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Abstract: In the pursuit of personalized medicine, there is a growing demand for computational 
models with parameters that are easily obtainable to accelerate the development of potential solutions. 
Blood tests, owing to their affordability, accessibility, and routine use in healthcare, offer valuable 
biomarkers for assessing hemostatic balance in thrombotic and bleeding disorders. Incorporating these 
biomarkers into computational models of blood coagulation is crucial for creating patient-specific 
models, which allow for the analysis of the influence of these biomarkers on clot formation. This 
systematic review aims to examine how clinically relevant biomarkers are integrated into 
computational models of blood clot formation, thereby advancing discussions on integration 
methodologies, identifying current gaps, and recommending future research directions. A systematic 
review was conducted following the PRISMA protocol, focusing on ten clinically significant 
biomarkers associated with hemostatic disorders: D-dimer, fibrinogen, Von Willebrand factor, factor 
VIII, P-selectin, prothrombin time (PT), activated partial thromboplastin time (APTT), antithrombin 
III, protein C, and protein S. By utilizing this set of biomarkers, this review underscores their 
integration into computational models and emphasizes their integration in the context of venous 
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thromboembolism and hemophilia. Eligibility criteria included mathematical models of thrombin 
generation, blood clotting, or fibrin formation under flow, incorporating at least one of these 
biomarkers. A total of 53 articles were included in this review. Results indicate that commonly used 
biomarkers such as D-dimer, PT, and APTT are rarely and superficially integrated into computational 
blood coagulation models. Additionally, the kinetic parameters governing the dynamics of blood clot 
formation demonstrated significant variability across studies, with discrepancies of up to 1,000-fold. 
This review highlights a critical gap in the availability of computational models based on 
phenomenological or first-principles approaches that effectively incorporate affordable and routinely 
used clinical test results for predicting blood coagulation. This hinders the development of practical 
tools for clinical application, as current mathematical models often fail to consider precise, patient-
specific values. This limitation is especially pronounced in patients with conditions such as hemophilia, 
protein C and S deficiencies, or antithrombin deficiency. Addressing these challenges by developing 
patient-specific models that account for kinetic variability is crucial for advancing personalized 
medicine in the field of hemostasis.  

Keywords: mathematical modeling; personalized medicine; thrombosis; hemostasis; computational 
model; biomarkers. 

 

1. Introduction  

Hemostatic disorders can indicate severe health conditions, including thrombotic and bleeding 
disorders, with varying degrees of risk, complexity, and patient impact. A procoagulant state can lead 
to dangerous diseases, such as deep vein thrombosis (DVT) or pulmonary embolism (PE), which are 
two manifestations of venous thromboembolism (VTE) that pose heightened risks for vascular 
complications. VTE emerges as the third primary contributor to mortality from cardiovascular 
diseases [1] and a significant contributor to the worldwide load of illness [2]. Notably, the incidence 
of thrombosis has increased significantly since the COVID-19 pandemic [3–5], emphasizing the need 
for increased attention to this hemostatic disorder. In contrast, a hypocoagulant state is characterized 
by a reduced ability of the blood to clot. Hemophilia, a classic example of a hypocoagulant state, 
involves a deficiency in specific clotting factors [6], impairing the body’s capacity to form stable blood 
clots and resulting in a heightened risk of excessive bleeding, even from minor injuries. Research into 
the mechanisms underlying hemophilia has led to treatments that enable many patients to achieve a 
normal life expectancy [6]. Both clinical and computational studies have become valuable tools for 
deepening our understanding of hemophilia [7] and supporting the development of advanced therapies, 
including gene therapy [8]. 

The complexity and individualized nature of hemostatic disorders often render traditional “one-
size-fits-all” diagnostic and therapeutic approaches inadequate. Such approaches fail to account for 
variations in individual patient risk factors, comorbidities, and responses to treatment [9]. 
Consequently, there has been an increasing shift from standardized treatment models to personalized 
medicine, which better accommodates patient-specific characteristics [9–11]. Personalized 
approaches address these limitations by tailoring diagnostics and interventions to each patient’s 
unique hemostatic profile, with the potential to improve outcomes, reduce adverse effects, and 
optimize resource use [12–15]. Personalized management has shown promise in conditions like 
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hereditary hemorrhagic telangiectasia [16], hemophilia A [17,18], and thrombosis [19]. The 
complexity of hemostatic disorders continues to pose challenges for researchers and healthcare 
providers in developing effective, individualized diagnostic and management strategies. 

