In the pursuit of personalized medicine, there is a growing demand for computational models with parameters that are easily obtainable to accelerate the development of potential solutions. Blood tests, owing to their affordability, accessibility, and routine use in healthcare, offer valuable biomarkers for assessing hemostatic balance in thrombotic and bleeding disorders. Incorporating these biomarkers into computational models of blood coagulation is crucial for creating patient-specific models, which allow for the analysis of the influence of these biomarkers on clot formation. This systematic review aims to examine how clinically relevant biomarkers are integrated into computational models of blood clot formation, thereby advancing discussions on integration methodologies, identifying current gaps, and recommending future research directions. A systematic review was conducted following the PRISMA protocol, focusing on ten clinically significant biomarkers associated with hemostatic disorders: D-dimer, fibrinogen, Von Willebrand factor, factor Ⅷ, P-selectin, prothrombin time (PT), activated partial thromboplastin time (APTT), antithrombin Ⅲ, protein C, and protein S. By utilizing this set of biomarkers, this review underscores their integration into computational models and emphasizes their integration in the context of venous thromboembolism and hemophilia. Eligibility criteria included mathematical models of thrombin generation, blood clotting, or fibrin formation under flow, incorporating at least one of these biomarkers. A total of 53 articles were included in this review. Results indicate that commonly used biomarkers such as D-dimer, PT, and APTT are rarely and superficially integrated into computational blood coagulation models. Additionally, the kinetic parameters governing the dynamics of blood clot formation demonstrated significant variability across studies, with discrepancies of up to 1, 000-fold. This review highlights a critical gap in the availability of computational models based on phenomenological or first-principles approaches that effectively incorporate affordable and routinely used clinical test results for predicting blood coagulation. This hinders the development of practical tools for clinical application, as current mathematical models often fail to consider precise, patient-specific values. This limitation is especially pronounced in patients with conditions such as hemophilia, protein C and S deficiencies, or antithrombin deficiency. Addressing these challenges by developing patient-specific models that account for kinetic variability is crucial for advancing personalized medicine in the field of hemostasis.
Citation: Mohamad Al Bannoud, Tiago Dias Martins, Silmara Aparecida de Lima Montalvão, Joyce Maria Annichino-Bizzacchi, Rubens Maciel Filho, Maria Regina Wolf Maciel. Integrating biomarkers for hemostatic disorders into computational models of blood clot formation: A systematic review[J]. Mathematical Biosciences and Engineering, 2024, 21(12): 7707-7739. doi: 10.3934/mbe.2024339
[1] | Ning He, Hongmei Jin, Hong'an Li, Zhanli Li . A global optimization generation method of stitching dental panorama with anti-perspective transformation. Mathematical Biosciences and Engineering, 2023, 20(9): 17356-17383. doi: 10.3934/mbe.2023772 |
[2] | Duolin Sun, Jianqing Wang, Zhaoyu Zuo, Yixiong Jia, Yimou Wang . STS-TransUNet: Semi-supervised Tooth Segmentation Transformer U-Net for dental panoramic image. Mathematical Biosciences and Engineering, 2024, 21(2): 2366-2384. doi: 10.3934/mbe.2024104 |
[3] | Shuai Cao, Biao Song . Visual attentional-driven deep learning method for flower recognition. Mathematical Biosciences and Engineering, 2021, 18(3): 1981-1991. doi: 10.3934/mbe.2021103 |
[4] | Fang Zhu, Wei Liu . A novel medical image fusion method based on multi-scale shearing rolling weighted guided image filter. Mathematical Biosciences and Engineering, 2023, 20(8): 15374-15406. doi: 10.3934/mbe.2023687 |
[5] | Xiao Zou, Jintao Zhai, Shengyou Qian, Ang Li, Feng Tian, Xiaofei Cao, Runmin Wang . Improved breast ultrasound tumor classification using dual-input CNN with GAP-guided attention loss. Mathematical Biosciences and Engineering, 2023, 20(8): 15244-15264. doi: 10.3934/mbe.2023682 |
[6] | Zhijing Xu, Jingjing Su, Kan Huang . A-RetinaNet: A novel RetinaNet with an asymmetric attention fusion mechanism for dim and small drone detection in infrared images. Mathematical Biosciences and Engineering, 2023, 20(4): 6630-6651. doi: 10.3934/mbe.2023285 |
[7] | Yong Tian, Tian Zhang, Qingchao Zhang, Yong Li, Zhaodong Wang . Feature fusion–based preprocessing for steel plate surface defect recognition. Mathematical Biosciences and Engineering, 2020, 17(5): 5672-5685. doi: 10.3934/mbe.2020305 |
[8] | Ziyue Wang, Junjun Guo . Self-adaptive attention fusion for multimodal aspect-based sentiment analysis. Mathematical Biosciences and Engineering, 2024, 21(1): 1305-1320. doi: 10.3934/mbe.2024056 |
[9] | Xi Lu, Xuedong Zhu . Automatic segmentation of breast cancer histological images based on dual-path feature extraction network. Mathematical Biosciences and Engineering, 2022, 19(11): 11137-11153. doi: 10.3934/mbe.2022519 |
[10] | Hui Yao, Yuhan Wu, Shuo Liu, Yanhao Liu, Hua Xie . A pavement crack synthesis method based on conditional generative adversarial networks. Mathematical Biosciences and Engineering, 2024, 21(1): 903-923. doi: 10.3934/mbe.2024038 |
In the pursuit of personalized medicine, there is a growing demand for computational models with parameters that are easily obtainable to accelerate the development of potential solutions. Blood tests, owing to their affordability, accessibility, and routine use in healthcare, offer valuable biomarkers for assessing hemostatic balance in thrombotic and bleeding disorders. Incorporating these biomarkers into computational models of blood coagulation is crucial for creating patient-specific models, which allow for the analysis of the influence of these biomarkers on clot formation. This systematic review aims to examine how clinically relevant biomarkers are integrated into computational models of blood clot formation, thereby advancing discussions on integration methodologies, identifying current gaps, and recommending future research directions. A systematic review was conducted following the PRISMA protocol, focusing on ten clinically significant biomarkers associated with hemostatic disorders: D-dimer, fibrinogen, Von Willebrand factor, factor Ⅷ, P-selectin, prothrombin time (PT), activated partial thromboplastin time (APTT), antithrombin Ⅲ, protein C, and protein S. By utilizing this set of biomarkers, this review underscores their integration into computational models and emphasizes their integration in the context of venous thromboembolism and hemophilia. Eligibility criteria included mathematical models of thrombin generation, blood clotting, or fibrin formation under flow, incorporating at least one of these biomarkers. A total of 53 articles were included in this review. Results indicate that commonly used biomarkers such as D-dimer, PT, and APTT are rarely and superficially integrated into computational blood coagulation models. Additionally, the kinetic parameters governing the dynamics of blood clot formation demonstrated significant variability across studies, with discrepancies of up to 1, 000-fold. This review highlights a critical gap in the availability of computational models based on phenomenological or first-principles approaches that effectively incorporate affordable and routinely used clinical test results for predicting blood coagulation. This hinders the development of practical tools for clinical application, as current mathematical models often fail to consider precise, patient-specific values. This limitation is especially pronounced in patients with conditions such as hemophilia, protein C and S deficiencies, or antithrombin deficiency. Addressing these challenges by developing patient-specific models that account for kinetic variability is crucial for advancing personalized medicine in the field of hemostasis.
Dedicated to Professor Neil S. Trudinger on occasion of his 80th birthday.
One classical problem in convex geometry is the Minkowski problem, which is to find convex hypersurfaces in Rn+1 whose Gaussian curvature is prescribed as a function defined on Sn in terms of the inverse Gauss map. It has been settled by the works of Minkowski [23], Alexandrov [1], Fenchel and Jessen [28], Nirenberg [25], Pogorelov [26], Cheng and Yau [3], etc.. In smooth catagory, the Minkowski problem is equivalent to solve following Monge-Ampère equation
det(∇2u+ugSn)=fonSn, |
where u is the support function of the convex hypersurface, ∇2u+ugSn the spherical Hessian matrix of the function u. If we take an orthonormal frame on Sn, the spherical Hessian of u is Wu(x):=uij(x)+u(x)δij, whose eigenvalues are actually the principal radii of the hypersurface.
The general problem of finding a convex hypersurface, whose k-th symmetric function of the principal radii is the prescribed function on its outer normals for 1≤k<n, is often called the Christoffel-Minkowski problem. It corresponds to finding convex solutions of the nonlinear Hessian equation
σk(Wu)=fonSn. |
This problem was settled by Guan et al [14,15]. In [16], Guan and Zhang considered a mixed Hessian equation as follows
σk(Wu(x))+α(x)σk−1(Wu(x))=k−2∑l=0αl(x)σl(Wu(x)),x∈Sn, | (1.1) |
where α(x),αl(x)(0≤l≤k−1) are some functions on Sn. By imposing some group-invariant conditions on those coefficient's functions as in [11], the authors proved the existence of solutions.
Let M be a hypersurface of Euclidean space Rn+1 and M=graphu in a neighbourhood of some point at which we calculate. Let A be the second fundamental form of M, λ(A)=(λ1,⋯,λn)∈Rn the eigenvalues of A with respect to the induced metric of M⊂Rn+1, i.e., the principle curvatures of M, and σk(λ) the k-th elementary symmetric function, σ0(λ)=1. It is natural to study the prescribing curvature problems on this aspect. In 1980s, Caffarelli, Nirenberg and Spruck studied the prescribing Weingarten curvature problem. The problem is equivalent to solve the following equation
σk(λ)(X)=f(X),X∈M. |
When k=n, the problem is just the Minkowski problem; when k=1, it is the prescribing mean curvature problem, c.f. [30,33]. The prescribing Weingarten curvature problem has been studied by many authors, we refer to [2,9,11,12,13,29,37] and references therein for related works. Recently, Zhou [36] generalised above mixed prescribed Weingarten curvature equation. He obtained interior gradient estimates for
σk(A)+α(x)σk−1(A)=k−2∑l=0αl(x)σl(A),x∈Br(0)⊂Rn | (1.2) |
where σk(A):=σk(λ(A)), and the coefficients satisfy αk−2>0 and αl≥0 for 0≤l≤k−3.
Mixed Hessian type of equations arise naturally from many important geometric problems. One example is the so-called Fu-Yau equation arising from the study of the Hull-Strominger system in theoretical physics, which is an equation that can be written as the linear combination of the first and the second elementary symmetric functions
σ1(i∂ˉ∂(eu+α′e−u))+α′σ2(i∂ˉ∂u)=ϕ | (1.3) |
on n-dimensional compact Kähler manifolds. There are a lot of works related to this equation recently, see [6,7,27] for example. Another important example is the special Lagrangian equations introduced by Harvey and Lawson [18], which can be written as the alternative combinations of elementary symmetric functions
sinθ([n2]∑k=0(−1)kσ2k(D2u))+cosθ([n−12]∑k=0(−1)kσ2k+1(D2u))=0. |
This equation is equivalent to
F(D2u):=arctanλ1+⋯+arctanλn=θ |
where λi's are the eigenvalues of D2u. It is called supercritical if θ∈((n−2)π2,nπ2) and hypercritical if θ∈((n−1)π2,nπ2). The Lagrangian phase operator F is concave for the hypercritical case and has convex level sets for the supercritical case, while in general F fails to be concave. For subcritical case, i.e., 0≤θ<(n−2)π2, solutions of the special Lagrangian equation can fail to have interior estimates [24,35]. Jacob-Yau [20] initiated to study the deformed Hermitian Yang-Mills (dHYM) equation on a compact Kähler manifold (M,ω):
Re(χu+√−1ω)n=cotθ0Im(χu+√−1ω)n, |
where χ is a closed real (1,1)-form, χu=χ+√−1∂ˉ∂u, and θ0 is the angles of the complex number ∫M(χ+√−1ω)n, u is the unknown real smooth function on M. Jacob-Yau showed that dHYM equation has an equivalent form of special Lagrangian equation. Collins-Jacob-Yau [5] solved the dHYM equation by continuity method and Fu-Zhang [8] gave an alternative approach by dHYM flow, both of which considered in the supercritical case. For more results concerning about dHYM equation and special Lagrangian equation, one can consult Han-Jin [17], Chu-Lee [4] and the references therein. Note that for n=3 and hypercritical θ∈(π,3π2), the special Lagrangian equation (1.3) is
σ3(D2u)+tanθσ2(D2u)=σ1(D2u)+tanθσ0(D2u) |
which is included in (1.1).
In this paper we derive interior curvature bounds for admissible solutions of a class of curvature equations subject to affine Dirichlet data. Let Ω be a bounded domain in Rn, and let u∈C4(Ω)∩C0,1(ˉΩ) be an admissible solution of
{σk(λ)+g(x,u)σk−1(λ)=k−2∑l=0αl(x,u)σl(λ)inΩ,u=ϕon∂Ω, | (1.4) |
where g(x,u) and αl(x,u)>0, l=0,1,⋯,k−2, are given smooth functions on ˉΩ×R and ϕ is affine, λ=(λ1,⋯,λn) is the vector of the principal curvatures of graph u. u is the admissible solution in the sense that λ∈Γk for points on the graph of u, with
Γk={λ∈Rn|σ1(λ)>0,⋯,σk(λ)>0}. |
For simplicity we denote F=Gk−∑k−2l=0αlGl and Gl=σl(λ)/σk−1(λ) for l=0,1,⋯,k−2,k. The ellipticity and concavity properties of the operator F have been proved in [16]. Our main result is as follows.
Theorem 1.1. Assume that for every l (0≤l≤k−2), αl,g∈C1,1(ˉΩ×R), αl>0, and g>0 or g<0. ϕ is affine in (1.4). For any fixed β>0, if u∈C4(Ω)∩C0,1(ˉΩ) is an admissible solution of (1.4), then there exists a constant C, depending only on n,k,β,||u||C1(ˉΩ),αl,g and their first and second derivatives, such that the second fundamental form A of graph u satisfies
|A|≤C(ϕ−u)β. |
Remark 1.1. Comparing with [16], here we require g>0 or g<0 additionally. Also our curvature estimates still hold if αl≡0 for some 0≤l≤k−2. More over, if αl≡0 for all l=0,1,⋯,k−2, Eq (1.4) becomes the Hessian quotient equation and the results can be followed from [29].
To see that this is an interior curvature estimate, we need to verify that ϕ−u>0 on Ω. We apply the strong maximum principle for the minimal graph equation. Since ϕ is affine, it satisfies the following minimal graph equation
Qu:=(1+|Du|2)△u−uiujuij=nH(1+|Du|2)32=0onΩ. |
Since u is k-admissible solution, and n≥k≥2, graph of u is mean-convex and Qu>Qϕ=0. By the comparison principle for quasilinear equations (Theorem 10.1 in [10]), we then have ϕ>u on Ω.
The main application of the curvature bound of Theorem 1.1 is to extend various existence results for the Dirichlet problem for curvature equations of mixed Hessian type.
Theorem 1.2. Let Ω be a bounded domain in Rn, let αl,g∈C1,1(ˉΩ×R) satisfying inf|g|>0, ∂ug(x,u)≤0, αl>0 and ∂uαl(x,u)≥0. Suppose there is an admissible function u_∈C2(Ω)∩C0,1(ˉΩ) satisfying
F[u_]≥−g(x,u_)inΩ,u_=0on∂Ω. | (1.5) |
Then the problem
F[u]=−g(x,u)inΩ,u=0on∂Ω. | (1.6) |
has a unique admissible solution u∈C3,α(Ω)∩C0,1(ˉΩ) for all α∈(0,1).
Remark 1.2. ∂ug≤0, ∂uαl(x,u)≥0 and the existence of sub-solutions are required in the C0 estimate. The C1 interior estimate is a slightly modification of the result in Theorem 5.1.1 [36] since the coefficients g, αl of (1.2) are independent of u. We use conditions ∂ug≤0 and ∂uαl(x,u)≥0 again to eliminate extra terms in the C1 estimate.
As a further application of the a priori curvature estimate we also consider a Plateau-type problem for locally convex Weingarten hypersurfaces. Let Σ be a finite collection of disjoint, smooth, closed, codimension 2 submanifolds of Rn+1. Suppose Σ bounds a locally uniformly convex hypersurface M0 with
f(n)(λ0):=σnσn−1(λ0)−n−2∑l=0αlσlσn−1(λ0)≥c, |
where λ0=(λ01,⋯,λ0n) are the principal curvatures of M0 and αl's are positive constants, c≠0 is a constant. Is there a locally convex hypersurface M with boundary Σ and f(n)(λ)=c, where λ=(λ1,⋯,λn) are the principal curvatures of M?
Theorem 1.3. Let Σ, f(n)(λ) be as above. If Σ bounds a locally uniformly convex hypersurface M0 with f(n)(λ0)≥c at each point of M0. Then Σ bounds a smooth, locally convex hypersurface M with f(n)(λ)=c at each point of M.
