
instrument in advancing the theory surrounding linear, nonlinear differential, and integral equations.
These inequalities play an essential role in the analysis of the qualitative and quantitative properties of
their solution (see [9, 10, 12]). Gronwall [11] was the pioneer in formalizing such an inequality with a
single variable, which was later followed by the significant contributions of Bellman [3] and Bihari [4].

In recent years, there has been an increase in research focusing on integral inequalities that involve
multiple independent variables, as seen in studies [2,5—7,17]. This rigorous approach helps to establish
existence, uniqueness, and a stability analysis for solutions to numerous complex issues while also
addressing practical challenges across diverse domains such as physics, engineering, and economics.

The following well-known fundamental Gronwall inequality [11] was used to estimate the solution
of a linear differential equation:

u(x) < fx (bu(s) +a)dx, x € J, (L.1)
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where J = [a, a + h].
The estimation of the unknown function u developed by Bellman [3] in 1943 for some constant
¢ > 01is given as follows:

u(x) <c+ fxf(s)ds, xeJ. (1.2)

Furthermore, Pachpatte’s generalization of the inequalities (1.1) and (1.2) found in [15] pertains to
a single variable, as outlined below:

u(x) <c+ fx [f(s)u(s) + h(s)] ds + fx f(s) (fs g(T)u(T)dT) ds, (1.3)
0 0 a

which occurred in the nonlinear context.
Still, the work of Abdeldaim and El-Deeb in [1] on an integral inequality (1.3) with a delay @ (x) is
outlined below:

v(x) a(x) s
u(x) < c+ f [f(s)u(s) + h(s)] ds + f £(s) ( f g(‘r)u(r)d‘r) ds, (1.4)
0 0 @

where « € C! (R,, R,) is a nondecreasing function with « (x) < x and a (0) = 0.
We additionally reviewed the paper of Li and Wang [13], where they introduced the power under
the same conditions on « (x), as shown below:

(x) X p
u(x) < h(x) + fﬂ f(s) [um(s) + f gu" (1) dr] ds, (1.5)
0

where m,n, p € (0, 1].

Note that inequalities (1.3)—(1.5) have been proved in the cases p = 1 and p € (0, 1], respectively,
though not p > 1?7 The aforementioned results are not covered, and it would also be interesting to
generalize the inequalities considered in [8, 14, 16] to the more general nonlinearities. This document
gives the sharp extensions to the nonlinear retarded integral inequalities with powers p > 1 (and
g > 1), and furthermore in the bidimensional case. To keep our results in the context of the integral
and differential equations, we state our results in the generalized types inequalities (1.6) and (1.7), as
displayed below:

(x) )
wey) < aen+ [ [0 fso(en

s t r [ p
+ f f g(r,Du"(r, 1) [u(r, D+ f f h(t, o)ui(r, a')dO'dT] dldr) dtds, (1.6)
0o Jo 0 Jo

a(x)  BK) s f
u(x,y) < n(x,y)+f f(s,t)(u’"(s,t)+£ fog(r,l)u”(r,l)

0 0

r [
[u(r, D+ f f h(t, o)u(t, o)dodr
0 Jo

To resolve the complex calculation methods developed in this work, we introduce and prove two
fundamental lemmas, namely Lemmas 2.3 and 2.4, to accurately estimate the unknown function u(x, y)
in (1.6) and (1.7). As part of a direct application, an illustrative example is also provided to show the
usefulness of our findings.

and

q

P
dldr) dtds. (1.7)
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2. Main results

Throughout this paper, R denotes the set of real numbers, whereas R, = [0, ) is the subset of R,
and the derivative is presented through (). Moreover, the sets of all continuous functions from R, into
R, are denoted by C(R,, R.).

Lemma 2.1. [I3] Leta > 0and m > n > 0; then,

n n m-—-n
am < —a+
m m

Lemma 2.2. [16] Assume that u,v > 0, and p > 0. Then, (u +v)” < k, (u” + V"), where

= I, 0<p<l,
P 2, p> 1L

Now, let us state and prove our first principal lemma, which will be used in Theorem 2.1.