The diagnosis of patients with suspected VTE typically involves three main approaches: clinical 
pre-test probability assessment, D-dimer testing, and imaging [20]. Clinical pre-test probability, 
determined through established scoring systems like the Wells score, estimates the likelihood of VTE 
based on clinical factors and patient history. For instance, the Wells score assesses variables such as 
recent immobilization or surgery, active cancer, leg swelling, and previous VTE history to classify 
patients into low, moderate, or high-risk categories for thrombosis. This stratification helps prioritize 
further testing based on each patient’s risk level. The D-dimer test, a blood test that detects fibrin 
degradation products, is a sensitive (though nonspecific) marker for clot formation. A negative D-
dimer result (below a specified threshold) in patients with low clinical pre-test probability can 
effectively rule out VTE, sparing patients from further imaging. However, a confirmed VTE diagnosis 
requires imaging, such as ultrasound for DVT or computed tomography pulmonary angiography for 
PE, which provides direct visualization of the thrombus [21]. Given the high costs and limited 
accessibility of imaging, there is substantial interest in refining clinical pre-test methods that 
incorporate cost-effective and accessible tests while maintaining high sensitivity and specificity. 
Emerging clinical scoring systems and data-driven prediction models are promising, aiming to reduce 
unnecessary imaging and streamline the diagnostic process [22,23]. 

The diagnosis of hemophilia involves a series of blood tests to assess the blood’s ability to clot 
and to measure the levels of specific clotting factors. Initially, a complete blood count and coagulation 
screening tests, such as prothrombin time (PT) and activated partial thromboplastin time (APTT), are 
conducted to identify any clotting abnormalities [24,25]. If these tests suggest a clotting issue, more 
specific assays are performed to measure the levels of clotting factor VIII or IX to determine the type 
and severity of hemophilia (A or B). Genetic testing may also be used, especially for those with a 
family history of hemophilia, to identify the specific gene mutations responsible [26]. Early and 
accurate diagnosis is crucial for managing hemophilia effectively and preventing complications 
associated with bleeding episodes. 

Clinical scores, such as the Wells score, rely on patient characteristics, medical history, symptoms, 
and exam results to assess the risk of developing VTE and PE [27]. These scoring systems are widely 
used in clinical practice due to their simplicity and accessibility, allowing quick risk stratification 
without needing advanced testing. For instance, Kafeza et al. [28] reviewed the Wells score and other 
clinical scoring systems for DVT, highlighting their widespread use. However, despite their popularity, 
clinical scores have several limitations that impact their effectiveness across different patient 
populations, especially in non-hospitalized or outpatient settings where clinical presentation can vary 
significantly [29,30].  

One major limitation is the reliance on subjective clinical judgment in scores like the Wells score. 
For example, the criterion “an alternative diagnosis is less likely than PE” is open to interpretation, 
which can introduce variability in scoring and reduce diagnostic consistency across healthcare 
providers [31]. Additionally, many of these scores, including HERDOO2, Vienna, and DASH, are 
applied approximately 3–4 months after initiating anticoagulant therapy, limiting their predictive 
value for patients who discontinue anticoagulants earlier or remain at high risk for recurrence after 
this period [32]. The Wells score itself is not designed for recurrent VTE and is less effective in patients 
with atypical risk profiles. Similarly, the HERDOO2 score, used to assess recurrence risk, includes the 
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D-dimer measurement while on anticoagulant therapy, which can impair its predictive accuracy in 
some instances [32]. 

Scoring systems specific to high-risk populations, such as those used for cancer patients, also 
have notable limitations. For instance, the Khorana score, a widely used tool for predicting VTE risk 
in cancer patients, demonstrates variable predictive performance across different cancer types and has 
limited accuracy in categorizing patients into high-risk groups. This results in a modest predictive 
value [33]. 