We compute using a local orthonormal frame field ˆe1,⋯,ˆen defined on M= graph u in a neighbourhood of the point at which we are computing. The standard basis of Rn+1 is denoted by e1,⋯,en+1. Covariant differentiation on M in the direction ˆei is denoted by ∇i. The components of the second fundamental form A of M in the basis ˆe1,⋯,ˆen are denoted by (hij). Thus
hij=⟨Dˆeiˆej,ν⟩, |
where D and ⟨⋅,⋅⟩ denote the usual connection and inner product on Rn+1, and ν denotes the upward unit normal
ν=(−Du,1)√1+|Du|2. |
The differential equation in (1.4) can then be expressed as
F(A,X)=−g(X). | (2.1) |
As usual we denote first and second partial derivatives of F with respect to hij by Fij and Fij,rs. We assume summation from 1 to n over repeated Latin indices unless otherwise indicated. Following two lemmas are similar to the ones in [29] with minor changes, so we omit the proof.
Lemma 2.1. The second fundamental form hab satisfies
Fij∇i∇jhab=−Fij,rs∇ahij∇bhrs+Fijhijhaphpb−Fijhiphpjhab−∇a∇bg+k−2∑l=0(∇aαl∇bGl+∇bαl∇aGl)+k−2∑l=0∇a∇bαl⋅Gl. |
Lemma 2.2. For any α=1,⋯,n+1, we have
Fij∇i∇jνα+Fijhiphpjνα=⟨∇g,eα⟩−k−2∑l=0⟨∇αl,eα⟩Gl. |
Lemma 2.3. There is a constant C>0, depending only on n,k,infαl,|g|C0, so that for any l=0,1,⋯,k−2,
|Gl|≤C. |
Proof. Proof by contradiction. If the result is not true, then for any integer i, there is an admissible solution u(i), a point x(i)∈Ω and an index 0≤l(i)≤k−2, so that
σl(i)σk−1(λ[u(i)])>iatx(i). |
By passing to a subsequence, we may assume l(i)→l∞ and x(i)→x∞∈ˉΩ as i→+∞. Therefore
limi→+∞σl∞σk−1(λ[u(i)])(x(i))=+∞, |
or we may simply write σl∞σk−1→+∞ if no ambiguilty arises. Since αl∞>0, and g is bounded, by (1.4) we have σkσk−1→+∞. For i large enough, σk>0. By Newton-MacLaurin inequalities, we have
σl∞σk−1=σl∞σl∞+1⋯σk−2σk−1≤C(σk−1σk)k−1−l∞→0. |
We therefore get a contradiction.
Proof of Theorem 1.1. Here the argument comes from [29]. Let η=ϕ−u. η>0 in Ω. For a function Φ to be chosen and a constant β>0 fixed, we consider the function
˜W(X,ξ)=ηβ(expΦ(νn+1))hξξ |
for all X∈M and all unit vector ξ∈TXM. Then ˜W attains its maximum at an interior point X0∈M, in a direction ξ0∈TX0M which we may take to be ˆe1. We may assume that (hij) is diagonal at X0 with eigenvalues λ1≥λ2≥⋯≥λn. Without loss of generality we may assume that the ˆe1,⋯,ˆen has been chosen so that ∇iˆej=0 at X0 for all i,j=1,⋯,n. Let τ=ˆe1. Then W(X)=˜W(X,τ) is defined near X0 and has an interior maximum at X0. Let Z:=habτaτb. By the special choice of frame and the fact that hij is diagonal at X0 in this frame, we can see that
∇iZ=∇ih11and∇i∇jZ=∇i∇jh11atX0 |
Therefore the scalar function Z satisfies the same equation as the component h11 of the tensor hij. Thus at X0, we have
∇iWW=β∇iηη+Φ′∇iνn+1+∇ih11h11=0 | (2.2) |
and
∇i∇jWW−∇iW∇jWW2=β(∇i∇jηη−∇iη∇jηη2)+Φ″∇iνn+1∇jνn+1+Φ′∇i∇jνn+1+∇i∇jh11h11−∇ih11∇jh11h211 | (2.3) |
is nonpositive in the sense of matrices at X0. By Lemmas 2.1 and 2.2, we have, at X0,
0≥βFij(∇i∇jηη−∇iη∇jηη2)+Φ″Fij∇iνn+1∇jνn+1−(Φ′νn+1+1)Fijhiphpj+Fijhijh11−∇1∇1gh11+Φ′⟨∇g,en+1⟩−1h11Fij,rs∇1hij∇1hrs−Fij∇ih11∇jh11h211−k−2∑l=0Φ′⟨∇αl,en+1⟩σlσk−1+k−2∑l=01h11(2∇1αl⋅∇1σlσk−1+∇1∇1αl⋅σlσk−1). | (2.4) |
Using Gauss's formula
∇i∇jXα=hijνα, |
we have
∇1∇1g(X)=n+1∑α=1∂g∂Xα∇1∇1Xα+n+1∑α,β=1∂2g∂Xα∂Xβ∇1Xα∇1Xβ=n+1∑α=1∂g∂Xαναh11+n+1∑α,β=1∂2g∂Xα∂Xβ∇1Xα∇1Xβ. |
Consequently,
|∇1∇1gh11|≤C. |
For the same reason, we have for all l=0,⋯,k−2,
|∇1∇1αlh11|≤C. |
Taking Lemma 2.3 into count, we estimate the two terms in the last line of (2.4) as
−k−2∑l=0Φ′⟨∇αl,en+1⟩σlσk−1+k−2∑l=01h11∇1∇1αl⋅σlσk−1≥−C|Φ′|−C. |
Recall that F=Gk−∑αlGl and it is well-known that the operator (σk−1σl)1k−1−l is concave for 0≤l≤k−2. It follows that
(1Gl)1k−1−lisaconcaveoperatorfor∀l=0,1,⋯,k−2. |
For any symmetric matrix (Bij)∈Rn×n, we have
{(1Gl)1k−1−l}ij,rsBijBrs≤0. |
Direct computation shows that
Gij,rslBijBrs≥1Gl⋅k−lk−1−l⋅(GijlBij)2. |
Note that Gk is also a concave operator.
−1h11Fij,rs∇1hij∇1hrs+k−2∑l=02h11∇1αl⋅∇1σlσk−1=−1h11Gij,rsk∇1hij∇1hrs+k−2∑l=0αlh11Gij,rsl∇1hij∇1hrs+k−2∑l=02h11∇1αl⋅∇1σlσk−1≥1h11k−2∑l=0G−1lαlCl(∇1Gl+∇1αlClαlGl)2−1h11k−2∑l=0(∇1αl)2ClαlGl≥−Ch11 |
where Cl=k−lk−1−l. By the homogeneity of Gl's, we see that
Fijhij=Gk+k−2∑l=0αl(k−1−l)Gl≥Gk+k−2∑l=0αlσlσk−1≥inf|g|>0. |
Using Lemma 2.3 again, we have
Fijhij≤C. |
Next we assume that ϕ has been extended to be constant in the en+1 direction.
∇i∇jη=n∑α,β=1∂2ϕ∂Xα∂Xβ∇iXα∇jXβ+n∑α=1∂ϕ∂Xα∇i∇jXα−∇i∇jXn+1=n∑α=1∂ϕ∂Xαναhij−hijνn+1. |
Consequently,
Fij∇i∇jη=(n∑α=1∂ϕ∂Xανα−νn+1)Fijhij. |
Using above estimates in (2.4), we have, at X0,
0≥−Cβη−βFij∇iη∇jηη2+Φ″Fij∇iνn+1∇jνn+1−Fij∇ih11∇jh11h211−(Φ′νn+1+1)Fijhiphpj+inf|g|h11−C(1+|Φ′|). | (2.5) |
Next, using (2.2), we have
Fij∇ih11∇jh11h211=Fij(β∇iηη+Φ′∇iνn+1)(β∇jηη+Φ′∇jνn+1)≤(1+γ−1)β2Fij∇iη∇jηη2+(1+γ)(Φ′)2Fij∇iνn+1∇jνn+1 |
for any γ>0. Therefore at X0 we have, since |∇η|≤C,
0≥−Cβη−C[β+(1+γ−1)β2]∑ni=1Fiiη2+[Φ″−(1+γ)(Φ′)2]Fij∇iνn+1∇jνn+1−[Φ′νn+1+1]Fijhiphpj+inf|g|h11−C(1+|Φ′|). | (2.6) |
We choose a positive constant a, so that
a≤12νn+1=12√1+|Du|2 |
which depends only on supΩ|Du|. Therefore
1νn+1−a≤1a≤C. |
We now choose
Φ(t)=−log(t−a). |
Then
Φ′(t)=−1t−a,Φ″(t)=1(t−a)2, |
and
−(Φ′t+1)=at−a,Φ″−(1+γ)(Φ′)2=−γ(t−a)2. |
By direct computation, we have ∇iνn+1=−hip⟨ˆep,en+1⟩, and therefore
Fij∇iνn+1∇jνn+1=Fijhiphjq⟨ˆep,en+1⟩⟨ˆeq,en+1⟩≤Fijhiphpj. |
Next we choose 0<γ≤a22, then we have
−(Φ′t+1)+[Φ″−(1+γ)(Φ′)2]=at−a−γ(t−a)2≥12a2(t−a)2>0. |
Thus we have
0≥−Cβη−C(β,a)η−2(n∑i=1Fii)+inf|g|h11−C(a). | (2.7) |
In the following we show that ∑ni=1Fii≤C. By the definition of operator F and Lemma 2.3, we have
n∑i=1Fii=n∑i=1(σkσk−1)ii−n∑i=1k−2∑l=0αl(σlσk−1)ii=n∑i=1σk−1(λ|i)σk−1−σkσ2k−1n∑i=1σk−2(λ|i)+α0σ2k−1n∑i=1σk−2(λ|i)+k−2∑l=1αl∑iσlσk−2(λ|i)−∑iσk−1σl−1(λ|i)σ2k−1=n−k+1−(n−k+2)σkσk−2σ2k−1+(n−k+2)α0σk−2σ2k−1+k−2∑l=1αl(n−k+2)σlσk−2−(n−l+1)σk−1σl−1σ2k−1≤n−k+1+(n−k+2)|σkσk−1Gk−2|+(n−k+2)|α0|C0|Gk−2G0|+(n−k+2)|Gk−2|k−2∑l=1|αl|C0|Gl|. |
From Eq (1.4) we have |Gk|≤C, therefore ∑iFii≤C. At X0, we get an upper bound
λ1≤C(β,a)η2. |
Consequently, W(X0) satisfies an upper bound. Since W(X)≤W(X0), we get the required upper bound for the maximum principle curvature. Since λ∈Γk and n≥k≥2, u is at least mean-convex and
n∑i=1λi>0. |
Therefore λn≥−(n−1)λ1 and
|A|=√n∑i=1λ2i≤C(n)λ1≤C(ϕ−u)β. |
In this section we prove Theorem 1.2. By comparison principle, we have 0≥u≥u_. For any Ω′⋐, \inf_{\Omega'}\underline{u}\leq u\leq c(\Omega') < 0 . First we show the gradient bound of admissible solutions of (1.6). We need following lemmas to prove the gradient estimate.
Lemma 3.1. Suppose A = \{a_{ij}\}_{n\times n} satisfies \lambda(A)\in\Gamma_{k-1} , a_{11} < 0 and \{a_{ij}\}_{2\leq i, j\leq n} is diagonal, then
\begin{equation} \sum\limits_{i = 2}^n\frac{\partial F}{\partial a_{1i}}a_{1i}\leq 0. \end{equation} | (3.1) |
Proof. Let
\begin{equation*} B = \left( \begin{array}{cccc} a_{11} & 0 & \cdots & 0\\ 0 & a_{22} & \ldots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 &\cdots &a_{nn} \end{array} \right), \quad C = \left( \begin{array}{cccc} 0 & a_{12} & \cdots & a_{1n}\\ a_{21} & 0 & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ a_{n1} & 0 &\cdots & 0 \end{array} \right). \end{equation*} |
A(t): = B+tC , f(t): = F(A(t)) . Suppose a_{1i} = a_{i1} for all 2\leq i\leq n . Directly we have
\sigma_k(A(t)) = \sigma_k(B)-t^2\sum\limits_{i = 2}^n a_{1i}^2\sigma_{k-2}(B|1i), |
where (B|ij) is the submatrix of B formed by deleting i -th, j -th rows and columns. Easily we see that for t\in[-1, 1] , \lambda(A(t))\in\Gamma_{k-1} and f is concave on [-1, 1] . f(-1) = f(1) = F(A) . So f'(1)\leq 0 . While
f'(1) = 2\sum\limits_{i = 2}^n\frac{\partial F}{\partial a_{1i}}a_{1i}. |
Remark 3.1. By the concavity of \frac{\sigma_k}{\sigma_{k-1}} , we can prove following inequality with \lambda(B)\in\Gamma_{k-1}
\begin{equation} \sigma_{k-2}(B|1i)\sigma_{k-1}(B)-\sigma_{k-3}(B|1i)\sigma_k(B)\geq 0\quad \forall 2\leq i\leq n. \end{equation} | (3.2) |
We let f(t) = \frac{\sigma_{k}}{\sigma_{k-1}}(A(t)) .
f'(1) = \frac{-2(\sum_{i = 2}^na_{1i}\sigma_{k-2}(B|1i))}{\sigma_{k-1}(A)}-\frac{\sigma_k(A)(\sum_{i = 2}^n a_{1i}^2\sigma_{k-3}(B|1i))}{\sigma_{k-1}^2(A)}\leq 0. |
Equivalently,
\begin{equation} \sigma_{k-1}(B)\big(\sum\limits_{i = 2}^na_{1i}^2\sigma_{k-2}(B|1i)\big)-\sigma_{k}(B)\big(\sum\limits_{i = 2}^na_{1i}^2\sigma_{k-3}(B|1i)\big)\geq 0. \end{equation} | (3.3) |
We can choose a_{1i} > 0 small enough and a_{1j} = 0 for j\ne i and 2\leq j\leq n , so that \lambda(A)\in \Gamma_{k-1} . Then (3.3) implies (3.2).
Lemma 3.2. Let \alpha_{k-2} > 0 and \alpha_l\geq 0 for 0\leq l\leq k-3 . Suppose symmetric matrix A = \{a_{ij}\}_{n\times n} satisfying
\lambda(A)\in\Gamma_{k-1}, a_{11} < 0, \;{{{and}}}\, \{a_{ij}\}_{2\leq i,j\leq n}\, {{is\; diagonal}}. |
Then
\begin{equation} \frac{\partial F}{\partial a_{11}}\geq C_0\big(\sum\limits_{i = 1}^n\frac{\partial F}{\partial a_{ii}}\big) \end{equation} | (3.4) |
where C_0 depends on n, k, |u|_{C^0}, |g|_{C^0}, \inf \alpha_{k-2} .
Proof. Note that
\begin{align*} \frac{\partial}{\partial a_{11}}(\frac{\sigma_l}{\sigma_{k-1}}(A)) = &\frac{\sigma_{l-1}(A|1)\sigma_{k-1}(A)-\sigma_l(A)\sigma_{k-2}(A|1)}{\sigma_{k-1}^2(A)}\\ = &\sum\limits_{i = 2}^n\frac{a_{1i}^2}{\sigma_{k-1}^2(A)}[\sigma_{l-2}(A|1i)\sigma_{k-2}(A|1)-\sigma_{l-1}(A|1)\sigma_{k-3}(A|1i)]\\ &+\sigma_{k-1}^{-2}(A)[\sigma_{l-1}(A|1)\sigma_{k-1}(A|1)-\sigma_l(A|1)\sigma_{k-2}(A|1)]. \end{align*} |
For 0\leq l\leq k-2 ,
\frac{\partial}{\partial a_{11}}(\frac{\sigma_l}{\sigma_{k-1}}(A))\leq -C_{n,l}\frac{\sigma_l(A|1)\sigma_{k-2}(A|1)}{\sigma_{k-1}^{2}(A)}. |
As for l = k ,
\frac{\partial}{\partial a_{11}}(\frac{\sigma_k}{\sigma_{k-1}}(A))\geq C_{n,k}\frac{\sigma_{k-1}^2(A|1)}{\sigma_{k-1}^{2}(A)}\geq C_{n,k}. |
Therefore
\frac{\partial F}{\partial a_{11}}\geq C_{n,k}+C_{n,k}\inf\alpha_{k-2}\frac{\sigma_{k-2}^2(A|1)}{\sigma_{k-1}^{2}(A)}. |
Next we compute \sum_{i = 1}^n \frac{\partial F}{\partial a_{ii}} as
\begin{align*} \sum\limits_{i = 1}^n \frac{\partial F}{\partial a_{ii}} = &n-k+1-(n-k+2)\frac{\sigma_k\sigma_{k-2}}{\sigma_{k-1}^2}(A)+(n-k+2)\alpha_0\frac{\sigma_{k-2}}{\sigma_{k-1}^2}(A)\\ &+\sum\limits_{l = 1}^{k-2}\alpha_l\frac{(n-k+2)\sigma_l(A)\sigma_{k-2}(A)-(n-l+1)\sigma_{k-1}(A)\sigma_{l-1}(A)}{\sigma_{k-1}^2(A)}\\ &\leq n-k+1-(n-k+2)\frac{\sigma_{k-2}(A)}{\sigma_{k-1}(A)}(\frac{\sigma_k}{\sigma_{k-1}}(A)-\sum\limits_{l = 0}^{k-2}\alpha_l\frac{\sigma_{l}}{\sigma_{k-1}}(A))\\ &\leq C_{n,k}+C_{n,k}|g|_{C^0}\frac{\sigma_{k-2}}{\sigma_{k-1}}(A)\\ &\leq C(n,k,|g|_{C^0})+C(n,k,|g|_{C^0})(\frac{\sigma_{k-2}}{\sigma_{k-1}}(A))^2\\ &\leq C(n,k,|g|_{C^0})+C(n,k,|g|_{C^0})\frac{\sigma_{k-2}^2(A|1)}{\sigma_{k-1}^2(A)}\\ &\leq C(n,k,|g|_{C^0},\inf\alpha_{k-2})\frac{\partial F}{\partial a_{11}}. \end{align*} |
Lemma 3.3. For any \Omega'\Subset\Omega , there is a constant C depending only on \Omega', n, k, \alpha_l, g and their first derivatives, such that if u is an admissible solution of (1.6), then
|Du|\leq C |
on \Omega' .