Lemma 2.3. Let p,q > 1 be given constants, and consider the functions u,n, f,g,h € C (R,,R,), and
a,f € C'(R,,R,). Assume that a(x) and B(y) are nondecreasing functions such that a(x) < x and

BQ) < yforall x,y € R,. If u satisfies

() PBY)
u(x,y) < n(x,y) + f F(s.0|g(s.0u(s. 1) + h(s. 1) drds, @.1)
0 0
and
a(x)  ABY)
k'=P4(x,y) + (1 — pg) 2P f f(s,0)g" (s, t)dtds > 0,
0 0
then 1
a(x)  MB() T=pg
u(x,y) < n(x,y) + [k P(x,y) + (1 = pg) 27! f f(s,08"(s, t)dtdS] ; (2.2)
0 0
where
a(x)  AB(Y) »
k(x,y) = 27! f F(s.0[277 (s, D)a(s, 1) + h(s, )| drds. (2.3)
0 0

Proof. Consider the following function:

a(x)  B(Y) »
2x,y) = f f F(s.0)|g(s. (s, 1) + h(s, )| dtds,
0 0
with z(x,0) = z(0,y) = 0. Then, z(x, y) is a nondecreasing function, and we have

u(x,y) < n(x,y) + z(x, y). (2.4)

Using (2.4), and applying Lemma 2.2, we obtain the following:
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a(x)
f fﬁ f(s, 1) g(s 1) n(s 1+ z(s, t)) + h(s, t)]pdtds
0

72(x,y) <
a(x)
< f fﬂ £(s,1) g(s 0297 (15, 1) + 29(s. 1)) + h(s, t)] dtds
a(x)
< f fﬂ £(s, z) 2q o(s,029(s, 1) + 297 g(s, (s, t) + h(s, z)] dtds;
0
then,
a(x)  BO) »
Axy) < 27! f Fls.0) (27 VgP (5,027 (s, 1) + |27 g(s, (s, 1) + s, 1)) drds
0 0

IA

a(x)  MB(Y)
k(x,y) + 207! f f(s,08"(s,0)2"(s, ndtds,
0 0
given that k(x, y) is a nondecreasing function. Then, for (X, Y) fixed, we obtain the following:
a(x)  MB(Y)
2(x,y) < k(X,Y) + 27! f f(s,08"(s, )2 (s, drds, (2.5)
0 0
for x € [0, X], y € [0, Y]. Define
a(x) ()
v(x,y) = k(X,Y) + 277! f f(s,08" (s, 1)z (s, ydrds, (2.6)
0 0

with v(0,y) = v(x,0) = k (X, Y), and v(x, y) is a nondecreasing function; then,

z(x,y) < v(x,y). 2.7

Differentiating Eq (2.6) with respect to x, and using Eq (2.7), we obtain the following:

B0)
207l (x) fla(x), ng’ (ax), pv*(a(x), t)dt
0

IA

0
a V(X, y)
B()
2P (v (a(x), B(y)) fla(x), g’ (a(x), H)dt
0
()

2047 (x)vP(x, y) fla(x), g’ (a(x), nydt.
0

IA

IA

Therefore,

2y )
—&Lq( bl @@ | fla),0g"a). ndt. 2.8)
vPa(x,y)

From (2.8), we have the following:

B(Y)

vH(x, y)%\/(x, y) = —ﬁ (%V(” “D(x, y)) <207l (x) ; fla(x), ng’(a(x), ndr.
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By integrating both sides of the final inequality with respect to x, we obtain

) ABY)
VI, y) 2 KP4+ (1 - pg) 20! f f f(s,0g"(s, Ddrds,
0 0

or
L

rq-1
1
V%) < o) (AO) '
k'=ra(X,Y) + (1 — pq) 2ra-! fo , J(s, 08P (s, ndtdss

Since X, Y are arbitrary, therefore,

1

a(x)  AB(Y) I=pq
v(x,y) < |[k'"P9(x, ) + (1 — pg) 2P~ f f(s,08" (s, t)dtds] : (2.9)
0 0

From (2.4), (2.7), and (2.9), we obtain the desired result (2.2). O

Theorem 2.1. Assume that m, n, p, and q are nonnegative constants satisfying m,n, p, and q > 1 with
m<n+gq,andletu,n, f,g,h € C(R,,R,), and a, 3 as in Lemma 2.3, and

ﬁ(Y) N t
f(s, 1) (um(s, 1+ f f g(r,Du"(r, 1)
0o Jo

a(x)
0

ulx,y) < n(x,y)+ f

0

r [ q p
[u(r, D+ f f h(t, o) u(r, o)dodr dldr) dtds. (2.10)
0 0
Then, for
() BO)
[P (e y) + (1 — p(n + q))zl’('”q)—l f f(s,H)RP (s, t)dtds > 0,
0 0
we obtain
uxy) < nlxy)+ [ y)
a(x)  BY) =T
+ (1= pln + g))2rtro! f (s, DR (s, Hdtds , (2.11)
0 0
where
a(x) ()
I(x,y) = 27" f f(s, DN (s, Ddtds, (2.12)
0 0
+ J—
N(s,f) = M(s,p)+2m 12747 "
n+ q