For hypocoagulation disorders, the ISTH bleeding score [34] is a valuable tool for assessing 
bleeding risk and severity in patients with bleeding disorders, including those with hemophilia [35]. 
However, it has limitations. It is not tailored for all patients, particularly those with rare bleeding 
disorders, and its reliance on self-reported data introduces variability, as patients may interpret and 
report bleeding events differently. 

Modeling can enhance risk assessment by integrating diverse data sources, such as laboratory 
results, imaging findings, and detailed patient demographics. This comprehensive approach allows for 
more precise evaluations of hemostatic disorders by considering factors that may be overlooked in 
simpler scoring systems. Advanced analytical techniques, such as machine learning algorithms, can 
analyze complex interactions among multiple variables, revealing patterns that traditional methods 
might miss. Additionally, these models can provide personalized risk assessments tailored to individual 
patient profiles, improving predictive accuracy and reducing the likelihood of false positives and 
negatives [36]. By leveraging real-time data and continuously adapting to new information, predictive 
models can facilitate timely and informed clinical decisions, thereby improving patient outcomes in 
VTE management [37]. 

The growth in data storage capacity, processing capacity, and the expansion of electronic health 
records has popularized data-driven methodologies for predicting hemostatic disorders using machine 
learning, mainly because these methods can manage a high number of variables and observations, 
enabling the extraction of complex patterns and relationships [38] that may elude human perception 
when faced with large datasets. In this context, leveraging information from blood tests is feasible [39], 
given their rich array of variables, including biomarkers known to indicate VTE [40–43]. 

An alternative now gaining prominence is the use of computational methods based on first 
principles and mathematical modeling approaches to enhance understanding by incorporating detailed, 
mechanistic information. Unlike machine learning models, these computational mathematical models 
offer greater interpretability, the capacity for extrapolation, and deeper insights into the underlying 
biological and physical mechanisms of disease processes. However, there are contexts where these 
models can be more challenging to implement due to their higher computational demands and the 
complexity involved in accurately capturing intricate biological interactions compared to data-driven 
approaches [44,45]. 

In general, first-principle models are constructed using coupled ordinary differential equations 
(ODEs) or partial differential equations (PDEs), as these are well-suited for representing dynamic 
physical and biological processes [46]. Once the governing principles of a system are well understood, 
they can be computationally implemented, and the corresponding equations solved. Solving these 
systems, however, can be computationally intensive, particularly for complex biological or physical 
interactions [47]. Data-driven approaches, in contrast, typically rely on matrix operations and decision-
making algorithms, which are computationally efficient but often demand large datasets and significant 
computational resources for model training. The process of collecting and processing these extensive 
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datasets can be both time-consuming and costly. Additionally, the training phase itself can be resource-
intensive and challenging, requiring various optimization algorithms, including classic methods such 
as interior-point and sequential quadratic programming, gradient-based algorithms, and even 
metaheuristic optimization techniques [48]. 

The computational complexity of first-principle and data-driven models can be considered in two 
main contexts. First, for pre-built models: Once trained or validated, data-driven models are generally 
computationally less expensive to deploy in real-time [for instance, replacing a system of ODEs with 
simpler matrix operations in models such as artificial neural network (ANN) [49]] or patient-specific 
applications [50]. However, this depends on the complexity of the specific data-driven model, as deep 
neural networks or other advanced algorithms can also be computationally intensive. Second, first-
principle models typically require less empirical data because they are grounded in established physical 
or biological laws rather than learned patterns. This can make their initial development less data-
intensive than data-driven models, which require large datasets and complex, computationally 
demanding training phases to achieve accuracy. In this context, data-driven models are indeed often 
more computationally expensive due to the need for high-dimensional data and iterative learning 
processes, which demand significant computational power and time.  

Computational models of blood clot formation serve as valuable tools, offering insights into the 
complexities of this phenomenon [51]. These models enable the simulation of conditions 
representative of diseases affecting the hemostatic balance [7], aid in treatment planning [52], and 
facilitate the assessment of efficacy, safety, and dosage requirements of medications [53]. Despite their 
potential, these models face challenges in large-scale patient application, primarily due to the 
difficulties in determining parameters such as blood factor concentrations and kinetic rates because of 
limitations related to required equipment, time, and costs [52]. 