Proof. Since we require that \partial_u g\leq 0 and \partial_u\alpha_l\geq 0 , we only need to modify the equation (5.42) in [36] (i.e., (A.6)), where extra terms \sum_{l = 0}^{k-2}\frac{(\alpha_l)_u}{\log u_1}\frac{\sigma_l(A)}{\sigma_{k-1}(A)}-\frac{g_u}{\log u_1} should be included. These terms are all good terms and Zhou's proof will also hold in our case. For reader's convenience, we sketch the proof in the appendix below.
Now we give the proof of Theorem 1.2.
Proof of Thorem 1.2. The theorem can be proved by solving uniformlly elliptic approximating problems.
F_{\epsilon}[u_{\epsilon}] = -g_{\epsilon}(x,u_{\epsilon})\quad {\rm{in}}\,\Omega,\quad\quad u_{\epsilon} = 0\quad {\rm{on}}\,\partial \Omega, |
for \epsilon > 0 small, and \underline{u} is an admissible subsolution for each of the approximating problems. By the comparison principle and Theorem 1.1, the interior gradient estimates in [36](modified), we have uniform C^2 interior estimates for u_{\epsilon} . Then Evans-Krylov's theory, together with Schauder theory, imply uniform estimates for ||u_{\epsilon}||_{C^{3, \alpha}(\Omega')} for any \Omega'\Subset\Omega . Theorem 2 then follows by extracting a suitable subsequence as \epsilon\rightarrow 0 .
In this section we prove Theorem 1.3. The notion of locally convex hypersurface we use is the same as that in [29].
Definition 4.1. A compact, connected, locally convex hypersurface \mathcal{M} (possibly with boundary) in \mathbb{R}^{n+1} is an immersion of an n -dimensional, compact, oriented and connected manifold \mathcal{N} (possibly with boundary) in \mathbb{R}^{n+1} , that is, a mapping T:\mathcal{N}\rightarrow \mathcal{M}\subset\mathbb{R}^{n+1} , such that for any p\in\mathcal{N} there is a neighbourhood \omega_p\subset\mathcal{N} such that
● T is a homeomorphism from \omega_p to T(\omega_p) ;
● T(\omega_p) is a convex graph;
● the convexity of T(\omega_p) agrees with the orientation.
Since \mathcal{M} is immersed, a point x\in\mathcal{M} may be the image of several points in \mathcal{N} . Since \mathcal{M} and \mathcal{N} are compact, T^{-1}(x) consists of only finitely many points. Let r > 0 and x\in\mathcal{M} . For small enough r , T^{-1}(\mathcal{M}\cap B_r^{n+1}(x)) consists of several disjoint open sets U_1, \cdots, U_s of \mathcal{N} such that T|_{U_i} is a homeomorphism of U_i onto T(U_i) for each i = 1, \cdots, s . By an r -neighbourhood \omega_r(x) of x in \mathcal{M} we mean any one of the sets T(U_i) . We say that \omega_r(x) is convex if \omega_r(x) lies on the boundary of its convex hull.
We shall use following lemma (see [32] Theorem A) to prove Theorem 1.3.
Lemma 4.1. Let \mathcal{M}_0\subset B_R(0) be a locally convex hypersurface with C^2 -boundary \partial \mathcal{M}_0 . Suppose that on \partial \mathcal{M}_0 , the principal curvatures \lambda_1^0, \cdots, \lambda_n^0 of \mathcal{M}_0 satisfy
C_0^{-1}\leq \lambda_i^0\leq C_0,\quad i = 1,2,\cdots,n, |
for some C_0 > 0 . Then there exist positive constants r and \alpha , depending only on n, C_0, R and \partial \mathcal{M}_0 , such that for any point p\in\mathcal{M}_0 , each r -neighbourhood \omega_r(p) of p is convex, and there is a closed cone C_{p, \alpha} with vertex p and angle \alpha such that \omega_r(p)\cap C_{p, \alpha} = \{p\} .
Note that for any point p\in\mathcal{M}_0 , if one chooses the axial direction of the cone C_{p, \alpha} as the x_{n+1} -axis, then each \delta -neighbourhood of p can be represented as a graph,
x_{n+1} = u(x),\quad |x|\leq \delta, |
for any \delta < r\sin(\alpha/2) . The cone condition also implies
|Du(x)|\leq C,\quad |x| < \delta, |
where C > 0 only depends on \alpha . Lemma 4.1 holds not just for \mathcal{M}_0 , but also for a family of locally convex hypersurfaces, with uniform r and \alpha .
For 2\leq k\leq n , denote
f_{(k)}(\lambda) = \frac{\sigma_k}{\sigma_{k-1}}(\lambda)-\sum\limits_{l = 0}^{n-2}\alpha_l\frac{\sigma_l}{\sigma_{k-1}}(\lambda). |
\alpha_l 's are positive constants. With the aid of Lemma 4.1, we use the Perron method to obtain a viscosity solution of the Plateau problem for the curvature function f_{(n)} , using the following lemma.
Lemma 4.2. Let \Omega be a bounded domain in \mathbb{R}^n with Lipschitz boundary. Let \phi\in C^{0, 1}(\bar\Omega) be a k -convex viscosity subsolution of
\begin{equation} f_{(k)}(\lambda) = \frac{\sigma_k}{\sigma_{k-1}}(\lambda)-\sum\limits_{l = 0}^{k-2}\alpha_l\frac{\sigma_l}{\sigma_{k-1}}(\lambda) = c\quad {{{in}}}\,\Omega, \end{equation} | (4.1) |
where \alpha_l > 0 and c\neq 0 are all constants. Then there is a viscosity solution u of (4.1) such that u = \phi on \partial \Omega .
Proof. The proof uses the well-known Perron method. Let \Psi denote the set of k -convex subsolutions v of (4.1) with v = \phi on \partial \Omega . Then \Psi is not empty and the required solution u is given by
u(x) = \sup\{v(x):v\in\Psi\}. |
It is a standard argument. The key ingredient that needs to be mentioned is the solvability of the Dirichlet problem
\begin{equation} f_{(k)}(\lambda) = c\quad {\rm{in}}\, \, B_r,\quad\quad u = u_0\quad {\rm{on}}\, \, \partial B_r, \end{equation} | (4.2) |
in small enough balls B_r\subset\mathbb{R}^n , if u_0 is any Lipschitz viscosity subsolution of (4.2). This is a consequence of [31] Theorem 6.2 with slight modification.
Using Lemma 4.2 and the argument of [32], we conclude that there is a locally convex hypersurface \mathcal{M} with boundary \Sigma which satisfies the equation f_{(n)}(\lambda) = c in the viscosity sense; that is, for any point p\in\mathcal{M} , if \mathcal{M} is locally represented as the graph of a convex function u (by Lemma 4.1), then u is a viscosity solution of f_{(n)}(\lambda) = c .
Following we discuss the regularity of \mathcal{M} . The interior regularity follows in the same way as [29].
Boundary regularity
The boundary regularity of \mathcal{M} is a local property. The boundary estimates we need are contained in [19,21]. However, they can not be applied directly to \mathcal{M} . Since we are working in a neighbourhood of a boundary point p_0\in\mathcal{M} , which we may take to be the origin, we may assume that for a smooth bounded domain \Omega\subset\mathbb{R}^n with 0\in\partial \Omega and small enough \rho > 0 we have
\mathcal{M}\cap(B_{\rho}\times\mathbb{R}) = {\rm{graph}}\,u,\quad\mathcal{M}_0\cap(B_{\rho}\times\mathbb{R}) = {\rm{graph}}\,u_0, |
where u\in C^{\infty}(\Omega_{\rho})\cap C^{0, 1}(\bar\Omega_{\rho}) , and u_0\in C^{\infty}(\bar\Omega_{\rho}) are k -convex solutions of
f_{(k)}[u] = c\quad {\rm{in}}\,\Omega_{\rho},\quad\quad f_{(k)}[u_0]\geq c\quad {\rm{in}}\,\Omega_{\rho}, |
with
u\geq u_0\quad{\rm{in}}\,\Omega_{\rho},\quad\quad u = u_0\quad{\rm{on}}\,\partial\Omega\cap B_{\rho}. |
We may choose the coordinate system in \mathbb{R}^n in such a way that \Omega is uniformly convex, and moreover, so that for some \epsilon_0 > 0 we have
\begin{equation} \frac{\sigma_{k-1}(\kappa')}{\sigma_{k-2}(\kappa')}\geq \epsilon_0 > 0 \end{equation} | (4.3) |
on \partial \Omega\cap B_{\rho} , where \kappa' = (\kappa'_1, \cdots, \kappa'_{n-1}) denotes the vector of principal curvatures of \partial\Omega . We recall that the principal curvatures of graph( u ) are the eigenvalues of the matrix
(I-\frac{Du\otimes Du}{1+|Du|^2})(\frac{D^2u}{\sqrt{1+|Du|^2}}). |
We denote \sigma_k(p, r) as the k -th elementary symmetric function of the eigenvalues of the matrix
(I-\frac{p\otimes p}{1+|p|^2})r,\,p = (p_1,\cdots,p_n),\,r = (r_{ij})_{n\times n}. |
Let f_{(k)}(p, r) = \frac{\sigma_k}{\sigma_{k-1}}(p, r)-\sum_{l = 0}^{k-2}\alpha_l(1+|p|^2)^{\frac{k-l}{2}}\frac{\sigma_l}{\sigma_{k-1}}(p, r) . \lambda(r) is the vector formed by eigenvalues of r . For any p\in\mathbb{R}^n and symmetric matrices r, s with \lambda(r), \lambda(s)\in \Gamma_k , we have
\begin{equation} \sum\limits_{i,j}\frac{\partial f_{(k)}}{\partial r_{ij}}(p,r)s_{ij}\geq f_{(k)}(p,s)+\sum\limits_{l = 0}^{k-2}(k-l)\alpha_l(1+|p|^2)^{\frac{k-l}{2}}\frac{\sigma_l}{\sigma_{k-1}}(p,r). \end{equation} | (4.4) |
For later purposes we note the simple estimate, if r\geq 0 ,
\frac{1}{1+|p|^2}\sigma_k(0,r)\leq\sigma_k(p,r)\leq \sigma_k(0,r), |
and the development
\sigma_k(p,r) = \frac{1+|\tilde p|^2}{1+|p|^2}r_{nn}\sigma_{k-1}(\tilde p,\tilde r)+O((|r_{st}|^k)_{(s,t)\neq (n,n)}), |
where p = (p_1, \cdots, p_n)\in\mathbb{R}^n , r = (r_{ij})_{n\times n} , \tilde p = (p_1, \cdots, p_{n-1})\in\mathbb{R}^{n-1} , \tilde r = (r_{ij})_{i, j = 1, \cdots, n-1} .
We suppose that \partial \Omega is the graph of \omega:B_{\rho}^{n-1}(0)\subset\mathbb{R}^n\rightarrow \mathbb{R} and u(\tilde x, \omega(\tilde x)) = \varphi(\tilde x) . Furthermore, \omega(0) = 0 , D\omega(0) = 0 , D\varphi(0) = 0 and \omega is a strictly convex function of \tilde x . The curvature equation is equivalent to
\begin{equation} f_{(k)}(Du,D^2u) = c\sqrt{1+|Du|^2} \end{equation} | (4.5) |
defined in some domain \Omega\subset\mathbb{R}^n . We have following boundary estimates for second derivatives of u .
Lemma 4.3. Let u\in C^3(\bar\Omega) be a k -convex solution of (4.5). We assume (4.3) with \epsilon > 0 . Then the estimate
\begin{equation} |D^2u(0)|\leq C(n,k,\alpha_l,c,\epsilon,||\omega||_{C^3},||\varphi||_{C^4},||u||_{C^1},\lambda_{\min}(D^2\omega(0))) \end{equation} | (4.6) |
holds true where \lambda_{\min} denotes the smallest eigenvalue.
Remark 4.1. On \partial \Omega , we have for i, j = 1, \cdots, n-1 ,
\begin{align*} &u_i+u_n\omega_i = \varphi_i,\\ &u_{ij}+u_{in}\omega_j+u_{nj}\omega_i+u_{nn}\omega_i\omega_j+u_n\omega_{ij} = \varphi_{ij}. \end{align*} |
Therefore |u_{ij}(0)| = |\varphi_{ij}(0)-u_n(0)\omega_{ij}(0)|\leq C . It remains to show that |u_{in}(0)|\leq C and |u_{nn}(0)|\leq C . We follow [19,21] to obtain mixed second derivative boundary estimates and double normal second derivative boundary estimate.
Proof. Let
\Omega_{d,\kappa} = \{x(\tilde x,x_n)\in\Omega||\tilde x| < d,\omega(\tilde x) < x_n < \tilde\omega(\tilde x)+\frac{\kappa}{2}d^2\} |
where 0 < d < \rho , \tilde\omega(\tilde x): = \omega(\tilde x)-\frac{\kappa}{2}|\tilde x|^2 , and \kappa > 0 is chosen small enough such that \tilde\omega is still strictly convex. We decompose \partial\Omega_{d, \kappa} = \partial_1\Omega_{d, \kappa}\cup\partial_2\Omega_{d, \kappa}\cup\partial_3\Omega_{d, \kappa} with
\begin{align*} &\partial_1\Omega_{d,\kappa} = \{x\in\partial\Omega_{d,\kappa}|x_n = \omega(\tilde x)\},\\ &\partial_2\Omega_{d,\kappa} = \{x\in\partial\Omega_{d,\kappa}|x_n = \omega(\tilde x)+\frac{\kappa}{2}d^2\},\\ &\partial_3\Omega_{d,\kappa} = \{x\in\partial\Omega_{d,\kappa}||\tilde x| = d\}. \end{align*} |
Our lower barrier function v will be of the form
\begin{equation} v(x) = \theta(\tilde x)+h(\rho(x)) \end{equation} | (4.7) |
where \theta(\tilde x) is an arbitrary C^2 -function, h(\rho) = \exp\{B\rho\}-\exp\{\kappa Bd^2\} and \rho(x) = \kappa d^2+\tilde\omega(\tilde x)-x_n . Denote F^{ij} = \frac{\partial f_{(k)}(Du, D^2u)}{\partial u_{ij}} .