N t r [ 4
+2n+q—2L f f g(r, D' (r, 1) (1 + f f h(r, O')dO'dT) dldr
n+qJo Jo 0 Jo

s t r ! !
w2 4 f f 8(r,l)(77(r,l)+ f f h(r,cr)n(r,cﬂdcrdf) didr, — (2.13)
n+qJo Jo 0 Jo
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S !
M(s,t) = 2" 'g"(s,t) + 292 f f g(r, D" (r, D)
0 0

r [ q
(n(r, D+ f f h(t, o)n(r, O')dO'dT) dldr, (2.14)
0o Jo
and
m q s t r [ q
R(s, 1) = 2’"‘1—+2"+‘1_2—f fg(r,l)n”(r,l)(1+f f]’l(T,O‘)dO'dT) dldr
n+gq n+4qJo Jo 0o Jo
s t r / q
+2”+q—2L f f g(r,l)(n(r,l)+ f f h(T,O‘)n(T,a')dO'dT) dldr
n+qJo Jo 0o Jo
s t r [ q
+2‘1+"_2f fg(r, D (1+f fh(T,O')dO'dT) dldr. (2.15)
0o Jo 0o Jo
Proof. Let

x)  MBO» st
z2(x,y) = f f(s,t)(u’"(s,t)+ f f g(r, Du*(r, 1)
0 0 0 0

ro q p
X u(r, l)+f fh(T,O’)M(T, O')dO'dT] a’ldr) dtds,
0 Jo

with z(x,0) = z(0,y) = 0. Then, z(x, y) is a nonnegative and nondecreasing function, and

u(x,y) < n(x,y) + z(x, y). (2.16)

Using Lemma 2.2, and from (2.16), we obtain the following:

a(x)  BO) st
f Fsn |27 (" (s 1) + 2"(s, ) + 2 f f g, D(i"(r. D) + (. D)
0 0 0 0

r [ q P
X |n(r, ) + z(r, 1) + f f h(t, o) 7](‘[', o) + z(T, O'))dO'dT] dldr] dtds

a(x)  BK)
f f £(s, t)[z"” "(s, 1) + 2"(s, t) +2" ‘f fg(rl)

(n (r,) + Z'(r, l))2q ! [(TI(V D+ f f h(r, o)n(x, O')dO'dT)

+(z(r, D+ f f h(t, o)z(r, O')dO'dT) ]dldr] dtds
0 Jo

a(x)  MB(K)
f Fls, 0| M(s,0) + 22" (s, 1)
0 0

S t r [ q
+297274 (s, 1) f f g(r,Dn"(r, 1) (1 + f f h(r, O')dO'dT) dldr
0o Jo 0o Jo
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242715, t)f fg(r )] (n(r l)+f fh(‘r on(, O')dO'dT) dldr
+2q+"_2z"+q(s,t)f fg(r,l)(1+f fh(T,O')dO'dT) dldr] drds, (2.17)
0o Jo 0o Jo

where M(s, t) is defined by (2.14).
Let 7"*%(x, y) = v(x, y); therefore, (2.17) can be reformulated as follows:

1 ax)  BO) .,
Vi (x,y) < f Fls.0) [ M(s,0) + 27 vidi (s, 1)
0 0

S t r ! 1

R TON) f f g(r,z>n"<r,l>(1+ f f h<f,<f>d<fdf) didr

0 0 0 0

. S t r l 1

+207 12y (s, t)f fg(r, ) (Tl(r, l)+f fh(T,O')TI(T,O')dUdT) dldr

0 0 0 0

S t r l 4 P
+2q+n_2V(S, t)f fg(,», l)(] +f fh(T’ O')do'd‘r) dldi’] dtds.
0 0 0 0

Using Lemma 2.1, we have the following:

a(x)  MBY) _
vﬁ(x,y) < f f(s, 1) [M(s 1)+ 2" ! ( m v(s, t) + ﬂ)
0 0 +q n+gq

+2n+q—2( q (s, 1) + _)f f g(r,Dn"(r,1) (1 +f f h(r, O')dO'dT) dldr
n+gq
4nta-2 (LV(S, )+ — q) f f g (n(r, D+ f f h(t, o)n(r, O')dO'dT) dldr
+20 2y (s, t)f f g(r, l)(l +f f h(r, O')dO'dT) dldr] dtds
@ (x)  B() et
f(; | f(st)[M(st)+2 Nt q ntq
S t q
+2”+‘1_2Lv(s, t)f f g(r, Dn'(r, 1) (1 + f f h(t, O')dO'dT) dldr
n+gq 0o Jo 0 Jo
S ! r [ q
+2n+q—2L f f g(r, D' (r, 1) (1 + f f h(r, U')dO'dT) dldr
n+qJo Jo 0 Jo
N t r / q
w2 s p) f f g(r, D) (n(r, l) + f f h(z, o)n(x, a)dcfdf) dldr
n+gq 0 0 0 0
S t r [ q
+2n+q—2i f f g, ) (n(r, D+ f f h(t, o)n(t, O')dO'dT) dldr
n+qJo Jo 0 Jo
st rol 4 P
42012y, t)f f g(r, 1) (1 + f f h(t, O')dO'dT) dldr] dtds
0 0 0 0