In a recent review, Watson et al. [54] examined the clinical challenges associated with VTE, 
exploring its complex biological aspects and the role of computational modeling in representing these 
factors. The authors highlighted that while several risk factors for VTE have been identified, the 
underlying biological mechanisms remain incompletely understood, complicating efforts to develop 
reliable predictive models. For instance, deficiencies in protein C, protein S, and antithrombin III are 
established risk factors that influence VTE and related hemostatic disorders. Yet, these factors are 
difficult to integrate effectively in current computational models due to the complexity of their 
biological interactions. Watson et al. [54] conclude that existing computational models for VTE 
prediction are not yet sufficiently developed for clinical application, emphasizing the need for ongoing 
research to enhance their utility. In line with their recommendations, advancing these models may 
require incorporating additional variables associated with VTE risk, such as levels of protein C, protein 
S, and antithrombin III, as well as biomarkers indicative of hemostatic dysregulation, including D-
dimer and P-selectin. Further, incorporating routine coagulation assessments, such as PT and APTT, 
could improve model accuracy, making them more adaptable to individual patient profiles and, 
ultimately, more relevant for clinical use. 

Our review builds on the insights of Watson et al. [54] by explicitly analyzing the mathematical 
integration of accessible clinical variables into computational models for blood clot formation, which 
has not been comprehensively examined in prior literature. The novelty of our review is the unique 
perspective on computational modeling that aligns with the study presented by Watson et al. [54]. By 
emphasizing the inclusion of clinically relevant risk factors and biomarkers, our review aims to support 
the development of more accurate, patient-specific computational tools for predicting conditions such 
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as VTE and other hemostatic disorders. 
In the pursuit of personalized medicine and practical clinical implementation, there is a growing 

need for computational models with more accessible obtainable parameters. Blood tests emerge as 
promising exams, characterized by their affordability, accessibility, and routine prescription by 
healthcare professionals. Moreover, blood tests provide crucial measurements of significant 
biomarkers in hemostasis, including D-dimer, p-selectin, and fibrinogen. In light of the above, we 
conducted a systematic review to comprehensively analyze and discuss how phenomenological models 
of blood clot formation under flow can mathematically represent blood biomarkers relevant to 
hemostatic disorders.  

The contributions of this study are as follows: 
 Compiling studies on computational models of blood clot formation that incorporate 

biomarkers. 
 Standardizing the mathematical representations of biomarkers and their kinetic constants. 
 Analyzing and discussing the integration of biomarkers into computational models with a 

focus on patient-specific perspectives. 
 Identifying limitations and gaps in the mathematical modeling of these biomarkers. 
 Recommending directions for future research.  

The remaining sections are organized as follows: Section 2 outlines the methodology employed 
for the inclusion of studies in this systematic review. Section 3 presents the results, summarizing the 
included studies and providing an in-depth discussion of each study. Finally, the conclusions are 
presented. The supplementary material (SM) file contains tables detailing the references, mathematical 
expressions, kinetic parameter values, brief descriptions of the models used (if applicable), and original 
references for each biomarker. We recommend reading this article in conjunction with the SM file. 

2. Materials and methods 

2.1. Blood biomarkers 

Given the abundance of biomarkers that indicate a hemostatic imbalance, this systematic review 
specifically targets a restricted set of biomarkers with key characteristics: reflection of coagulation, 
clinical utility, risk assessment, and treatment monitoring. Ten biomarkers and coagulation 
parameters were chosen: D-dimer, fibrinogen, Von Willebrand factor (vWF), factor VIII, p-selectin, 
PT, APTT, antithrombin III (ATIII), protein C/activated protein C (PC/PCA), and protein S (PS). 
Several studies have shown the importance of these factors as indicators of disturbances in 
hemostatic balance [55–60]. 

2.2. Information sources and search strategy 

This systematic review adhered to the Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) protocol [61,62]. Literature extraction was conducted through searches in 
PubMed, Embase, the Cochrane Library, and SCOPUS. The record extraction date was December 31, 
2023, with no start date filter applied. 