Mixed second derivative boundary estimates
By (4.4) and Lemma 2.3, we have
F^{ij}v_{ij}\geq f_{(k)}(Du,D^2v)+C |
where C depends only on n, k, \alpha_l 's, c, ||Du||_{C^0} . We choose an orthonormal frame \{b_i\}_{i = 1}^n with b_n = -\frac{D\rho}{|D\rho|} and denote v_{(s)} = \frac{\partial v}{\partial b_s} . Directly, we have
\begin{align*} &v_{(s)} = \theta_{(s)}+h'\rho_{(s)},\,(1\leq s\leq n-1);\quad v_{(n)} = \theta_{(n)}-h'\sqrt{1+|D\tilde \omega|^2};\\ &v_{(st)} = \theta_{(st)}+h'\tilde\omega_{(st)},\,(s,t)\neq (n,n);\\ &v_{(nn)} = \theta_{(nn)}+h'\tilde \omega_{(nn)}+h''(1+|D\tilde\omega|^2). \end{align*} |
We may choose d small so that |Du| is also small. Note that |D\tilde\omega| is small since we can choose d, \kappa small. By choosing large enough B , we caculate
\begin{align*} f_{(k)}(Du,D^2v) = &\frac{\sigma_k}{\sigma_{k-1}}(Du,D^2v)-\sum\limits_{l = 0}^{k-2}\alpha_l(1+|Du|^2)^{\frac{k-l}{2}}\frac{\sigma_l}{\sigma_{k-1}}(Du,D^2v)\\ \geq & (1-\epsilon)\frac{\sigma_k}{\sigma_{k-1}}(0,D^2v)-2\sum\limits_{l = 0}^{k-2}\alpha_l\frac{\sigma_l}{\sigma_{k-1}}(0,D^2v)\\ \geq & (1-\epsilon)^2h'\frac{\sigma_{k-1}}{\sigma_{k-2}}(0,\tilde \omega_{(st)})-2\sum\limits_{l = 1}^{k-2}\alpha_l (h')^{l-k+1}\frac{\sigma_{l-1}}{\sigma_{k-2}}(0,\tilde \omega_{(st)})-o(B^{-1}) \end{align*} |
where in the last line, 1\leq s, t\leq n-1 . Finally, we see that for large enough B and small enough d and \kappa the estimate
(1-\delta)h'\leq |Dv|\leq (1+\delta)h' |
is valid for small \delta . Therefore
\begin{equation} F^{ij}v_{ij}\geq (1-\epsilon)\frac{\sigma_{k-1}}{\sigma_{k-2}}(0,\tilde \omega_{(st)})|Dv|+C. \end{equation} | (4.8) |
Let \tau be a C^2 -smooth vector field which is tangential along \partial \Omega . Following [19,21] we then introduce the function
w = 1-\exp(-a\tilde w)-b|x|^2 |
where \tilde w = u_{\tau}-\frac{1}{2}\sum_{i = 1}^{n-1}u_s^2 and a, b are positive constants. Since on \partial_1\Omega_{d, \kappa} , u = \varphi , and
w|_{\partial_1\Omega_{d,\kappa}}\geq a\varphi_{\tau}-c|\tilde x|^2,\,w(0) = 0,\,w|_{\partial_2\Omega_{d,\kappa}\cup\partial_3\Omega_{d,\kappa}}\geq-M |
for suitable constants c, M depending on a, b, ||u||_{C^1} and ||\varphi||_{C^1} . By differentiation of Eq (4.5), we obtain
F^{ij}u_{ijp}+F^iu_{ip} = c\bar v_p |
where F^i: = \frac{\partial f_{(k)}}{\partial u_i} and \bar v: = \sqrt{1+|Du|^2} .
\begin{align} F^{ij}\tilde w_{ij} = &F^{ij}u_{ijp}\tau_p+F^{ij}(u_{pj}\tau_{pi}+u_{pi}\tau_{pj})+F^{ij}\tau_{ijp}u_p-\\&\sum\limits_{s = 1}^{n-1}F^{ij}(u_{is}u_{js}+u_{sij}u_s)\\ = &c(\bar v_p\tau_p-\sum\limits_{s = 1}^{n-1}\bar v_su_s)-F^iu_{ip}\tau_p+\\&\sum\limits_{s = 1}^{n-1}F^iu_{is}u_s+F^{ij}(u_{pj}\tau_{pi}+u_{pi}\tau_{pj})\\ &+F^{ij}\tau_{ijp}u_p-\sum\limits_{s = 1}^{n-1}F^{ij}u_{is}u_{js}. \end{align} | (4.9) |
By the definition of \tilde w , we have
\begin{equation} c(\bar v_p\tau_p-\sum\limits_{s = 1}^{n-1}\bar v_su_s) = \frac{c}{\bar v}\big(\langle D\tilde w,Du\rangle-\rm{Hess}(\tau)(Du,Du)\big). \end{equation} | (4.10) |
Then we compute F^i . Denote b_{ij} = \delta_{ij}-\frac{u_iu_j}{\bar v^2} and c_{ij} = b_{ip}u_{pj} . f_{(k)} can be rewritten as
f_{(k)} = f_{(k)}(c_{ij},\bar v) = \frac{\sigma_k}{\sigma_{k-1}}(c_{ij})-\sum\limits_{l = 0}^{k-2}\alpha_l\bar v^{k-l}\frac{\sigma_l}{\sigma_{k-1}}(c_{ij}). |
Directly we have
\begin{align*} F^i = &\frac{\partial f_{(k)}}{\partial u_i} = \frac{\partial f_{(k)}}{\partial c_{pq}}\frac{\partial c_{pq}}{\partial u_i}+\frac{\partial f_{(k)}}{\partial \bar v}\frac{\partial \bar v}{\partial u_i}\\ = &-\frac{1}{\bar v^2}f_{(k)}^{iq}u_{ql}u_l-\frac{1}{\bar v^2}f_{(k)}^{pq}u_{iq}u_p+\frac{2}{\bar v^3}f_{(k)}^{pq}u_pu_lu_{lq}u_i \\&-\sum\limits_{l = 0}^{k-2}\alpha_l(k-l)\bar v^{k-l-2}\frac{\sigma_l}{\sigma_{k-1}}(c_{ij})u_i \end{align*} |
where f_{(k)}^{pq}: = \frac{\partial f_{(k)}}{\partial c_{pq}} . Therefore
\begin{eqnarray} -F^iu_{ip}\tau_p+\sum\limits_{s = 1}^{n-1}F^iu_{is}u_s = \Big(-\frac{1}{\bar v^2}f_{(k)}^{iq}u_{ql}u_l-\frac{1}{\bar v^2}f_{(k)}^{pq}u_{iq}u_p+\frac{2}{\bar v^3}f_{(k)}^{pq}u_pu_lu_{lq}u_i\\ -\sum\limits_{l = 0}^{k-2}\alpha_l(k-l)\bar v^{k-l-2}\frac{\sigma_l}{\sigma_{k-1}}(c_{ij})u_i\Big)(-\tilde w_i+u_p\tau_{pi}). \end{eqnarray} | (4.11) |
In order to derive the right hand side of (4.11), we use the same coordinate system as [21], which corresponds to the projection of principal curvature directions of the graph of u onto \mathbb{R}^n\supset\Omega . Fixing a point y\in\Omega , we choose a basis of eigenvectors \hat e_1, \cdots, \hat e_n of the matrix (c_{ij}) at y , corresponding to the eigenvalues \lambda_1, \cdots, \lambda_n and orthonormal with respect to the inner product given by the matrix I+Du\otimes Du . Using a subscript \alpha to denote differentiation with respect to \hat e_{\alpha} , \alpha = 1, \cdots, n , so that
u_{\alpha} = \hat e_{\alpha}^iu_i = \langle Du,\hat e_{\alpha}\rangle,\quad u_{\alpha\alpha} = \lambda_{\alpha} = \hat e_{\alpha}^i\hat e_{\alpha}^ju_{ij}. |
Then we obtain
\begin{align*} \frac{1}{\bar v^2}f_{(k)}^{iq}u_{ql}u_l(\tilde w_i-u_p\tau_{pi}) = &\frac{1}{\bar v^2}\frac{\partial f_{(k)}}{\partial \lambda_{\alpha}}\lambda_{\alpha}u_{\alpha}(\tilde \omega_{\alpha}-\rm{Hess}(\tau)(Du,\hat e_{\alpha}))\\ \leq& \delta \frac{\partial f_{(k)}}{\partial \lambda_{\alpha}}\lambda_{\alpha}^2+C(\delta)\frac{\partial f_{(k)}}{\partial \lambda_{\alpha}}\tilde w_{\alpha}^2+C(\delta)\sum\limits_{\alpha = 1}^n\frac{\partial f_{(k)}}{\partial \lambda_{\alpha}}. \end{align*} |
The second term of (4.11) can be estimated in the same way as above. As for the third term of (4.11), we calculate as
|f_{(k)}^{pq}u_pu_lu_{lq}| = |f_{(k)}^{pq}(u_{pq}-c_{pq})|\leq C|Du|^2. |
Thus
\begin{equation} -F^iu_{ip}\tau_p+\sum\limits_{s = 1}^{n-1}F^iu_{is}u_s\leq 2\delta \frac{\partial f_{(k)}}{\partial \lambda_{\alpha}}\lambda_{\alpha}^2 \\+C(\delta)\frac{\partial f_{(k)}}{\partial \lambda_{\alpha}}\tilde w_{\alpha}^2+C(\delta)\sum\limits_{\alpha = 1}^n\frac{\partial f_{(k)}}{\partial \lambda_{\alpha}}+C|\tilde w_iu_i-\tau_{ij}u_iu_j|. \end{equation} | (4.12) |
Let (\eta_i^{\alpha}) denote the inverse matrix to (\hat e^i_{\alpha}) , we write
u_{s\alpha} = \hat e^{i}_{\alpha}u_{is} = \lambda_{\alpha}\eta^{\alpha}_s. |
Furthermore,
\sum\limits_{s = 1}^{n-1}\frac{\partial f_{(k)}}{\partial \lambda_{\alpha}}u_{s\alpha}^2 = \frac{\partial f_{(k)}}{\partial \lambda_{\alpha}}\lambda_{\alpha}^2\sum\limits_{s = 1}^{n-1}(\eta^{\alpha}_s)^2. |
Now we reason similarly to [21]. If for all \alpha = 1, \cdots, n , we have
\begin{equation} \sum\limits_{s = 1}^{n-1}(\eta^{\alpha}_s)^2\geq \epsilon > 0 \end{equation} | (4.13) |
where \epsilon is a small postive number. Then we clearly have
\begin{equation} \sum\limits_{s = 1}^{n-1}\frac{\partial f_{(k)}}{\partial \lambda_{\alpha}}u_{s\alpha}^2\geq \epsilon \frac{\partial f_{(k)}}{\partial \lambda_{\alpha}}\lambda_{\alpha}^2. \end{equation} | (4.14) |
On the other hand, if (4.13) is not true, then
\sum\limits_{s = 1}^{n-1}(\eta^{\gamma}_s)^2 < \epsilon |
for some \gamma , which implies
\sum\limits_{s = 1}^{n-1}(\eta^{\alpha}_s)^2\geq \delta_0 > 0 |
for all \alpha\neq \gamma . Hence
\begin{equation} \sum\limits_{s = 1}^{n-1}\frac{\partial f_{(k)}}{\partial \lambda_{\alpha}}u_{s\alpha}^2\geq \delta_0\sum\limits_{\alpha\neq \gamma} \frac{\partial f_{(k)}}{\partial \lambda_{\alpha}}\lambda_{\alpha}^2. \end{equation} | (4.15) |
Then we use Theorem 3, 4 in [22] to deduce that
\begin{align*} &\sum\limits_{\alpha\neq \gamma}(\frac{\sigma_k}{\sigma_{k-1}})_{,\alpha}\lambda_{\alpha}^2\geq\frac{1}{C(n,k)}(\frac{\sigma_k}{\sigma_{k-1}})_{,\alpha}\lambda_{\alpha}^2,\\ &\sum\limits_{\alpha\neq \gamma}(-\frac{\sigma_l}{\sigma_{k-1}})_{,\alpha}\lambda_{\alpha}^2\geq\frac{1}{C(n,k,l)}(-\frac{\sigma_l}{\sigma_{k-1}})_{,\alpha}\lambda_{\alpha}^2,\\ &\sum\limits_{\alpha\neq \gamma}(-\frac{1}{\sigma_{k-1}})_{,\alpha}\lambda_{\alpha}^2\geq\frac{1}{C(n,k,0)}(-\frac{1}{\sigma_{k-1}})_{,\alpha}\lambda_{\alpha}^2-\frac{1}{C(n,k,0)}\frac{\sigma_1}{\sigma_{k-1}} \end{align*} |
where subscript ', \alpha ' denotes differentiation with respect to \lambda_{\alpha} . Therefore,
\begin{equation} \sum\limits_{s = 1}^{n-1}\frac{\partial f_{(k)}}{\partial \lambda_{\alpha}}u_{s\alpha}^2\geq \delta'\frac{\partial f_{(k)}}{\partial \lambda_{\alpha}}\lambda_{\alpha}^2-C. \end{equation} | (4.16) |
Combing (4.9), (4.10), (4.12), (4.16), we have
\begin{equation} F^{ij}\tilde w_{ij}\leq C|\langle D\tilde w,Du\rangle|+CF^{ij}\tilde w_i\tilde w_j+C\sum\limits_{i = 1}^nF^{ii} \end{equation} | (4.17) |
where we have chosen \delta < < \delta' , so that \frac{\partial f_{(k)}}{\partial \lambda_{\alpha}}\lambda_{\alpha}^2 can be discarded. Note that in (4.17), we also have used the fact that \sum_{i = 1}^nF^{ii}\geq C_0 > 0 . By choosing a, b large, we conclude that
\begin{equation} F^{ij}w_{ij}\leq C|\langle Dw,Du\rangle|. \end{equation} | (4.18) |
From (4.8), (4.18), by comparison principle, we have at 0 ,
u_{\tau n}(0) = \frac{1}{a}w_n(0)\geq \frac{1}{a}v_n(0). |
Since \tau is an arbitrary tangential direction at 0\in\partial\Omega , if we replace \tau by -\tau , we get an upper bound for u_{\tau n}(0) .
Double normal second derivative boundary estimate
We turn to estimate |u_{nn}(0)| . The idea is to estimate u_{nn} in a first step at some optimally chosen point y and in a second step conclude from this the estimate in the given point. We introduce a smooth moving orthonormal frame \{b_1, \cdots, b_n\} with b_n = (-\omega_{\tilde x}, 1)/\sqrt{1+|\omega_{\tilde x}|^2} being the upward normal to \partial\Omega . Here \omega_{\tilde x} is the gradient of \omega(\tilde x) . Let
G = \frac{\sigma_{k-1}}{\sigma_{k-2}}(u_{(\tilde x)},u_{(\tilde x\tilde x)})-\sum\limits_{l = 1}^{k-2}\alpha_l\sqrt{1+|Du|^2}^{k-l}\frac{\sigma_{l-1}}{\sigma_{k-2}}(u_{(\tilde x)},u_{(\tilde x\tilde x)})-c\sqrt{1+|Du|^2} |
on \partial\Omega , where u_{(\tilde x)} = (\frac{\partial u}{\partial b_1}, \cdots, \frac{\partial u}{\partial b_{n-1}}) and u_{(\tilde x\tilde x)} = (\frac{\partial^2 u}{\partial b_i\partial b_j})_{1\leq i, j\leq n-1} . For simplicity, we denote \tilde p = u_{(\tilde x)} , \tilde r = u_{(\tilde x\tilde x)} , \bar v = \sqrt{1+|Du|^2} . First we observe that
f_{(k)}(p,r) < \lim\limits_{r_{nn}\rightarrow +\infty}f_{(k)}(p,r) = \frac{\sigma_{k-1}}{\sigma_{k-2}}(\tilde p,\tilde r)-\sum\limits_{l = 1}^{k-2}\alpha_l\bar v^{k-l}\frac{\sigma_{l-1}}{\sigma_{k-2}}(\tilde p,\tilde r) |
from what we see that G > 0 . Hence the function
\tilde G = G(x)+\frac{4|\tilde x|^2}{\bar \rho^2}\bar G |
with \bar G = \max\{G(x)|x\in\partial\Omega, \, |\tilde x| < \rho\} and 0 < \bar\rho < \rho attains its minimum over \partial\Omega\cap B_{\rho}(0) at some point y\in\partial\Omega\cap B_{\bar\rho/2}(0) . If |u_{nn}(y)| < C , then G(y) > C^{-1} > 0 .
G(0) = \tilde G(0)\geq \tilde G(y) > G(y) > C^{-1} > 0. |
Therefore G(0) is strictly positive and we have
|u_{nn}(0)| < +\infty. |
To check that |u_{nn}(y)| < +\infty , we proceed in essentially the same way as in mixed second derivative estimates. The point y plays the role of the origin and the function \tilde w is defined as
\tilde w(x) = -(u_n(x)-u_n(y))-K|Du(x)-Du(y)|^2 |
where K is a sufficiently big constant. In order to apply the comparison principle, we need to obtain that
w(x)\geq \tilde \theta(\tilde x)-C|\tilde x-\tilde y|^2(x\in\partial\Omega\cap B_{\rho}(0)) |
where \tilde \theta is some C^2 -smooth function. We reason similarly to Lemma 2.5 in [19]. The choice of the moving frame gives
u_{(s)} = \varphi_{(s)},\quad u_{(st)} = \varphi_{(st)}-u_n\omega_{(st)}(s,t = 1,\cdots,n-1). |
By the concavity of \frac{\sigma_{k-1}}{\sigma_{k-2}}(\tilde p, \tilde r) , -\frac{\sigma_{l}}{\sigma_{k-2}}(\tilde p, \tilde r)(l = 0, \cdots, k-3) in \tilde r and the convexity of \sqrt{1+|\tilde p|^2} in \tilde p , we compute
\begin{equation} 0\leq \tilde G(x)-\tilde G(y)\leq g(y,x)(u_n(y)-u_n(x))+h(y,x) \end{equation} | (4.19) |
with
\begin{align*} g(y,x) = &(\frac{\sigma_{k-1}}{\sigma_{k-2}})^{st}(\tilde p(x),\tilde r(y))\omega_{(st)}(x)-\\ &\sum\limits_{l = 1}^{k-2}\alpha_l\bar v^{k-l}(x)(\frac{\sigma_{l-1}}{\sigma_{k-2}})^{st}(\tilde p(x),\tilde r(y))\omega_{(st)}(x)\\ &+\Big(\sum\limits_{l = 1}^{k-2}\alpha_l(k-l)\bar v^{k-l-2}(y)\frac{\sigma_{l-1}}{\sigma_{k-2}}(\tilde p(y),\tilde r(y))+c\bar v^{-1}(y)\Big)\\ &(u_n(y)-u_i(y)\omega_i(x)) \end{align*} |
and
\begin{align*} h(y,x) = &\frac{\sigma_{k-1}}{\sigma_{k-2}}(\varphi_{\tilde x}(x),\tilde r(y))-\frac{\sigma_{k-1}}{\sigma_{k-2}}(\varphi_{\tilde x}(y),\tilde r(y))\\ &+\big(\frac{\sigma_{k-1}}{\sigma_{k-2}}\big)^{st}(\varphi_{\tilde x}(x),\tilde r(y))\Psi_{st}(y,x)\\ &-\sum\limits_{l = 1}^{k-2}\alpha_l\bar v^{k-l}\big(\frac{\sigma_{l-1}}{\sigma_{k-2}}\big)^{st}(\varphi_{\tilde x}(x),\tilde r(y))\Psi_{st}(y,x)\\ &+\sum\limits_{l = 1}^{k-2} \alpha_l\bar v^{k-l}\Big(\frac{\sigma_{l-1}}{\sigma_{k-2}}(\varphi_{\tilde x}(y),\tilde r(y))-\frac{\sigma_{l-1}}{\sigma_{k-2}}(\varphi_{\tilde x}(x),\tilde r(y))\Big)\\ &+[c\bar v^{-1}-\sum\limits_{l = 1}^{k-2}\alpha_l(k-l)\bar v^{k-l-2}\frac{\sigma_{l-1}}{\sigma_{k-2}}(\tilde p(y),\tilde r(y))]\\ &\cdot A+\frac{4\bar G}{\bar \rho^2}(|\tilde x|^2-|\tilde y|^2) \end{align*} |
where \Psi_{st}(y, x) = \varphi_{(st)}(x)-\varphi_{(st)}(y)-u_n(y)(\omega_{(st)}(x)-\omega_{(st)}(y)) , A = [\varphi_i(y)-\varphi_i(x)-u_n(y)(\omega_i(y)-\omega_i(x))]u_i(y) . We may take \tilde \theta(\tilde x) = -\frac{h}{g}(y, x) if we can show that g(y, x) > 0 . This is true since |Du| is small and -(\frac{\sigma_{l-1}}{\sigma_{k-1}})^{st} is semi-positive definite, together with condition (4.3). This completes the proof of the boundary regularity.