a(x) () »
< f £(s, t)[v(s, HR(s,t) + N(s, t)] dtds,
0 0

\n+qg-m

IA

v(s, 1) + 2"
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where N and R are defined by (2.13) and (2.15) respectively. Then,

a(x)  MB(K)
z(x,y) < f f F(s.D[R(s, 02 (s5, 1) + N(s, t)]pdtds. (2.18)
0 0
Now, applying Lemma 2.3 with n(x, y) = 0, and n + g instead of g to (2.18), we obtain the following:
ax) B D
2, ) < [I7P 00+ (1= pln + )27 f F(s. DRV, r)dtds] @19
0 0

From (2.16) and (2.19), we obtain the upper bound of u(x, y) given in (2.11). O

Remark 2.1. It is essential to note that we obtain the same form as (2.9) in Theorem 2.1 of [16] for
h = 0in (2.10); however, in our context, it is given in the general nonlinear bidimensional case. Our
results may also generalize those identified in [1] and [13].

The next fundamental lemma which we shall use in the next theorem is as follows.

Lemma 2.4. Suppose that p,r > 1 are constants and u,n, f,g,h,e € C(R.,R,), and o, are as in
Lemma 2.3, and

a(x)  AB(Y) r
u(x,y) < n(x,y) + ( f F(s.0)[g(s. (s, £) + h(s, Du(s, 1) + e(s, t)]pdtds) : (2.20)
0 0

Then, for
a(x) )
D]—er(x, y) + (1 _ 2rp)f f(S, I)B(S, t)dtds > 0,
0 0

we have
O T
u(x,y) < n(x,y) + (D“z”’(x,y) + (1 =2rp) f f(s,D)B(s, t)dtdS) : (2.21)
0 0
where
) BO)
D(x,y) = f f(s,0)C(s, t)dtds, (2.22)
0 0
C(x,y) = 2P AP(x,y) + 2773 hP(x, y), (2.23)
A(x,y) = 28(x, 7P (x, ) + h(x, y)n(x,y) + e(x, y), (2.24)
and
B(x,y) = 2772 gP(x,y) + 223 hP (x, y). (2.25)

Proof. Take in (2.20) as follows:

a(x)  MB)
ax.y) = f F(s.0[8Cs. 00 (s,1) + s, Du(s, 1) + e(s.0)| drds,
0 0
with z(x, 0) = z(0,y) = 0; then, z(x, y) is a nondecreasing function, and
u(x,y) < n(x,y) + 7' (x,y). (2.26)
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From Lemma 2.2 and (2.26), we have the following:

a(x)  MB()
wxy) < f f Fs.0]28(5. 0 [112(5. 1) + 22 (5. 0| + s, 1) [0, 1) + (5, )] + e, 1)| dedis
0 0

IA

@ (x)  B(Y) P
f f FCs.D[AGs 1) + 205,027 (5.1) + (s, 02 (5. deds
0 0

IA

a(x)  BO) »
f F(s.0277 [ AP(s, 1) + [28(5, 027 (s,0) + h(s, 02 (5, )| |deds (2.27)
0 0

IA

a(x) B
f Fls. 0277 [AP(s, 1) + 277 |27 g7 (5,07 (5. 1) + 1P (5,027 (s, )| |dedls
0 0

IA

a(x)  MB(Y)
f F(s. 027 [AP(s, 1) + 2277 gP (5,7 (5, 1) + 277 WP (5,07 (s, ) |drds,
0 0

where A(x,y) is defined by (2.24). Take in (2.28) as follows:
Z7P(x,y) = v(x, ). (2.28)

We obtain the following:
] a(x)  MBY) 1
VP (x,y) < f f(s, 207! [AP(s, 1)+ 227 g (s, £)v(s, 1) + 2P hP (s, BV (s, t)]dtds. (2.29)
0 0

Applying Lemma 2.1 to (2.29), we obtain the following:

1 a(x)  ABO)
vIr(x,y) < f f(s, t)2”‘1[A"(s, 1)+ 227 P (s, (s, 1) + 2P P (s, t)(%v(s, 1)+ %) dtds
Oa(x) Oﬁ(y)
< f f F(s.0[B(s, 0v(s. 1) + g(s.1)|drds
’ ’ a(x) B()
< D(x,y)+ f f f(s,0)B(s, t)v(s, t)dtds, (2.30)
0 0

where B(x,y), C(x,y), and D(x,y) are defined by (2.25), (2.23), and (2.22), respectively.
Since D(x,y) is a nondecreasing function, then for (X, Y) fixedand 0 < x < X, 0 <y < Y, we have
the following:

1 a(x)  BO)
var(x,y) < DX, Y) + f f(s,0)B(s, t)v(s, H)dtdss. (2.31)
0 0
Take in (2.31) as follows:
x)  BO»)
Jj(x,y) = D(X,Y) + fa f(s,0)B(s, t)v(s, )dtds, (2.32)
0 0
with j(x,0) = j(0,y) = D(X,Y). Then, j(x,y) is a nondecreasing function, and

VI (x,y) < J(X,y). (2.33)

AIMS Mathematics Volume 10, Issue 2, 4120-4138.
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Differentiating (2.32) with respect to x, and using (2.33), we obtain the following:

B(y)
a’(x) f(a(x), ) B(a(x), Hiv(a(x), t)dt
0

B0)
@' ()v(a(x), () , fla(x), NB(a(x), )dt

BO)
@ (%) (a(x), B)) ; S(a(x), )B(a(x), t)dt.

0 .
ECJ(x’y)

IA

IA

The function j(x,y) is positive and nondecreasing, and p,r > 1 are constants; then, j27(x,y) is a
positive and nondecreasing function. Moreover, we have a(x) < x,8(y) < y; then, j*7 (a(x),B(y)) <
7¥P(x,y), so the last inequality can be rephrased as follows:

0 ) 5 B(y)
a](x,y) < d(0)j7P(x,y) , Sa(x), )B(a(x), t)dt.

Therefore, ,
= j(x, B)
T feo ) <d'(x) f(a(x), )B(a(x), t)dt.
J7P(x,y) 0
Since ,
Lixky) 18 .,
?27‘ = _.](1 2 p)(x’y)a
JP(x,y) 1-=2rpox
then,
0 1oy , A)
o) @NzA-2p)a@ | flat, HBlat), Har

Integrating both sides of the last inequality with respect to s from O to x, we obtain the following:

1
1-2rp

a(x)  BO)
Jjx,y) < Dl_z”’(X, +(1- 2rp)f f(s,0)B(s, tdtds ,
0 0

where @ ~BO)
X Yy
D'7P(X,Y) + (1 = 2rp) f f(s,)B(s, t)dtds > 0.
0 0

Since (X, Y) is arbitrary, then,
a(x) ) =2rp
j(x,y) < (D]_Z”’(x, y) + (1 —2rp) f f(s,0)B(s, t)dtds) . (2.34)
0 0

From (2.33), (2.34), (2.26), and (2.28), we obtain the desired result (2.21). O

Theorem 2.2. Assume that m,n, p,q are as in Theorem 2.1, u,n, f,g,h € C(R,,R,), a,fB are as in
Lemma 2.3, and

a(x)  MBO) st
u(x,y) < nlx,y) + j; S f(s,t)(u’"(s,t)+ fo j; g(r, Du*(r, 1)

AIMS Mathematics Volume 10, Issue 2, 4120-4138.
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r [ p
[u(r, D+ f f h(t, o)ul(r, O')dO'dT] dldr) dtds.
0 Jo

Then, for
a(x) )
F'72 0P (x vy + (1 = 2(n + q)p) f f(s,G(s, Hdtds > 0,
0 0

we obtain

a(x)  BO) T=2(n+q)p
u(x,y) < n(x,y) + (F72 07 (x, ) +(1 = 2(n + g)p) f f(s,0G(s, t)dtds) ,
0 0

where

(x) )
F(x,y) = f f(s,)H(s, )dtdss,
0 0

H(x,y) = 27 RP(x,y) + 2/ Q(x, y),
G(x,y) = 2P72NP(x,y) + 22 RP(x, y),

O(s.1) = M(s.t)+2™ lﬂ R B f f (r, D" (r, Dldr

n+gq

L e f f g(r,Dn"(r,1) (f f h(r, O')dO'dT) dldr
n+gq
+2”_1— f f g(r, 1) (n(r, [) + 247! f f h(t, o)n(r, O')dO'dT) dldr
n+gq o Jo

+2" 1‘1(?’1‘:_‘16])_ l)f fg(r Ddldr,

S A
M(s, 1) = 2"’_]7]"’(s,t)+2”_1f fg(r,l)n"(r,l)
0o Jo

r )
X (n(r, [) + 247! f f h(t, oo)ni(t, O')dO'dT) dldr,
0o Jo

1 S !
Ris,r) = 2m 1L yomt f f g(r, D" (r, dldr
n+gq n+qJo Jo
S ! v [
w2 4 f f g(r, D" (r, 1) ( f f h(r, O')dO'dT) didr
n+qJo Jo 0 Jo
X t r [
" f f g0 (n(r, Iy + 247! f f h(t, o)ni(r, O')dO'dT) dldr
n+qJo Jo 0o Jo
_ 1 S !
_+_2n—1(6]+n(n+c]2 ))f fg(r,l)dldr
(n+q) 0 Jo

s t r /
a2 f f g(r, D) ( f f h(r, U)dO'dT) didr,
0 0 0 0

42!