The search strategy involved using keywords related to computational modeling, thrombosis, and 
the ten selected biomarkers, linked by logical operators “OR” and “AND”, as exemplified below: 
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(‘mathematical model’ “OR” ‘mathematical modeling’ “OR” ‘computational modeling’ “OR” 
‘computational simulation’ “OR” ‘computer simulation’ “OR” ‘model simulation’) “AND” (‘blood 
clot’ “OR” ‘thrombus’ “OR” ‘blood coagulation’ “OR” ‘blood plug’) “AND” (‘d-dimer’ “OR” 
‘fibrinogen’ “OR” ‘von Willebrand factor’ “OR” ‘factor VIII’ “OR” ‘p-selectin’ “OR” ‘prothrombin 
time’ “OR” ‘activated partial thromboplastin time’ “OR” ‘antithrombin’ “OR” ‘protein C’ “OR” 
‘proteins’) 

Section S2 of the SM file provides the specific query sentence for each search engine. 

2.3. Screening and exclusion criteria 

The information on each record (title, authors, year, DOI, journal, article type, language) was 
stored in an electronic spreadsheet, and duplicates were removed. Two authors (MAB and TDM) 
independently conducted a thorough review and analysis of each record’s title, abstract, and overall 
information. Records were sequentially excluded based on the following criteria: 1) not found; 2) 
retracted; 3) language (excluding records not in English); 4) article type (limited to full-length articles; 
reviews, commentaries, letters, and other types were excluded); and 5) abstract (articles not aligned 
with the topic of computational modeling and blood clot formation were excluded). Any discrepancies 
between the authors were deliberated and resolved through discussion with the other authors. 

2.4. Full-text assessment and eligibility criteria 

The complete texts of the remaining articles were meticulously examined and analyzed by two 
authors (MAB and TDM). Any discrepancies were resolved through consultation with the other 
authors. The following eligibility criteria were applied for the inclusion of records in this systematic 
review: 1) the article must include a mathematical model that accounts for the effects of flow and 
focuses explicitly on thrombin generation, blood clot formation, or fibrin formation; 2) it involves a 
spatiotemporal model; 3) it includes the mathematical modeling of at least one of the ten biomarkers 
under consideration; and 4) in cases where a model from another study is utilized, it introduces novel 
additions to the mathematical modeling that distinguish it from the original one. Articles failing to 
meet these four criteria were excluded. 

3. Results and discussion 

Figure 1 illustrates the selection process for articles included in this review. Initially, a literature 
search yielded a total of 3047 records, of which 2707 underwent title and abstract screening. 
Subsequently, 352 studies underwent a full-text review to assess eligibility, resulting in the exclusion 
of studies that did not meet the eligibility criteria. In total, 53 studies satisfied the eligibility criteria 
and were included in this systematic review. Table 1 provides a list of these studies along with the 
biomarkers they included in their mathematical models. Additional abbreviations used are listed in 
Table S1 of the SM file. 

Among the most commonly studied biomarkers, ATIII and fibrin(ogen) are prominently featured, 
spanning studies from early investigations to the latest research. In contrast, biomarkers such as FVIII 
and PC have been examined less frequently. Despite their established roles as thrombosis indicators, 
D-dimer and p-selectin have been infrequently studied, appearing primarily in studies from 2019 
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onward. PT and APTT were each investigated in a single recent study in 2022. Notably, the 
mathematical modeling studies reviewed in this study have not incorporated PS into the computational 
models. 

Table 1. Checklist of biomarkers modeled in the studies included in this systematic review. 

Reference 

Biomarkers 

D-

dimer 

P-

selectin 
PT APTT vWF Fibrinogen ATIII FVIII PC PS 

Sorensen et al. (1999) [63]       X    

Boryczko et al. (2004) [64]      X     

Pivkin et al. (2006) [65]      X     

Xu et al. (2008) [66]      X  X   

Xu et al. (2009) [67]       X    

Xu et al. (2010) [68]       X X X  

Shibeko et al. (2010) [69]      X X X X  

Jordan and Chaikof (2011) [70]       X X X  

Leiderman and Fogelson (2011) 

[71] 
      X X X  

Fogelson et al. (2012) [72]       X X X  

Leiderman and Fogelson (2013) 

[73] 
      X X X  

Tosenberger et al. (2013) [74]           

Sequeira and Bódnar (2014) 