The authors were supported by NSFC, grant nos. 12031017 and 11971424.
The authors declare no conflict of interest.
In this appendix, we sketch the proof of Lemma 3.3 for reader's convenience. For the original proof, see [36].
Without loss of generality, we assume \Omega = B_r(0) . Let \rho = r^2-|x|^2 , M = osc_{B_r}u , \tilde g(u) = \frac{1}{M}(M+u-\inf_{B_r} u) , \phi(x, \xi) = \rho(x)\tilde g(u)\log(u_{\xi}(x)) . This auxiliary function \phi comes from [34]. Suppose \phi attains its maximum at (x_0, e_1) . Furthermore, by rotating e_2, \cdots, e_n , we can assume that \{u_{ij}(x_0)\}_{2\leq i, j\leq n} is diagonal. Thus \varphi(x) = \log\rho(x)+\log\tilde g(u(x))+\log\log u_1 also attains a local maximum at x_0\in B_r(0) . At x_0 , we have
\begin{equation} 0 = \varphi_i = \frac{\rho_i}{\rho}+\frac{\tilde g_i}{\tilde g}+\frac{u_{1i}}{u_1\log u_1}, \end{equation} | (A.1) |
\begin{equation} 0\geq \varphi_{ij} = \frac{\rho_{ij}}{\rho}-\frac{\rho_i\rho_j}{\rho^2}+\frac{\tilde g_{ij}}{\tilde g}-\frac{\tilde g_i\tilde g_j}{\tilde g^2}+\frac{u_{1ij}}{u_1\log u_1}-(1+\frac{1}{\log u_1})\frac{u_{1i}u_{1j}}{u_1^2\log u_1}. \end{equation} | (A.2) |
Only in this proof we denote that F^{ij}: = \frac{\partial F}{\partial u_{ij}} . F^{ij} is positive definite. Taking trace with \varphi_{ij} and using (A.1), we have
\begin{align} 0&\geq F^{ij}\varphi_{ij}\\ & = F^{ij}\Big(\frac{\rho_{ij}}{\rho}+2\frac{\rho_i}{\rho}\frac{\tilde g_j}{\tilde g}+\frac{\tilde g_{ij}}{\tilde g}\Big)+F^{ij}\Big(\frac{u_{1ij}}{u_1\log u_1}-(1+\frac{2}{\log u_1})\frac{u_{1i}u_{1j}}{u_1^2\log u_1}\Big)\\ &: = \mathcal{A}+\mathcal{B}. \end{align} | (A.3) |
It is well-known that the principal curvatures of graph u are the eigenvalues of matrix A = (a_{ij})_{n\times n} :
a_{ij} = \frac{1}{W}\Big(u_{ij}-\frac{u_iu_lu_{lj}}{W(W+1)}-\frac{u_ju_lu_{li}}{W(W+1)}+\frac{u_iu_ju_pu_qu_{pq}}{W^2(W+1)^2}\Big) |
where W = \sqrt{1+|Du|^2} . Next we compute F^{ij} at x_0 .
\begin{equation*} \frac{\partial a_{ij}}{\partial u_{ij}} = \left\{ \begin{array}{cl} \frac{1}{W^3} & i = j = 1,\\ \frac{1}{W^2} & i = 1,j\geq 2\,\rm{or}\,i\geq 2,j = 1,\\ \frac{1}{W} & i\geq 2,j\geq 2. \end{array} \right. \end{equation*} |
For two different sets \{p, q\}\neq\{i, j\} , \frac{\partial a_{pq}}{\partial u_{ij}} = 0 . Therefore
\begin{equation*} F^{ij} = \frac{\partial F}{\partial a_{ij}}\frac{\partial a_{ij}}{\partial u_{ij}} = \left\{ \begin{array}{cl} \frac{1}{W^3}\frac{\partial F}{\partial a_{11}} & i = j = 1,\\ \frac{1}{W^2}\frac{\partial F}{\partial a_{ij}} & i = 1,j\geq 2\,\rm{or}\,i\geq 2,j = 1,\\ \frac{1}{W}\frac{\partial F}{\partial a_{ij}} & i\geq 2,j\geq 2. \end{array} \right. \end{equation*} |
Direct computation shows that
\mathcal{A} = \frac{-2}{\rho}(\sum\limits_{i = 1}^n\frac{\partial F}{\partial u_{ii}})+\frac{1}{M\tilde g}(\sum\limits_{i,j = 1}^n\frac{\partial F}{\partial u_{ij}}\cdot u_{ij})+\frac{2u_1}{M\rho\tilde g}\sum\limits_{i = 1}^n\frac{\partial F}{\partial u_{1i}}\cdot \rho_i, |
\sum\limits_{i = 1}^n\frac{\partial F}{\partial u_{ii}} = \frac{\partial F}{\partial a_{11}}\frac{1}{W^3}+\sum\limits_{i = 2}^n \frac{\partial F}{\partial a_{ii}}\frac{1}{W}\leq \frac{1}{W}\sum\limits_{i = 1}^n\frac{\partial F}{\partial a_{ii}}, |
\sum\limits_{i,j = 1}^n\frac{\partial F}{\partial u_{ij}}\cdot u_{ij} = \sum\limits_{i,j = 1}^n\frac{\partial F}{\partial a_{ij}}\cdot a_{ij} = \frac{\sigma_k}{\sigma_{k-1}}(A)-\sum\limits_{l = 0}^{k-2}\alpha_l(l-k+1)\frac{\sigma_l}{\sigma_{k-1}}(A). |
By (A.1), suppose that u_1\gg 1 , then we have u_{11} < 0 and
\begin{align*} \frac{2u_1}{M\rho\tilde g}\sum\limits_{i = 1}^n\frac{\partial F}{\partial u_{1i}}\cdot \rho_i& = \frac{2u_1}{M\rho\tilde g}(\frac{\partial F}{\partial u_{11}}\rho_1+\sum\limits_{i = 2}^n\frac{\partial F}{\partial u_{1i}}\rho_i)\\ & = \frac{2u_1}{M\rho\tilde g}(\frac{\partial F}{\partial a_{11}}\frac{\rho_1}{W^3}-\sum\limits_{i = 2}^n\frac{\partial F}{\partial a_{1i}}\frac{u_{1i}\rho}{W^2u_1\log u_{1}})\\ &\geq -\frac{4ru_1}{MW^3\rho\tilde g}\frac{\partial F}{\partial a_{11}}-\frac{2}{M\tilde g\log u_1}\sum\limits_{i = 2}^n\frac{\partial F}{\partial a_{1i}}a_{1i}\\ &\geq -\frac{4ru_1}{MW^3\rho\tilde g}\sum\limits_{i = 1}^n\frac{\partial F}{\partial a_{ii}} \end{align*} |
where we have used (3.1). Therefore
\begin{equation} \mathcal{A}\geq (-\frac{2}{W\rho}-C\frac{u_1}{W^3})(\sum\limits_{i = 1}^n\frac{\partial F}{\partial a_{ii}})+\frac{1}{M\tilde g}(-g+\sum\limits_{l = 0}^{k-2}\alpha_l(k-l)\frac{\sigma_l}{\sigma_{k-1}}(A)). \end{equation} | (A.4) |
In the following we turn to estimate \mathcal{B} . By the definition of a_{ij} , we have at x_0 ,
\frac{\partial a_{11}}{\partial x_1} = \frac{1}{W^3}u_{111}-\frac{3u_1}{W^5}u_{11}^2-\frac{2u_1}{W^3(W+1)}\sum\limits_{k = 2}^nu_{k1}^2, |
for i\geq 2 ,
\frac{\partial a_{1i}}{\partial x_1} = \frac{1}{W^2}u_{1i1}-\frac{2u_1}{W^4}u_{11}u_{1i}-\frac{u_1}{W^2(W+1)}u_{1i}u_{ii}-\frac{u_1}{W^3(W+1)}u_{11}u_{1i}, |
\frac{\partial a_{ii}}{\partial x_1} = \frac{1}{W}u_{ii1}-\frac{u_1}{W^3}u_{11}u_{ii}-\frac{2u_1}{W^2(W+1)}u_{1i}^2, |
for i\geq 2, j\geq 2, i\neq j ,
\frac{\partial a_{ij}}{\partial x_1} = \frac{1}{W}u_{ij1}-2\frac{u_{i1}u_{j1}u_1}{W^2(W+1)}. |
Taking derivatives with respect to x_1 on both sides of (1.4), we have
\sum\limits_{i,j = 1}^n\frac{\partial F}{\partial a_{ij}}\frac{\partial a_{ij}}{\partial x_1}-\sum\limits_{l = 0}^{k-2}(\alpha_l)_{,1}\frac{\sigma_{l}}{\sigma_{k-2}} = -g_{,1}. |
For the first term of \mathcal{B} , we calculate as
\sum\limits_{i,j = 1}^n\frac{\partial F}{\partial u_{ij}}\frac{u_{ij1}}{u_1\log u_1} = \frac{1}{u_1\log u_1}\Big(\frac{\partial F}{\partial a_{11}}\frac{u_{111}}{W^3}+2\sum\limits_{i\geq 2}\frac{\partial F}{\partial a_{1i}}\frac{u_{1i1}}{W^2}+\sum\limits_{i,j\geq 2}\frac{\partial F}{\partial a_{ij}}\frac{u_{ij1}}{W}\Big), |
\begin{align*} F^{ij}u_{ij1} = &\frac{\partial F}{\partial a_{11}}\Big(\frac{\partial a_{11}}{\partial x_1}+\frac{3u_1}{W^5}u_{11}^2+\frac{2u_1}{W^3(W+1)}\sum\limits_{k\geq 2} u_{k1}^2\Big)\\ &+2\sum\limits_{i\geq 2}\frac{\partial F}{\partial a_{1i}}\Big(\frac{\partial a_{1i}}{\partial x_1}+\frac{2u_1}{W^4}u_{11}u_{1i}\\ &+\frac{u_1u_{1i}u_{ii}}{W^2(W+1)}+\frac{u_1u_{11}u_{1i}}{W^3(W+1)}\Big)\\ &+\sum\limits_{i\neq j\geq 2}\frac{\partial F}{\partial a_{ij}}\Big(\frac{\partial a_{ij}}{\partial x_1}+2\frac{u_1u_{i1}u_{j1}}{W^2(W+1)}\Big)\\ &+\sum\limits_{i = 2}^n\frac{\partial F}{\partial a_{ii}}\Big(\frac{\partial a_{ii}}{\partial x_1}+\frac{u_1u_{11}u_{ii}}{W^3}+\frac{2u_1u_{1i}^2}{W^2(W+1)}\Big)\\ = &-g_{,1}+\sum\limits_{l = 0}^{k-2}(\alpha_l)_{,1}\frac{\sigma_{l}}{\sigma_{k-1}}(A)+\frac{u_1u_{11}}{W^2}\Big(-g+\sum\limits_{l = 0}^{k-2}(k-l)\alpha_l\frac{\sigma_l}{\sigma_{k-1}}(A)\Big)\\ &+\frac{\partial F}{\partial a_{11}}\Big(\frac{2u_1}{W^5}u_{11}^2+\frac{2u_1}{W^3(W+1)}\sum\limits_{k\geq 2} u_{k1}^2\Big)\\ &+2\sum\limits_{i\geq 2}\frac{\partial F}{\partial a_{1i}}\Big(\frac{u_1}{W^4}u_{11}u_{1i}+\frac{u_1u_{1i}u_{ii}}{W^2(W+1)}\\ &+\frac{u_1u_{11}u_{1i}}{W^3(W+1)}\Big)+2\sum\limits_{i\neq j\geq 2}\frac{\partial F}{\partial a_{ij}}\frac{u_1u_{i1}u_{j1}}{W^2(W+1)}\\ &+2\sum\limits_{i = 2}^n\frac{\partial F}{\partial a_{ii}}\frac{u_1u_{1i}^2}{W^2(W+1)}. \end{align*} |
For the second term of \mathcal{B} , we calculate
\sum\limits_{i,j = 1}^n\frac{\partial F}{\partial u_{ij}}u_{1i}u_{1j} = \frac{\partial F}{\partial a_{11}}\frac{u_{11}^2}{W^3}+2\sum\limits_{i = 2}^n\frac{\partial F}{\partial a_{1i}}\frac{u_{11}u_{1i}}{W^2}+\sum\limits_{2\leq i,j\leq n}\frac{\partial F}{\partial a_{ij}}\frac{u_{1i}u_{1j}}{W}. |
Therefore
\begin{align*} \mathcal{B} = &\frac{1}{u_1\log u_1}\Big(-g_{,1}+\sum\limits_{l = 0}^{k-2}(\alpha_l)_{,1}\frac{\sigma_{l}}{\sigma_{k-1}}(A)\Big)\\ &+\frac{u_{11}}{W^2\log u_1}\Big(-g+\sum\limits_{l = 0}^{k-2}(k-l)\alpha_l\frac{\sigma_l}{\sigma_{k-1}}(A)\Big)\\ &+\Big(\frac{2}{W^5\log u_1}-(1+\frac{2}{\log u_1})\frac{1}{u_1^2\log u_1W^3}\Big)\\ &\frac{\partial F}{\partial a_{11}}u_{11}^2+\frac{2}{W^3(W+1)\log u_1}\sum\limits_{k\geq 2} \frac{\partial F}{\partial a_{11}}u_{k1}^2\\ &+\Big(\frac{2}{W^4\log u_1}+\frac{2}{W^3(W+1)\log u_1}\\ &-(1+\frac{2}{\log u_1})\frac{2}{W^2u_1^2\log u_1}\Big)\sum\limits_{i = 2}^n\frac{\partial F}{\partial a_{1i}}u_{11}u_{1i}\\ &+\frac{2}{W^2(W+1)\log u_1}\sum\limits_{i = 2}^n\frac{\partial F}{\partial a_{1i}}u_{1i}u_{ii}\\ &+\Big(\frac{2}{W^2(W+1)\log u_1}-\frac{1+2/\log u_1}{Wu_1^2\log u_1}\Big)\times\\ &\sum\limits_{2\leq i,j\leq n}\frac{\partial F}{\partial a_{ij}}u_{1i}u_{1j}. \end{align*} |
Since \{\frac{\partial F}{\partial a_{ij}}\}_{1\leq i, j\leq n} is positive definite, so is \{\frac{\partial F}{\partial a_{ij}}\}_{2\leq i, j\leq n} . W = \sqrt{1+u_1^2}\approx u_1 . Therefore
\begin{align} \mathcal{B}\geq&\frac{1}{u_1\log u_1}\Big(-g_{,1}+\sum\limits_{l = 0}^{k-2}(\alpha_l)_{,1}\frac{\sigma_{l}}{\sigma_{k-1}}(A)\Big)\\&+\frac{u_{11}}{W^2\log u_1}\Big(-g+\sum\limits_{l = 0}^{k-2}(k-l)\alpha_l\frac{\sigma_l}{\sigma_{k-1}}(A)\Big)\\ &+\frac{1-\delta}{W^5\log u_1}\frac{\partial F}{\partial a_{11}}u_{11}^2+\frac{2}{W^2(W+1)\log u_1}\big(\sum\limits_{i = 2}^n\frac{\partial F}{\partial a_{1i}}u_{1i}u_{ii}\big) \end{align} | (A.5) |
where \delta > 0 is a small constant, depending only on u_1 . By (A.3), (A.4), (A.5), we have
\begin{align} 0\geq& (-\frac{2}{W\rho}-\frac{Cu_1}{W^3})(\sum\limits_{i = 1}^n\frac{\partial F}{\partial a_{ii}})+(\frac{1}{M\tilde g}+\frac{u_{11}}{W^2\log u_1})(-g+\sum\limits_{l = 0}^n\alpha_l(k-l)\frac{\sigma_l}{\sigma_{k-1}})\\ &+\frac{1}{u_1\log u_1}(-g_{,1}+\sum\limits_{l = 0}^{k-2}(\alpha_l)_{,1}\frac{\sigma_l}{\sigma_{k-1}})+\frac{1-\delta}{W^5\log u_1}\frac{\partial F}{\partial a_{11}}u_{11}^2\\ &+\frac{2}{W^2(W+1)\log u_1}\big(\sum\limits_{i = 2}^n\frac{\partial F}{\partial a_{1i}}u_{1i}u_{ii}\big). \end{align} | (A.6) |
Since we require that g_u\leq 0 and (\alpha_l)_u\geq 0 ,
-g_{,1}+\sum\limits_{l = 0}^{k-2}(\alpha_l)_{,1}\frac{\sigma_l}{\sigma_{k-1}}\geq-\frac{\partial g}{\partial x_1}+\sum\limits_{l = 0}^{k-2}\frac{\partial \alpha_l}{\partial x_1}\frac{\sigma_l}{\sigma_{k-1}}. |
We claim that
\begin{equation} \sum\limits_{i = 2}^n\frac{\partial F}{\partial a_{1i}}u_{1i}u_{ii}\geq -C\frac{u_1^2\log^2 u_1}{W}\frac{|D\rho|^2}{\rho^2}\frac{\partial F}{\partial a_{11}}. \end{equation} | (A.7) |
We deter the proof of (A.7). By (A.1), we see that the leading term in (A.6) is \frac{1-\delta}{W^5\log u_1}\frac{\partial F}{\partial a_{11}}u_{11}^2\approx\frac{\log u_1}{W}\frac{\partial F}{\partial a_{11}} > 0 . Other terms have order at most O(W^{-1}) , therefore
\log u_1\leq C. |
The interior gradient estimate is proved after we check (A.7). Let \Upsilon = \{2\leq j\leq n|a_{jj}\geq 0\} . Note that a_{11} < 0 and \lambda(A)\in\Gamma_k .