(2.35)

(2.36)

(2.37)

(2.38)
(2.39)

(2.40)

(2.41)

(2.42)
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and

N(s,t) =

2n—1 S !
(:+ e f f g(r, Ddldr.
0 0

Proof. Let in (2.35) as follows:

x)  rBO) s f
Z2(x,y) = fﬂ f(s, 1) (um(s, 1) +f fg(r, Du'(r, 1)
0 0 0o Jo

r / P
[u(r, D+ f f h(t, o)ui(r, O')dO'dT] dldr) dtds,
0 Jo

with z(x,0) = z(0,y) = 0. Then, z(x, y) is a nondecreasing function, and

u(x,y) < n(x,y) +z(x,y).

Using (2.45) in (2.44), and applying Lemma 2.2, we obtain the following:

2(x,y) <

IA

IA

IA

AIMS Mathematics

) )
f: S |27 (" (s, ) + 2(s, 1))

4ol f f g(r, l)(n"(r, D+ 72'(r, l))[n(r, D)+ z(r,])

0 0
r [ p

401 f f h(T, 0—)(,7‘1(7-, o) + Z(t, O'))dO'dT] dldl’] dtds

0 0
x) B
fﬂ £(s, t)[zm‘ln’"(s, fH+ 2m_]z’"(s, 1)
0 0

st fo | fo (g0 Dn"(r. 1) + g(r, D2, D) %

r [ p
+ (z(r, I) + 207! f f h(t, o)Z(r, O')dO'dT)] dldr] dtds
0o Jo

a(x)  ABY) st
f Fls.0|M(s,t) + 272" (s, 1) + 27 f f g(r, D" (r, Dz(r, Ddldr
0 0 0 0

12 fo s fo ' D, D ( fo r fo e, o O')dO'dT)dldr

2! fo S fo t g(r,DZ"(r, 1) (n(r, I+ 247! fo r fo lh(T,O‘)nq(T,O')da'dT)dldr
+2m! fo s fo t g(r, D2 (r, dldr

L2 f f e D) ( f r f e ), O')dO'dT) dldr]pdtds

X B
fw f(s, 1) [M(s 0+ 2" (s, 1) + 2 (s, t)f f g(r, D" (r, Ddldr

12220 ( s ) f f g(r,Day"(r, 1) ( f f h(, a)dadr) dldr

(2.43)

(2.44)

(2.45)

r [
(n(r, [) + 2471 f f h(t, o)ni(r, O')dO'dT)
0o Jo
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S t r [
+2"712(s, 1) f f g(r, 1) (n(r, I) + 247! f f h(T,O’)Uq(T,O')dO'dT)dldr
0o Jo 0o Jo
N t
+2”_1z"+1(s,t)f fg(r, Ddldr
0o Jo
s ¢ r [ p
+2”+q_2z"+q(S,t)f fg(r,l)(f fh(‘r,a')d(ra’r)dldr] dids,
o Jo 0o Jo

where M(s, t) is defined by (2.41).
Let z""9(x,y) = v(x,y) in the last inequality; then, we obtain the following:

. a(x)  MBO) "
vira(x,y) < f f(s, 1) [M(s, r+ 2m_1vm(s, 1)
0 0

S !
+2m Yy (s, 1) f f o(r, Dy (r, Ddldr
0o Jo
s t r [
+2”+‘1_2v"‘+14(s,t)f fg(r,l)n"(r,l)(f fh(T,O')dO’dT)dldr
0o Jo 0o Jo
s t r [
+2"_1vnn+q(s,t)f fg(r,l)(n(r,l)+2q_1f fh(T,(T)nq(T,(T)dO'dT)dldr
0 Jo 0o Jo
S !
+2m i (s, 1) f f o(r, Ddldr
0o Jo
s t r [ p
F2MH2y (s, t)f fg(r, ) (f fh(T,O')dO’dT)dldr] dtds.
0o Jo 0o Jo

Using Lemma 2.1, we have the following:

0 PBO)
v (x, ) fa f(s.1)

4+ !
n+

I Jt -
e

M(s, 1) + 2" 1( v(s, t)+ﬂ)

n+gq

qv(s,t)+n+q ) f f (r, i (r, Ddldr

)f fg(rl)n (r,D)

( f f h(t, O')da'dr)dldr+2" 1( v(s, 1) + —2 )
n+gq

ffg(r,l)(n(r,l)+2q_1f fh(T,O')I]q(T,O')dO'dT)dldl’

0 0 0 0

S !
+2”_1v""+q(s,t)v”iq(s,t)f fg(r,l)dldr

$2M 2y, t)f fg(r )] (f fh(T O')dO'dT)dldr dtds
(x) B
< f F(s,1) [M(s 2t s 4o 4T
0 0 n+ q n+ q
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-1 S t
v(s, t)f f g(r,Dn"(r, hdldr
4o 1””’ f f o(r, D" (r, Ddldr
n+gq
r [
40+q=2 (s, t)f fg(r, D (r, 1) (f fh(‘r, o’)dO‘dT)dldr
n+q 0o Jo 0o Jo
X t r [
1omta-2 n f fg(r’ D' (r, [) (f fh(‘r’ o-)dO'dT)dldr
n+qJo Jo 0o Jo
X ! r [
" v(s, t)f f grn ) (n(r, D+ 2q_1f f h(t, o)ni(r, O')dO'dT) dldr
+2m! f f g(r,D) (n(r D+20"! f f h(r, on(x, U)dUdT)dldr
n+gq
+2"1( Vs, 1)+ )( v(s, ”+q_ )ff g(r, Ddldr
n+gq n+ql)\n+gq
$2M 2y, t)f fg(r ) (f fh(T O')dO'dT) dldr

x) MBO) +qg—
f £(s,1) [M(s f) + 2! ’J’: (s, 1)+t LT 4"
0 q

n+ q
+2”1 v(s 1) f f g(r, D" (r, Ddldr

(R f f e(r, D (r, Dldr
n+gq
4nta-2 V(S t)f f g(r, D" (r, ) (f f h(r, O')dO'dT) dldr
+2n+q—2_ f f g(r, l)T]n(l’, )] (f f h(r, o')dO'dT) dldr
n+qJo Jo 0 Jo
X 1 r [
" v(s, t)f f g(r, 1) (n(r, I)+ 247! f f h(t, o)ni(r, O')dO'dT) dldr
421 f f g(r0) (n(r I)+ 247! f f h(t, o)ni(r, O')dO'dT) dldr
n+gq

2n1( s+ ( q +n(n+q— ))( t)+q(n+q—1))
(n+q)° (n+q)° (n+q)° (n+q)°

s t s t r [ p
f f g(r, dldr + 2" 72y(s, 1) f f g(r, 1) (f f h(r, O')dO'dT) dldr] dtds.
0 Jo 0o Jo 0o Jo

+2”‘1

dtds

IA

+2”‘1

Then,

. a(x)  AB(Y) »
Vi (X, y) < f f £(5.0[QCs. 1) + R(s.)v(s, 1) + N(s, 00 (s, )| dtds,
0 0
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or
a(x)  BO) g
v(x,y) < [ f £(5.0[Q(s,0) + R(s, )v(s, 1) + N(s, )V (s, t)]pdtds] : (2.46)
0 0

where N(s, 1), R(s, t), and Q(s, 1) are defined by (2.43), (2.42), and (2.40), respectively.

By applying Lemma 2.4 with a(x,y) = 0, f(s, ) instead of b(s, 1), N(s, t) instead of c(s, t), R(s, 1)
instead of d(s,t), Q(s,t) instead of e(s, ), and n + g > 1 instead of r > 1 to (2.46), we obtain the
following:

n+q

(x) B =2(n1+q)p
v(x,y) < (Fl_z(”“m’(x, y)+ (1 =21+ q)p) fi f(s,HG(s, t)dtds) . (2.47)
0 0

Finally, using (2.45), (2.47), and the fact that 7"*%(x,y) = v(x,y), we obtain (2.36) and the proof is
complete. O

Remark 2.2. Inequality (2.35) enhances the results found in [1, 13, 15, 16] by introducing a more
general bidimensional nonlinear context.

Remark 2.3. Note that Theorems 2.1 and 2.2 generalize the results obtained in [1, 15], which were
proven in the case p = 1. Additionally, they generalize the findings from [13, 14] in the case p € (0, 1],
and they provide a generalization of the findings from [8, 16] in the case p > 1.

3. Application

In this section, we apply our results to study the boundedness of the solution of a retarded integral
equation of a bidimensional Volterra type, which arises in various problems.

Example 3.1. We consider the following retarded integral equation of Volterra type:

a(x)  B(Y) a(x)  B(Y) st
x(x,y) + f F(s.0x (s, n)deds + f f(s.0) ( f f g(r, DY (r, Ddldr
0 0 0 0 0 0

X t r / 3 2
+ f f gDy D) ( f f h(r, o), O')dO'dT) dldr) dids = c(x,y), 3.1)
0 0 0 0

where y, f, g, h, and ¢ be continuous functions on R, and produces the following result.