\begin{align*} \sum\limits_{i = 2}^{n} \frac{\partial F}{\partial a_{1 i}} u_{1 i} u_{i i} = &-\sum\limits_{i = 2}^{n}\left[\frac{\sigma_{k-2}(A|1i) \sigma_{k-1}(A)-\sigma_{k-3}(A|1 i) \sigma_{k}(A)}{\sigma_{k-1}^{2}(A)}\right.\\ &\left.+\sum\limits_{l = 1}^{k-2} \alpha_{l}\frac{\sigma_{k-3}(A|1 i) \sigma_{l}(A)-\sigma_{l-2}(A|1 i) \sigma_{k-1}(A)}{\sigma_{k-1}^{2}(A)}\right] a_{i 1} u_{1 i} u_{i i} \\ \geq &-\sum\limits_{i \in \Upsilon}^{n}\left[\frac{\sigma_{k-2}(A|1 i) \sigma_{k-1}(A)-\sigma_{k-3}(A|1 i) \sigma_{k}(A)}{\sigma_{k-1}^{2}(A)}\right.\\ &\left.+\sum\limits_{l = 1}^{k-2} \alpha_{l}\frac{\sigma_{k-3}(A|1 i) \sigma_{l}(A)-\sigma_{l-2}(A|1 i) \sigma_{k-1}(A)}{\sigma_{k-1}^{2}(A)}\right] a_{i i} \frac{u_{1 i}^{2}}{W} \\ \geq &-\sum\limits_{i \in \Upsilon}\left[\frac{a_{i i} \sigma_{k-2}(A|1 i) \sigma_{k-1}(A)}{\sigma_{k-1}^{2}(A)}+\sum\limits_{l = 1}^{k-2} \alpha_{l}\frac{a_{i i} \sigma_{k-3}(A|1 i) \sigma_{l}(A)}{\sigma_{k-1}^{2}(A)}\right] \frac{u_{1 i}^{2}}{W} \\ \geq &-\sum\limits_{i \in \Upsilon}\left[\frac{C_{n,k}\sigma_{k-1}(A|1) \sigma_{k-1}(A)}{\sigma_{k-1}^{2}(A)}+\sum\limits_{l = 1}^{k-2} \alpha_{l}\frac{C_{n,k}\sigma_{k-2}(A|1) \sigma_{l}(A)}{\sigma_{k-1}^{2}(A)}\right] \frac{u_{1 i}^{2}}{W} \\ \geq &-\left[\frac{C_{n,k}\sigma_{k-1}(A|1) \sigma_{k-1}(A)}{\sigma_{k-1}^{2}(A)}+\sum\limits_{l = 1}^{k-2} \alpha_{l}\frac{C_{n,k}\sigma_{k-2}(A|1) \sigma_{l}(A)}{\sigma_{k-1}^{2}(A)}\right] \sum\limits_{i = 2}^{n} \frac{u_{1 i}^{2}}{W} \\ \geq &-\left[C_{n,k}\frac{\sigma_{k-1}(A|1) \sigma_{k-1}(A)-\sigma_{k-2}(A|1) \sigma_{k}(A)}{\sigma_{k-1}^{2}(A)}\right.\\ &+\left.\sum\limits_{l = 0}^{k-2}\alpha_lC_{n,k}\frac{\sigma_{k-2}(A|1)\sigma_l(A)-\sigma_{l-1}(A)\sigma_{k-1}(A)}{\sigma_{k-1}^2(A)}\right]\sum\limits_{i = 2}^n\frac{u_{1i}^2}{W}\\ \geq &-C(n,k)\sum\limits_{i = 2}^n\frac{u_{1i}^2}{W}\frac{\partial F}{\partial a_{11}}\\ \geq &-C(n,k)\frac{u_1^2\log^2u_1}{W}\frac{|D\rho|^2}{\rho^2}\frac{\partial F}{\partial a_{11}}. \end{align*} |
Thus (A.7) holds and the gradient estimate is proved.
[1] |
S. Z. Goldhaber, H. Bounameaux, Pulmonary embolism and deep vein thrombosis, Lancet (London, England), 379 (2012), 1835–1846. https://doi.org/10.1016/S0140-6736(11)61904-1 doi: 10.1016/S0140-6736(11)61904-1
![]() |
[2] |
G. E. Raskob, P. Angchaisuksiri, A. N. Blanco, H. Buller, A. Gallus, B. J. Hunt, et al., Thrombosis: a major contributor to global disease burden, Arterioscler. Thromb. Vasc. Biol., 34 (2014), 2363–2371. https://doi.org/10.1161/ATVBAHA.114.304488 doi: 10.1161/ATVBAHA.114.304488
![]() |
[3] |
D. Voci, U. Fedeli, I. T. Farmakis, L. Hobohm, K. Keller, L. Valerio, et al., Deaths related to pulmonary embolism and cardiovascular events before and during the 2020 COVID-19 pandemic: An epidemiological analysis of data from an Italian high-risk area, Thromb. Res., 212 (2022), 44–50. https://doi.org/10.1016/j.thromres.2022.02.008 doi: 10.1016/j.thromres.2022.02.008
![]() |
[4] |
I. Katsoularis, O. Fonseca-Rodríguez, P. Farrington, H. Jerndal, E. H. Lundevaller, M. Sund, et al., Risks of deep vein thrombosis, pulmonary embolism, and bleeding after covid-19: nationwide self-controlled cases series and matched cohort study, BMJ, 377 (2022). https://doi.org/10.1136/bmj-2021-069590 doi: 10.1136/bmj-2021-069590
![]() |
[5] |
T. N. Nguyen, M. M. Qureshi, P. Klein, H. Yamagami, M. Abdalkader, R. Mikulik, et al., Global impact of the COVID-19 pandemic on cerebral venous thrombosis and mortality, J. Stroke, 24 (2022), 256–265. https://doi.org/10.5853/jos.2022.00752 doi: 10.5853/jos.2022.00752
![]() |
[6] |
E. Berntorp, K. Fischer, D. P. Hart, M. E. Mancuso, D. Stephensen, A. D. Shapiro, et al., Haemophilia, Nat. Rev. Dis. Prim., 7 (2021), 45. https://doi.org/10.1038/s41572-021-00278-x doi: 10.1038/s41572-021-00278-x
![]() |
[7] |
K. G. Link, M. T. Stobb, M. G. Sorrells, M. Bortot, K. Ruegg, M. J. Manco‐Johnson, et al., A mathematical model of coagulation under flow identifies factor V as a modifier of thrombin generation in hemophilia A, J. Thromb. Haemost., 18 (2020), 306–317. https://doi.org/10.1111/jth.14653 doi: 10.1111/jth.14653
![]() |
[8] |
F. W. G. Leebeek, W. Miesbach, Gene therapy for hemophilia: a review on clinical benefit, limitations, and remaining issues, Blood, 138 (2021), 923–931. https://doi.org/10.1182/blood.2019003777 doi: 10.1182/blood.2019003777
![]() |
[9] |
S. S. G. Halfmann, N. Evangelatos, P. Schröder-Bäck, A. Brand, European healthcare systems readiness to shift from 'One-Size Fits All' to personalized medicine, Per. Med., 14 (2017), 63–74. https://doi.org/10.2217/pme-2016-0061 doi: 10.2217/pme-2016-0061
![]() |
[10] |
T. Behl, I. Kaur, A. Sehgal, S. Singh, A. Albarrati, M. Albratty, et al., The road to precision medicine: Eliminating the "One Size Fits All" approach in Alzheimer's disease, Biomed. Pharmacother., 153 (2022), 113337. https://doi.org/10.1016/j.biopha.2022.113337 doi: 10.1016/j.biopha.2022.113337
![]() |
[11] |
N. M. Hamdy, E. B. Basalious, M. G. El-Sisi, M. Nasr, A. M. Kabel, E. S. Nossier, et al., Advancements in current one-size-fits-all therapies compared to future treatment innovations for better improved chemotherapeutic outcomes: a step-toward personalized medicine, Curr. Med. Res. Opin., 40 (2024), 1–19. https://doi.org/10.1080/03007995.2024.2416985 doi: 10.1080/03007995.2024.2416985
![]() |
[12] |
G. Di Minno, E. Tremoli, Tailoring of medical treatment: hemostasis and thrombosis towards precision medicine, Haematologica, 102 (2017), 411–418. https://doi.org/10.3324/haematol.2016.156000 doi: 10.3324/haematol.2016.156000
![]() |
[13] | D. L. Ornstein, Chapter 41 - Personalized medicine for disorders of hemostasis and thrombosis, in Diagnostic Molecular Pathology (eds. W. B. Coleman and G. J. Tsongalis), Academic Press, (2024), 643–653. https://doi.org/10.1016/B978-0-12-822824-1.00006-7 |
[14] |
S. Nagalla, P. F. Bray, Personalized medicine in thrombosis: back to the future, Blood, 127 (2016), 2665–2671. https://doi.org/10.1182/blood-2015-11-634832 doi: 10.1182/blood-2015-11-634832
![]() |
[15] |
R. J. S. Preston, J. M. O'Sullivan, Personalized approaches to the treatment of hemostatic disorders, Semin. Thromb. Hemostasis, 47 (2021), 117–119. https://doi.org/10.1055/s-0041-1723800 doi: 10.1055/s-0041-1723800
![]() |
[16] |
H. Al‐Samkari, W. Eng, A precision medicine approach to hereditary hemorrhagic telangiectasia and complex vascular anomalies, J. Thromb. Haemost., 20 (2022), 1077–1088. https://doi.org/10.1111/jth.15715 doi: 10.1111/jth.15715
![]() |
[17] |
X. Delavenne, E. Ollier, A. Lienhart, Y. Dargaud, A new paradigm for personalized prophylaxis for patients with severe haemophilia A, Haemophilia, 26 (2020), 228–235. https://doi.org/10.1111/hae.13935 doi: 10.1111/hae.13935
![]() |
[18] |
L. H. Bukkems, L. L. F. G. Valke, W. Barteling, B. A. P. Laros-van Gorkom, N. M. A. Blijlevens, M. H. Cnossen, et al., Combining factor Ⅷ levels and thrombin/plasmin generation: A population pharmacokinetic-pharmacodynamic model for patients with haemophilia A, Br. J. Clin. Pharmacol., 88 (2022), 2757–2768. https://doi.org/10.1111/bcp.15185 doi: 10.1111/bcp.15185
![]() |
[19] |
N. Mackman, W. Bergmeier, G. A. Stouffer, J. I. Weitz, Therapeutic strategies for thrombosis: new targets and approaches, Nat. Rev. Drug. Discov., 19 (2020), 333–352. https://doi.org/10.1038/s41573-020-0061-0 doi: 10.1038/s41573-020-0061-0
![]() |
[20] |
P. S. Wells, R. Ihaddadene, A. Reilly, M. A. Forgie, Diagnosis of venous thromboembolism: 20 years of progress, Ann. Intern. Med., 168 (2018), 131–140. https://doi.org/10.7326/M17-0291 doi: 10.7326/M17-0291
![]() |
[21] |
F. Khan, T. Tritschler, S. R. Kahn, M. A. Rodger, Venous thromboembolism, Lancet (London, England), 398 (2021), 64–77. https://doi.org/10.1016/S0140-6736(20)32658-1 doi: 10.1016/S0140-6736(20)32658-1
![]() |
[22] |
T. D. Martins, S. D. Martins, S. Montalvão, M. Al Bannoud, G. Y. Ottaiano, L. Q. Silva, et al., Combining artificial neural networks and hematological data to diagnose Covid-19 infection in Brazilian population, Neural Comput. Appl., 36 (2024), 4387–4399. https://doi.org/10.1007/s00521-023-09312-3 doi: 10.1007/s00521-023-09312-3
![]() |
[23] |
T. D. Martins, R. Maciel-Filho, S. A. L. Montalvão, G. S. S. Gois, M. Al Bannoud, G. Y. Ottaiano, et al., Predicting mortality of cancer patients using artificial intelligence, patient data and blood tests, Neural Comput. Appl., 36 (2024), 15599–15616. https://doi.org/10.1007/s00521-024-09915-4 doi: 10.1007/s00521-024-09915-4
![]() |
[24] |
F. W. G. Leebeek, New developments in diagnosis and management of acquired hemophilia and acquired von willebrand syndrome, HemaSphere, 5 (2021). https://doi.org/10.1097/HS9.0000000000000586 doi: 10.1097/HS9.0000000000000586
![]() |
[25] |
F. Peyvandi, G. Kenet, I. Pekrul, R. K. Pruthi, P. Ramge, M. Spannagl, Laboratory testing in hemophilia: Impact of factor and non‐factor replacement therapy on coagulation assays, J. Thromb. Haemost., 18 (2020), 1242–1255. https://doi.org/10.1111/jth.14784 doi: 10.1111/jth.14784
![]() |
[26] |
B. Pezeshkpoor, J. Oldenburg, A. Pavlova, Insights into the molecular genetic of hemophilia A and hemophilia B: The relevance of genetic testing in routine clinical practice, Hamostaseologie, 42 (2022), 390–399. https://doi.org/10.1055/a-1945-9429 doi: 10.1055/a-1945-9429
![]() |
[27] |
A. H. Kristoffersen, E. Ajzner, D. Rogic, E. Y. Sozmen, P. Carraro, A. P. Faria, et al., Is D-dimer used according to clinical algorithms in the diagnostic work-up of patients with suspicion of venous thromboembolism? A study in six European countries, Thromb. Res., 142 (2016), 1–7. https://doi.org/10.1016/j.thromres.2016.04.001 doi: 10.1016/j.thromres.2016.04.001
![]() |
[28] |
M. Kafeza, J. Shalhoub, N. Salooja, L. Bingham, K. Spagou, A. H. Davies, A systematic review of clinical prediction scores for deep vein thrombosis, Phlebology, 32 (2017), 516–531. https://doi.org/10.1177/0268355516678729 doi: 10.1177/0268355516678729
![]() |
[29] |
M. T. Greene, A. C. Spyropoulos, V. Chopra, P. J. Grant, S. Kaatz, S. J. Bernstein, et al., Validation of risk assessment models of venous thromboembolism in hospitalized medical patients, Am. J. Med., 129 (2016), 1001.e9–1001.e18. https://doi.org/10.1016/j.amjmed.2016.03.031 doi: 10.1016/j.amjmed.2016.03.031
![]() |
[30] |
P. C. Silveira, I. K. Ip, S. Z. Goldhaber, G. Piazza, C. B. Benson, R. Khorasani, Performance of wells score for deep vein thrombosis in the inpatient setting, JAMA Intern. Med., 175 (2015), 1112–1117. https://doi.org/10.1001/jamainternmed.2015.1687 doi: 10.1001/jamainternmed.2015.1687
![]() |
[31] |
M. Kafeza, J. Shalhoub, N. Salooja, L. Bingham, K. Spagou, A. H. Davies, A systematic review of clinical prediction scores for deep vein thrombosis, Phlebology, 32 (2016), 516–531. https://doi.org/10.1177/0268355516678729 doi: 10.1177/0268355516678729
![]() |
[32] |
I. Nichele, A. Tosetto, Scoring Systems for Estimating the Risk of Recurrent Venous Thromboembolism, Semin. Thromb. Hemost., 43 (2017), 493–499. https://doi.org/10.1055/s-0037-1602662 doi: 10.1055/s-0037-1602662
![]() |
[33] |
A. Muñoz, C. Ay, E. Grilz, S. López, C. Font, V. Pachón, et al., A clinical-genetic risk score for predicting cancer-associated venous thromboembolism: A development and validation study involving two independent prospective cohorts, J. Clin. Oncol., 41 (2023), 2911–2925. https://doi.org/10.1200/JCO.22.00255 doi: 10.1200/JCO.22.00255
![]() |
[34] |
F. Rodeghiero, A. Tosetto, T. Abshire, D. M. Arnold, B. Coller, P. James, et al., ISTH/SSC bleeding assessment tool: a standardized questionnaire and a proposal for a new bleeding score for inherited bleeding disorders, J. Thromb. Haemost., 8 (2010), 2063–2065. https://doi.org/10.1111/j.1538-7836.2010.03975.x doi: 10.1111/j.1538-7836.2010.03975.x
![]() |
[35] |
M. Borhany, N. Fatima, M. Abid, T. Shamsi, M. Othman, Application of the ISTH bleeding score in hemophilia, Transfus. Apher. Sci., 57 (2018), 556–560. https://doi.org/10.1016/j.transci.2018.06.003 doi: 10.1016/j.transci.2018.06.003
![]() |
[36] |
M. Khalifa, M. Albadawy, Artificial intelligence for clinical prediction: Exploring key domains and essential functions, Comput. Methods Programs Biomed. Updat., 5 (2024), 100148. https://doi.org/10.1016/j.cmpbup.2024.100148 doi: 10.1016/j.cmpbup.2024.100148
![]() |
[37] |
T. H. Tan, C. C. Hsu, C. J. Chen, S. L. Hsu, T. L. Liu, H. J. Lin, et al., Predicting outcomes in older ED patients with influenza in real time using a big data-driven and machine learning approach to the hospital information system, BMC Geriatr., 21 (2021), 280. https://doi.org/10.1186/s12877-021-02229-3 doi: 10.1186/s12877-021-02229-3
![]() |
[38] |
C. Guan, F. Ma, S. Chang, J. Zhang, Interpretable machine learning models for predicting venous thromboembolism in the intensive care unit: an analysis based on data from 207 centers, Crit. Care, 27 (2023), 406. https://doi.org/10.1186/s13054-023-04683-4 doi: 10.1186/s13054-023-04683-4