Theorem 3.1. Let « (x) and 5(y) be continuous, differentiable, and nondecreasing functions on [0, +o0)
with @ (x) < x, and B(y) < y. If x(x,y) satisfies (3.1), and for

(x) ()
I7B(x,y) - 13 x 2" f f | (s, )| R*(s, H)dtds > 0,
0 0

we have

_L
3

a(x) ()
(x| < eyl + [P0 y) - 13 x 212 f f " s DI R, deds| 3.2)
0 0
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then,
a(x)  B)
I(x,y) = f f |£(s, )| N*(s, t)dtds,
0 0
N(s,t) = M(s, t)+— fflg(r Dl c*(r, l)(l+ff|h(7’ O')IdO'dT) dldr
24
+—ff|g(r,l)|(|c(r,l)|+f f|h(‘l’,0’)| IC(T,O')IdO'dT) dldr,
T Jo Jo 0 Jo
M(s,H) = 4|c’(s,0)|+8 f S f lg(r, D ¢*(r, 1)
0o Jo
r [ 3
X(Ic(r,l)|+ff|h(r,0')| IC(T,O')IdO'dT) dldr,
0 Jo
and

R(s, 1) = 12 24ff|g(r D] c*(r, l)(1+f f|h(‘l’ O')IdO'dT) dldr
+—fflg(r,l)l(lc(r,l)|+fflh(‘r,o')l |c(‘r,o')|do'd‘r) dldr
7 Jo Jo 0 Jo
S ! r / 3
+8ff|g(l’,l)|(1+ff|h(7’,0‘)|d0‘d‘l‘) dldr.
0 Jo 0 Jo

Proof. By using Lemma 2.2 on the left hand side of (3.1), we obtain the following:

a(x)  BO) st
xn+ [ £, (f(s, D+ ( [ e
0 0 0o Jo
r / 3 2
X X7(r’ D +X4(r, ) (f f h(t, o) (7, O')dO'dT) )dldr) ]dtds
a(x)  BK)
ey s [ [ as t)()( (s,0)) (f fg(r D
()( (r,) +x () (f f h(t, o)x(T, O')dO'dT) )dldr) ]dtds
1 (oW ) s
X(x%y) + 5 f fs,0) [X3(s, 1+ f f g(r,D)
0 0 0 Jo
r / 3 2
X (X7(H I) +)(4(r, D) (f f h(t, o)x(T, O')dO'dT) )dldr
0o Jo

1 a(x)  BY) 1 s ¢
X, y) + = f f(s,1) [)(3(SJ)+— f f g(r, D (r, 1)
2 0 0 4 0 0

Y

dtds

Y

(3.3)

(3.4)

(3.5)

(3.6)
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X

r [ 3 2
2? ()( S, D) + ( f f h(r, o)x(t, O')dO'dT) H dldr] dtds
o Jo

1 a(x)  MB() s s .
2 X(X7y)+§f(; f(S,t)[)(‘(S,t)"‘fO‘ng(r,l))( (r’l)

0

3

2
X dldr} dtds.

r [
x(r, D) + f f h(r, o)y (1, o)dodr
o Jo

From (3.1) and the last inequality, we obtain the following:

1 @ B s
x(xy) < c(x,y)——f Sf(s,1) [){3(s,t)+f f —g(r, Dy (r, 1)
2 Jo 0 0 Jo 4

3

2
X dldr] dtds.

r [
x(r, D)+ f f h(t, o)y (1, 0)dodr
0o Jo

Therefore,

') BO) |
(el < IC(x,y)|+f(: fo Elf(s,t)l[Lf(s,t)l

S ! r ] 3 2
¢ [ [ Jsowien [I)((r,l)|+ [ [ won Ix(T,O')Ida'dT] dldr] drds.
0 0 0 0

Then, an application of Theorem 2.1 to the last inequality yields (3.2), and the proof is complete. O
4. Conclusions

Integral inequalities play a robust role in the development of mathematical sciences. Most
integral inequalities are useful to study the qualitative properties of solutions to differential and integral
equations. The Gronwall-Bellman inequality plays a considerable role in the study of qualitative
properties of the solutions of certain differential equations. This inequality has attracted and continues
to attract considerable attention in the literature. Recently, many authors have been interested in
generalizing the Gronwall-Bellman inequality to other forms such as nonlinear integral inequalities
with a delay, of the Volterra-Fredholm type, and nonlinear retarded integral inequalities with power.
Following this trend and to develop the study of integral inequalities, we proved some new nonlinear
integral inequalities with power in two variables, which generalized certain results given in [1,8,13-16]
in a more general context. The obtained results can be employed to study the boundedness and
uniqueness of solutions of some integral equation with power. As an application, an illustrative
example was presented to study the boundedness of solution.
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