![]() |
[39] |
T. D. Martins, J. M. Annichino-Bizzacchi, A. V. C. Romano, R. Maciel Filho, Artificial neural networks for prediction of recurrent venous thromboembolism, Int. J. Med. Inform., 141 (2020), 104221. https://doi.org/10.1016/j.ijmedinf.2020.104221 doi: 10.1016/j.ijmedinf.2020.104221
![]() |
[40] |
I. Pabinger, C. Ay, Biomarkers and venous thromboembolism, Arter. Thromb. Vasc. Biol., 29 (2009), 332–336. https://doi.org/10.1161/ATVBAHA.108.182188 doi: 10.1161/ATVBAHA.108.182188
![]() |
[41] |
I. Pabinger, J. Thaler, C. Ay, Biomarkers for prediction of venous thromboembolism in cancer, Blood, 122 (2013), 2011–2018. https://doi.org/10.1182/blood-2013-04-460147 doi: 10.1182/blood-2013-04-460147
![]() |
[42] |
F. Galeano-Valle, L. Ordieres-Ortega, C. M. Oblitas, J. del-Toro-Cervera, L. Alvarez-Sala-Walther, P. Demelo-Rodríguez, Inflammatory biomarkers in the short-term prognosis of venous thromboembolism: A narrative review, Int. J. Mol. Sci., 22 (2021), 2627. https://doi.org/10.3390/ijms22052627 doi: 10.3390/ijms22052627
![]() |
[43] |
B. Jacobs, A. Obi, T. Wakefield, Diagnostic biomarkers in venous thromboembolic disease, J. Vasc. Surg. Venous Lymphat. Disord., 4 (2016), 508–517. https://doi.org/10.1016/j.jvsv.2016.02.005 doi: 10.1016/j.jvsv.2016.02.005
![]() |
[44] |
M. A. Bannoud, B. P. Gomes, M. C. de S. P. Abdalla, M. V Freire, K. Andreola, T. D. Martins, et al., Mathematical modeling of drying kinetics of ground Açaí (Euterpe oleracea) kernel using artificial neural networks, Chem. Pap., 78 (2024), 1033–1054. https://doi.org/10.1007/s11696-023-03142-2 doi: 10.1007/s11696-023-03142-2
![]() |
[45] |
M. A. Bannoud, T. D. Martins, B. F. dos Santos, Control of a closed dry grinding circuit with ball mills using predictive control based on neural networks, Digit. Chem. Eng., 5 (2022), 100064. https://doi.org/10.1016/j.dche.2022.100064 doi: 10.1016/j.dche.2022.100064
![]() |
[46] |
J. Berg, K. Nyström, Data-driven discovery of PDEs in complex datasets, J. Comput. Phys., 384 (2019), 239–252. https://doi.org/10.1016/j.jcp.2019.01.036 doi: 10.1016/j.jcp.2019.01.036
![]() |
[47] |
L. Burzawa, L. Li, X. Wang, A. Buganza-Tepole, D. M. Umulis, Acceleration of PDE-based biological simulation through the development of neural network metamodels, Curr. Pathobiol. Rep., 8 (2020), 121–131. https://doi.org/10.1007/s40139-020-00216-8 doi: 10.1007/s40139-020-00216-8
![]() |
[48] |
M. A. Bannoud, C. A. M. da Silva, T. D. Martins, Applications of metaheuristic optimization algorithms in model predictive control for chemical engineering processes: A systematic review, Annu. Rev. Control., 58 (2024), 100973. https://doi.org/10.1016/j.arcontrol.2024.100973 doi: 10.1016/j.arcontrol.2024.100973
![]() |
[49] |
M. A. Bannoud, P. H. N. Ferreira, R. R. de Andrade, C. A. M. da Silva, Control of an integrated first and second-generation continuous alcoholic fermentation process with cell recycling using model predictive control, Chem. Eng. Commun., (2024), 1–24. https://doi.org/10.1080/00986445.2024.2417901 doi: 10.1080/00986445.2024.2417901
![]() |
[50] |
Y. Zhao, C. Li, X. Liu, R. Qian, R. Song, X. Chen, Patient-specific seizure prediction via adder network and supervised contrastive learning, IEEE Trans. Neural Syst. Rehabil. Eng., 30 (2022), 1536–1547. https://doi.org/10.1109/TNSRE.2022.3180155 doi: 10.1109/TNSRE.2022.3180155
![]() |
[51] |
K. Leiderman, S. S. Sindi, D. M. Monroe, A. L. Fogelson, K. B. Neeves, The art and science of building a computational model to understand hemostasis, Semin. Thromb. Hemost., 47 (2021), 129–138. https://doi.org/10.1055/s-0041-1722861 doi: 10.1055/s-0041-1722861
![]() |
[52] |
N. Ratto, A. Bouchnita, P. Chelle, M. Marion, M. Panteleev, D. Nechipurenko, et al., Patient-specific modelling of blood coagulation, Bull. Math. Biol., 83 (2021), 50. https://doi.org/10.1007/s11538-021-00890-8 doi: 10.1007/s11538-021-00890-8
![]() |
[53] |
R. Burghaus, K. Coboeken, T. Gaub, L. Kuepfer, A. Sensse, H.-U. Siegmund, et al., Evaluation of the efficacy and safety of rivaroxaban using a computer model for blood coagulation, PLoS One, 6 (2011), e17626. https://doi.org/10.1371/journal.pone.0017626 doi: 10.1371/journal.pone.0017626
![]() |
[54] |
C. Watson, H. Saaid, V. Vedula, J. C. Cardenas, P. K. Henke, F. Nicoud, et al., Venous thromboembolism: Review of clinical challenges, biology, assessment, treatment, and modeling, Ann. Biomed. Eng., 52 (2024), 467–486. https://doi.org/10.1007/s10439-023-03390-z doi: 10.1007/s10439-023-03390-z
![]() |
[55] |
N. N. Ramli, S. Iberahim, N. H. M. Noor, Z. Zulkafli, T. M. T. M. Shihabuddin, M. H. Din, et al., Haemostasis and inflammatory parameters as potential diagnostic biomarkers for VTE in trauma-immobilized patients, Diagnostics (Basel), 13 (2023), 150. https://doi.org/10.3390/diagnostics13010150 doi: 10.3390/diagnostics13010150
![]() |
[56] |
L. G. R. Ferreira, R. C. Figueiredo, M. das Graças Carvalho, D. R. A. Rios, Thrombin generation assay as a biomarker of cardiovascular outcomes and mortality: A narrative review, Thromb. Res., 220 (2022), 107–115. https://doi.org/10.1016/j.thromres.2022.10.007 doi: 10.1016/j.thromres.2022.10.007
![]() |
[57] |
M. S. Edvardsen, K. Hindberg, E. S. Hansen, V. M. Morelli, T. Ueland, P. Aukrust, et al., Plasma levels of von Willebrand factor and future risk of incident venous thromboembolism, Blood Adv., 5 (2021), 224–232. https://doi.org/10.1182/bloodadvances.2020003135 doi: 10.1182/bloodadvances.2020003135
![]() |
[58] |
L. Anghel, R. Sascău, R. Radu, C. Stătescu, From classical laboratory parameters to novel biomarkers for the diagnosis of venous thrombosis, Int. J. Mol. Sci., 21 (2020), 1920. https://doi.org/10.3390/ijms21061920 doi: 10.3390/ijms21061920
![]() |
[59] |
H. Y. Lim, C. O'Malley, G. Donnan, H. Nandurkar, P. Ho, A review of global coagulation assays — Is there a role in thrombosis risk prediction?, Thromb. Res., 179 (2019), 45–55. https://doi.org/10.1016/j.thromres.2019.04.033 doi: 10.1016/j.thromres.2019.04.033
![]() |
[60] |
H. Hou, Z. Ge, P. Ying, J. Dai, D. Shi, Z. Xu, et al., Biomarkers of deep venous thrombosis, J. Thromb. Thrombolysis., 34 (2012), 335–346. https://doi.org/10.1007/s11239-012-0721-y doi: 10.1007/s11239-012-0721-y
![]() |
[61] |
D. Moher, A. Liberati, J. Tetzlaff, D. G. Altman, Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement, PLoS Med., 6 (2009), e1000097. https://doi.org/10.1371/journal.pmed.1000097 doi: 10.1371/journal.pmed.1000097
![]() |
[62] |
M. J. Page, J. E. McKenzie, P. M. Bossuyt, I. Boutron, T. C. Hoffmann, C. D. Mulrow, et al., The PRISMA 2020 statement: an updated guideline for reporting systematic reviews, BMJ, 372 (2021), n71. https://doi.org/10.1136/bmj.n71 doi: 10.1136/bmj.n71
![]() |
[63] |
E. N. Sorensen, G. W. Burgreen, W. R. Wagner, J. F. Antaki, Computational simulation of platelet deposition and activation: I. Model development and properties, Ann. Biomed. Eng., 27 (1999), 436–448. https://doi.org/10.1114/1.200 doi: 10.1114/1.200
![]() |
[64] |
K. Boryczko, W. Dzwinel, D. A. Yuen, Modeling fibrin aggregation in blood flow with discrete-particles, Comput. Methods Programs Biomed., 75 (2004), 181–194. https://doi.org/10.1016/j.cmpb.2004.02.001 doi: 10.1016/j.cmpb.2004.02.001
![]() |
[65] |
I. V. Pivkin, P. D. Richardson, G. Karniadakis, Blood flow velocity effects and role of activation delay time on growth and form of platelet thrombi, Proc. Natl. Acad. Sci. USA, 103 (2006), 17164–17169. https://doi.org/10.1073/pnas.0608546103 doi: 10.1073/pnas.0608546103
![]() |
[66] |
Z. Xu, N. Chen, M. M. Kamocka, E. D. Rosen, M. Alber, A multiscale model of thrombus development, J. R. Soc. Interface, 5 (2008), 705–722. https://doi.org/10.1098/rsif.2007.1202 doi: 10.1098/rsif.2007.1202
![]() |
[67] |
Z. Xu, N. Chen, S. C. Shadden, J. E. Marsden, M. M. Kamocka, E. D. Rosen, et al., Study of blood flow impact on growth of thrombi using a multiscale model, Soft. Matter, 5 (2009), 769–779. https://doi.org/10.1039/B812429A doi: 10.1039/B812429A
![]() |
[68] |
Z. Xu, J. Lioi, J. Mu, M. M. Kamocka, X. Liu, D. Z. Chen, et al., A multiscale model of venous thrombus formation with surface-mediated control of blood coagulation cascade, Biophys. J., 98 (2010), 1723–1732. https://doi.org/10.1016/j.bpj.2009.12.4331 doi: 10.1016/j.bpj.2009.12.4331
![]() |
[69] |
A. M. Shibeko, E. S. Lobanova, M. A. Panteleev, F. I. Ataullakhanov, Blood flow controls coagulation onset via the positive feedback of factor Ⅶ activation by factor Xa, BMC Syst. Biol., 4 (2010), 5. https://doi.org/10.1186/1752-0509-4-5 doi: 10.1186/1752-0509-4-5
![]() |
[70] |
S. W. Jordan, E. L. Chaikof, Simulated surface-induced thrombin generation in a flow field, Biophys. J., 101 (2011), 276–286. https://doi.org/10.1016/j.bpj.2011.05.056 doi: 10.1016/j.bpj.2011.05.056
![]() |
[71] |
K. Leiderman, A. L. Fogelson, Grow with the flow: a spatial-temporal model of platelet deposition and blood coagulation under flow, Math. Med. Biol., 28 (2011), 47–84. https://doi.org/10.1093/imammb/dqq005 doi: 10.1093/imammb/dqq005
![]() |
[72] |
A. L. Fogelson, Y. H. Hussain, K. Leiderman, Blood clot formation under flow: The importance of factor XI depends strongly on platelet count, Biophys. J., 102 (2012), 10–18. https://doi.org/10.1016/j.bpj.2011.10.048 doi: 10.1016/j.bpj.2011.10.048
![]() |
[73] |
K. Leiderman, A. L. Fogelson, The influence of hindered transport on the development of platelet thrombi under flow, Bull. Math. Biol., 75 (2013), 1255–1283. https://doi.org/10.1007/s11538-012-9784-3 doi: 10.1007/s11538-012-9784-3
![]() |
[74] |
A. Tosenberger, F. Ataullakhanov, N. Bessonov, M. Panteleev, A. Tokarev, V. Volpert, Modelling of thrombus growth in flow with a DPD-PDE method, J. Theor. Biol., 337 (2013), 30–41. https://doi.org/10.1016/j.jtbi.2013.07.023 doi: 10.1016/j.jtbi.2013.07.023
![]() |
[75] |
A. Sequeira, T. Bodnár, Blood coagulation simulations using a viscoelastic model, Math. Model. Nat. Phenom., 9 (2014), 34–45. https://doi.org/10.1051/mmnp/20149604 doi: 10.1051/mmnp/20149604
![]() |
[76] |
A. Tosenberger, N. Bessonov, V. Volpert, Influence of fibrinogen deficiency on clot formation in flow by hybrid model, Math. Model. Nat. Phenom., 10 (2015), 36–47. https://doi.org/10.1051/mmnp/201510102 doi: 10.1051/mmnp/201510102
![]() |
[77] |
O. S. Rukhlenko, O. A. Dudchenko, K. E. Zlobina, G. T. Guria, Mathematical modeling of intravascular blood coagulation under wall shear stress, PLoS One, 10 (2015), e0134028. https://doi.org/10.1371/journal.pone.0134028 doi: 10.1371/journal.pone.0134028
![]() |
[78] |
J. Pavlova, A. Fasano, J. Janela, A. Sequeira, Numerical validation of a synthetic cell-based model of blood coagulation, J. Theor. Biol., 380 (2015), 367–379. https://doi.org/10.1016/j.jtbi.2015.06.004 doi: 10.1016/j.jtbi.2015.06.004
![]() |
[79] |
A. Piebalgs, X. Y. Xu, Towards a multi-physics modelling framework for thrombolysis under the influence of blood flow, J. R. Soc. Interface, 12 (2015), 20150949. https://doi.org/10.1098/rsif.2015.0949 doi: 10.1098/rsif.2015.0949
![]() |
[80] |
Z. Li, A. Yazdani, A. Tartakovsky, G. E. Karniadakis, Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems, J. Chem. Phys., 143 (2015), 14101. https://doi.org/10.1063/1.4923254 doi: 10.1063/1.4923254
![]() |
[81] |
A. Bouchnita, K. Bouzaachane, T. Galochkina, P. Kurbatova, P. Nony, V. Volpert, An individualized blood coagulation model to predict INR therapeutic range during warfarin treatment, Math. Model. Nat. Phenom., 11 (2016), 28–44. https://doi.org/10.1051/mmnp/201611603 doi: 10.1051/mmnp/201611603
![]() |
[82] |
J. H. Seo, T. Abd, R. T. George, R. Mittal, A coupled chemo-fluidic computational model for thrombogenesis in infarcted left ventricles, Am. J. Physiol. Heart Circ. Physiol., 310 (2016), H1567–82. https://doi.org/10.1152/ajpheart.00855.2015 doi: 10.1152/ajpheart.00855.2015
![]() |
[83] |
M. N. Ngoepe, Y. Ventikos, Computational modelling of clot development in patient-specific cerebral aneurysm cases, J. Thromb. Haemost., 14 (2016), 262–272. https://doi.org/10.1111/jth.13220 doi: 10.1111/jth.13220
![]() |
[84] |
A. Bouchnita, T. Galochkina, V. Volpert, Influence of antithrombin on the regimes of blood coagulation: Insights from the mathematical model, Acta Biotheor., 64 (2016), 327–342. https://doi.org/10.1007/s10441-016-9291-2 doi: 10.1007/s10441-016-9291-2
![]() |
[85] |
E. V. Dydek, E. L. Chaikof, Simulated thrombin generation in the presence of surface-bound heparin and circulating tissue factor, Ann. Biomed. Eng., 44 (2016), 1072–1084. https://doi.org/10.1007/s10439-015-1377-5 doi: 10.1007/s10439-015-1377-5
![]() |
[86] |
J. Pavlova, A. Fasano, A. Sequeira, Numerical simulations of a reduced model for blood coagulation, Zeitschrift für Angew. Math. und Phys., 67 (2016), 28. https://doi.org/10.1007/s00033-015-0610-2 doi: 10.1007/s00033-015-0610-2
![]() |
[87] |
A. Tosenberger, F. Ataullakhanov, N. Bessonov, M. Panteleev, A. Tokarev, V. Volpert, Modelling of platelet-fibrin clot formation in flow with a DPD-PDE method, J. Math. Biol., 72 (2016), 649–681. https://doi.org/10.1007/s00285-015-0891-2 doi: 10.1007/s00285-015-0891-2
![]() |
[88] |
V. Govindarajan, V. Rakesh, J. Reifman, A. Y. Mitrophanov, Computational study of thrombus formation and clotting factor effects under venous flow conditions, Biophys. J., 110 (2016), 1869–1885. https://doi.org/10.1016/j.bpj.2016.03.010 doi: 10.1016/j.bpj.2016.03.010
![]() |
[89] |
C. Ou, W. Huang, M. M.-F. Yuen, A computational model based on fibrin accumulation for the prediction of stasis thrombosis following flow-diverting treatment in cerebral aneurysms, Med. Biol. Eng. Comput., 55 (2017), 89–99. https://doi.org/10.1007/s11517-016-1501-1 doi: 10.1007/s11517-016-1501-1
![]() |
[90] |
A. Yazdani, H. Li, J. D. Humphrey, G. E. Karniadakis, A general shear-dependent model for thrombus formation, PLoS Comput. Biol., 13 (2017), e1005291. https://doi.org/10.1371/journal.pcbi.1005291 doi: 10.1371/journal.pcbi.1005291
![]() |
[91] |
H. Hosseinzadegan, D. K. Tafti, Prediction of thrombus growth: Effect of stenosis and reynolds number, Cardiovasc. Eng. Technol., 8 (2017), 164–181. https://doi.org/10.1007/s13239-017-0304-3 doi: 10.1007/s13239-017-0304-3
![]() |
[92] |
L. M. Haynes, T. Orfeo, K. G. Mann, S. J. Everse, K. E. Brummel-Ziedins, Probing the dynamics of clot-bound thrombin at venous shear rates, Biophys. J., 112 (2017), 1634–1644. https://doi.org/10.1016/j.bpj.2017.03.002 doi: 10.1016/j.bpj.2017.03.002
![]() |
[93] |
H. Kamada, Y. Imai, M. Nakamura, T. Ishikawa, T. Yamaguchi, Shear-induced platelet aggregation and distribution of thrombogenesis at stenotic vessels, Microcirculation, 24 (2017). https://doi.org/10.1111/micc.12355 doi: 10.1111/micc.12355
![]() |
[94] |
J. D. Horn, D. J. Maitland, J. Hartman, J. M. Ortega, A computational thrombus formation model: application to an idealized two-dimensional aneurysm treated with bare metal coils, Biomech. Model. Mechanobiol., 17 (2018), 1821–1838. https://doi.org/10.1007/s10237-018-1059-y doi: 10.1007/s10237-018-1059-y
![]() |
[95] |
R. Méndez Rojano, S. Mendez, F. Nicoud, Introducing the pro-coagulant contact system in the numerical assessment of device-related thrombosis, Biomech. Model. Mechanobiol., 17 (2018), 815–826. https://doi.org/10.1007/s10237-017-0994-3 doi: 10.1007/s10237-017-0994-3
![]() |
[96] |
B. Gu, A. Piebalgs, Y. Huang, C. Longstaff, A. D. Hughes, R. Chen, et al., Mathematical modelling of intravenous thrombolysis in acute ischaemic stroke: Effects of dose regimens on levels of fibrinolytic proteins and clot lysis time, Pharmaceutics, 11 (2019), 111. https://doi.org/10.3390/pharmaceutics11030111 doi: 10.3390/pharmaceutics11030111
![]() |
[97] |
K. Ayabe, S. Goto, H. Oka, H. Yabushita, M. Nakayama, A. Tomita, et al., Potential different impact of inhibition of thrombin function and thrombin generation rate for the growth of thrombi formed at site of endothelial injury under blood flow condition, Thromb. Res., 179 (2019), 121–127. https://doi.org/10.1016/j.thromres.2019.05.007 doi: 10.1016/j.thromres.2019.05.007
![]() |
[98] |
J. Chen, S. L. Diamond, Reduced model to predict thrombin and fibrin during thrombosis on collagen/tissue factor under venous flow: Roles of γ'-fibrin and factor XIa, PLoS Comput. Biol., 15 (2019), e1007266. https://doi.org/10.1371/journal.pcbi.1007266 doi: 10.1371/journal.pcbi.1007266
![]() |
[99] |
A. Bouchnita, V. Volpert, A multiscale model of platelet-fibrin thrombus growth in the flow, Comput. Fluids, 184 (2019), 10–20. https://doi.org/10.1016/j.compfluid.2019.03.021 doi: 10.1016/j.compfluid.2019.03.021
![]() |
[100] |
H. Hosseinzadegan, D. K. Tafti, A predictive model of thrombus growth in stenosed vessels with dynamic geometries, J. Med. Biol. Eng., 39 (2019), 605–621. https://doi.org/10.1007/s40846-018-0443-5 doi: 10.1007/s40846-018-0443-5
![]() |
[101] |
O. E. Kadri, V. D. Chandran, M. Surblyte, R. S. Voronov, In vivo measurement of blood clot mechanics from computational fluid dynamics based on intravital microscopy images, Comput. Biol. Med., 106 (2019), 1–11. https://doi.org/10.1016/j.compbiomed.2019.01.001 doi: 10.1016/j.compbiomed.2019.01.001
![]() |
[102] |
J. Du, D. Kim, G. Alhawael, D. N. Ku, A. L. Fogelson, Clot permeability, agonist transport, and platelet binding kinetics in arterial thrombosis, Biophys. J., 119 (2020), 2102–2115. https://doi.org/10.1016/j.bpj.2020.08.041 doi: 10.1016/j.bpj.2020.08.041
![]() |
[103] |
W. T. Wu, M. Zhussupbekov, N. Aubry, J. F. Antaki, M. Massoudi, Simulation of thrombosis in a stenotic microchannel: The effects of vWF-enhanced shear activation of platelets, Int. J. Eng. Sci., 147 (2020), 103206. https://doi.org/10.1016/j.ijengsci.2019.103206 doi: 10.1016/j.ijengsci.2019.103206
![]() |
[104] |
A. Bouchnita, K. Terekhov, P. Nony, Y. Vassilevski, V. Volpert, A mathematical model to quantify the effects of platelet count, shear rate, and injury size on the initiation of blood coagulation under venous flow conditions, PLoS One, 15 (2020), e0235392. https://doi.org/10.1371/journal.pone.0235392 doi: 10.1371/journal.pone.0235392
![]() |
[105] |
Z. L. Liu, D. N. Ku, C. K. Aidun, Mechanobiology of shear-induced platelet aggregation leading to occlusive arterial thrombosis: A multiscale in silico analysis, J. Biomech., 120 (2021), 110349. https://doi.org/10.1016/j.jbiomech.2021.110349 doi: 10.1016/j.jbiomech.2021.110349
![]() |
[106] |
V. N. Kaneva, J. L. Dunster, V. Volpert, F. Ataullahanov, M. A. Panteleev, D. Y. Nechipurenko, Modeling thrombus shell: Linking adhesion receptor properties and macroscopic dynamics, Biophys. J., 120 (2021), 334–351. https://doi.org/10.1016/j.bpj.2020.10.049 doi: 10.1016/j.bpj.2020.10.049
![]() |
[107] |
A. Yazdani, Y. Deng, H. Li, E. Javadi, Z. Li, S. Jamali, et al., Integrating blood cell mechanics, platelet adhesive dynamics and coagulation cascade for modelling thrombus formation in normal and diabetic blood, J. R. Soc. Interface., 18 (2021), 20200834. https://doi.org/10.1098/rsif.2020.0834 doi: 10.1098/rsif.2020.0834
![]() |
[108] |
C. Ma, Y. Ren, Q. Zheng, J. Wang, A computational model on cartesian adaptive grid for thrombosis simulation, IEEE Access, 10 (2022), 67694–67702. https://doi.org/10.1109/ACCESS.2022.3184123 doi: 10.1109/ACCESS.2022.3184123
![]() |
[109] |
R. Méndez Rojano, A. Lai, M. Zhussupbekov, G. W. Burgreen, K. Cook, J. F. Antaki, A fibrin enhanced thrombosis model for medical devices operating at low shear regimes or large surface areas, PLoS Comput. Biol., 18 (2022), e1010277. https://doi.org/10.1371/journal.pcbi.1010277 doi: 10.1371/journal.pcbi.1010277
![]() |
[110] |
M. Rezaeimoghaddam, F. N. van de Vosse, Continuum modeling of thrombus formation and growth under different shear rates, J. Biomech., 132 (2022), 110915. https://doi.org/10.1016/j.jbiomech.2021.110915 doi: 10.1016/j.jbiomech.2021.110915
![]() |
[111] | A. S. Pisaryuk, N. M. Povalyaev, A. V Poletaev, A. M. Shibeko, Systems biology approach for personalized hemostasis correction, J. Pers. Med., 12 (2022). https://doi.org/10.3390/jpm12111903 |
[112] |
M. Zhussupbekov, R. Méndez Rojano, W. T. Wu, J. F. Antaki, von Willebrand factor unfolding mediates platelet deposition in a model of high-shear thrombosis, Biophys. J., 121 (2022), 4033–4047. https://doi.org/10.1016/j.bpj.2022.09.040 doi: 10.1016/j.bpj.2022.09.040
![]() |
[113] |
Y. Wang, J. Luan, K. Luo, T. Zhu, J. Fan, Multi-constituent simulation of thrombosis in aortic dissection, Int. J. Eng. Sci., 184 (2023), 103817. http://dx.doi.org/10.1016/j.ijengsci.2023.103817 doi: 10.1016/j.ijengsci.2023.103817
![]() |
[114] |
R. Petkantchin, A. Rousseau, O. Eker, K. Zouaoui Boudjeltia, F. Raynaud, B. Chopard, A simplified mesoscale 3D model for characterizing fibrinolysis under flow conditions, Sci. Rep., 13 (2023), 13681. https://doi.org/10.1038/s41598-023-40973-1 doi: 10.1038/s41598-023-40973-1
![]() |
[115] |
K. Miyazawa, A. L. Fogelson, K. Leiderman, Inhibition of platelet-surface-bound proteins during coagulation under flow Ⅱ: Antithrombin and heparin, Biophys. J., 122 (2023), 230–240. https://doi.org/10.1016/j.bpj.2022.10.038 doi: 10.1016/j.bpj.2022.10.038
![]() |
[116] |
A. R. Rezaie, S. T. Olson, Calcium enhances heparin catalysis of the antithrombin-factor Xa reaction by promoting the assembly of an intermediate heparin-antithrombin-factor Xa bridging complex: Demonstration by rapid kinetics studies, Biochemistry, 39 (2000), 12083–12090. https://doi.org/10.1021/bi0011126 doi: 10.1021/bi0011126
![]() |
[117] |
M. Anand, K. Rajagopal, K. R. Rajagopal, A model for the formation, growth, and lysis of clots in quiescent plasma: A comparison between the effects of antithrombin Ⅲ deficiency and protein C deficiency, J. Theor. Biol., 253 (2008), 725–738. https://doi.org/10.1016/j.jtbi.2008.04.015 doi: 10.1016/j.jtbi.2008.04.015
![]() |
[118] | M. J. Griffith, The heparin-enhanced antithrombin Ⅲ/thrombin reaction is saturable with respect to both thrombin and antithrombin Ⅲ, J. Biol. Chem., 257 (1982), 13302–13899. |
[119] | M. J. Griffith, Kinetics of the heparin-enhanced antithrombin Ⅲ/thrombin reaction. Evidence for a template model for the mechanism of action of heparin, J. Biol. Chem., 257 (1982), 7360–7365. |
[120] |
C. M. Danforth, T. Orfeo, K. G. Mann, K. E. Brummel-Ziedins, S. J. Everse, The impact of uncertainty in a blood coagulation model, Math. Med. Biol., 26 (2009), 323–336. https://doi.org/10.1093/imammb/dqp011 doi: 10.1093/imammb/dqp011
![]() |
[121] |
P. P. Naidu, M. Anand, Importance of Ⅷa inactivation in a mathematical model for the formation, growth, and lysis of clots, Math. Model. Nat. Phenom., 9 (2014), 17–33. https://doi.org/10.1051/mmnp/20149603 doi: 10.1051/mmnp/20149603
![]() |
[122] |
F. Saitta, J. Masuri, M. Signorelli, S. Bertini, A. Bisio, D. Fessas, Thermodynamic insights on the effects of low-molecular-weight heparins on antithrombin Ⅲ, Thermochim. Acta, 713 (2022), 179248. https://doi.org/10.1016/j.tca.2022.179248 doi: 10.1016/j.tca.2022.179248
![]() |
[123] |
H. Minakami, M. Morikawa, T. Yamada, T. Yamada, Candidates for the determination of antithrombin activity in pregnant women, J. Perinat. Med., 39 (2011), 369–374. https://doi.org/10.1515/jpm.2011.026 doi: 10.1515/jpm.2011.026
![]() |
[124] | K. C. Jones, K. G. Mann, A model for the tissue factor pathway to thrombin. Ⅱ: A mathematical simulation, J. Biol. Chem., 269 (1994), 23367–23373. |
[125] |
M. F. Hockin, K. C. Jones, S. J. Everse, K. G. Mann, A model for the stoichiometric regulation of blood coagulation, J. Biol. Chem., 277 (2002), 18322–18333. https://doi.org/10.1074/jbc.m201173200 doi: 10.1074/jbc.m201173200
![]() |
[126] |
R. Méndez Rojano, S. Mendez, D. Lucor, A. Ranc, M. Giansily-Blaizot, J. F. Schved, et al., Kinetics of the coagulation cascade including the contact activation system: sensitivity analysis and model reduction, Biomech. Model. Mechanobiol., 18 (2019), 1139–1153. https://doi.org/10.1007/s10237-019-01134-4 doi: 10.1007/s10237-019-01134-4
![]() |
[127] |
M. S. Chatterjee, W. S. Denney, H. Jing, S. L. Diamond, Systems biology of coagulation initiation: Kinetics of thrombin generation in resting and activated human blood, PLOS Comput. Biol., 6 (2010), e1000950. https://doi.org/10.1371/journal.pcbi.1000950 doi: 10.1371/journal.pcbi.1000950
![]() |
[128] |
A. Ranc, S. Bru, S. Mendez, M. Giansily-Blaizot, F. Nicoud, R. Méndez Rojano, Critical evaluation of kinetic schemes for coagulation, PLoS One, 18 (2023), e0290531. https://doi.org/10.1371/journal.pone.0290531 doi: 10.1371/journal.pone.0290531
![]() |
[129] |
M. F. Hockin, K. C. Jones, S. J. Everse, K. G. Mann, A model for the stoichiometric regulation of blood coagulation, J. Biol. Chem., 277 (2002), 18322–18333. https://doi.org/10.1074/jbc.m201173200 doi: 10.1074/jbc.m201173200
![]() |
[130] |
D. Luan, M. Zai, J. D. Varner, Computationally derived points of fragility of a human cascade are consistent with current therapeutic strategies, PLoS Comput. Biol., 3 (2007), 1347–1359. https://doi.org/10.1371/journal.pcbi.0030142 doi: 10.1371/journal.pcbi.0030142
![]() |
[131] |
K. G. Link, M. T. Stobb, J. Di Paola, K. B. Neeves, A. L. Fogelson, S. S. Sindi, et al., A local and global sensitivity analysis of a mathematical model of coagulation and platelet deposition under flow, PLoS One, 13 (2018), e0200917. https://doi.org/10.1371/journal.pone.0200917 doi: 10.1371/journal.pone.0200917
![]() |
![]() |
![]() |
1. | James C. L. Chow, Computational physics and imaging in medicine, 2025, 22, 1551-0018, 106, 10.3934/mbe.2025005 |