[75] 
     X X X X  

Tosenberger et al. (2015) [76]      X     

Rukhlenko et al. (2015) [77]      X     

Pavlova et al. (2015) [78]      X X X X  

Piebalgs and Xu (2015) [79]      X     

Li et al. (2015) [80]      X X X X  

Bouchnita et al. (2016) [81]      X X  X  

Seo et al. (2016) [82]      X  X   

Ngoepe and Ventikos (2016) 

[83] 
      X X   

Bouchnita et al. (2016) [84]      X X X   

Dydek and Chaikof (2016) [85]       X X X  

Pavlova et al. (2016) [86]      X X  X  

Tosenberger et al. (2016) [87]      X     

Govindarajan et al. (2016) [88]      X X X X  

Ou et al. (2017) [89]      X X X X  

Yazdani et al. (2017) [90]      X X X X  

Hosseinzadegan et al. (2017) 

[91] 
      X    

Haynes et al. (2017) [92]      X     

      Continued on next page 
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Reference 

Biomarkers 

D-

dimer 

P-

selectin 
PT APTT vWF Fibrinogen ATIII FVIII PC PS 

Kamada et al. (2017) [93]     X X     

Horn et al. (2018) [94]      X X X X  

Méndez Rojano et al. (2018) 

[95] 
       X   

Gu et al. (2019) [96]      X     

Ayabe et al. (2019) [97]     X      

Chen and Diamon (2019) [98] X     X     

Bouchnita and Volpert (2019) 

[99] 
     X X  X  

Hosseinzadegan and Tafti 

(2019) [100] 
      X    

Kadri et al. (2019) [101]  X         

Du et al. (2020) [102]     X X     

Wu et al. (2020) [103]     X  X    

Bouchnita et al. (2020) [104]      X X    

Liu et al. (2021) [105]     X      

Kaneva et al. (2021) [106]     X      

Yazdani et al. (2021) [107]     X X X X X  

Ma et al. (2022) [108]     X      

Méndez Rojano et al. (2022) 

[109] 
     X X    

Rezaeimoghaddam and van de 

Vosse (2022) [110] 
      X    

Pisaryuk et al. (2022)[111]   X X  X X X   

Zhussupbekov et al. (2022) 

[112] 
    X  X    

Wang et al. (2023) [113]       X    

Petkantchin et al. (2023) [114]      X     

Miyazawa et al. (2023)[115]       X X X  

PT: prothrombin time. APTT: activated partial thromboplastin time. vWF: von Willebrand factor. ATIII: antithrombin III. 

FVIII: factor VIII. PC: protein C. PS: protein S. 

A consistent feature among these studies is the representation of biomarkers as a reaction source 
term, depicting their role in the coagulation cascade (consumption/production). For instance, in models 
utilizing convective-diffusive-reactive (CDR) equations, the temporal and spatial changes for 
antithrombin are expressed as: 

 
ப(େ೔)

ப୲
= ∇ ∙ (D௜∇C௜) − ∇ ∙ (𝐕C௜) + 𝑆௜ (1) 

Here, C௜  represents the concentration of species i, D௜  represents the diffusion coefficient of 
species i, 𝐕 is the velocity field, and 𝑆௜ is the reaction source term (RST). 
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Figure 1. PRISMA flow diagram. 

3.1. Antithrombin III 

ATIII stood out as the most commonly modeled biomarker in this systematic review. Table S4 in 
Section S5 of the SM provides mathematical expressions associated with ATIII. Table 2 outlines the 
kinetic parameters used in mathematical expressions for antithrombin III, along with the initial 
concentration range of ATIII. Additional values are available in Tables S3 and S4 in the SM file. 

The RST term typically assumes the consumption through inhibition within the coagulation 
cascade, employing first- and second-order kinetics. Equation (2) provides a general representation of 
second-order kinetics, while Eq (3) represents first-order kinetics: 

 𝑆஺்ூூூ = −𝐶஺்ூூூ ∑ 𝑘௜,஺்ூூூ
ାା 𝐶௜

௡
௜ୀଵ  (2) 

 𝑆஺்ூூூ = − ∑ 𝑘௜,஺்ூூூ
ା 𝐶௜

௡
௜ୀଵ  (3) 

Here, 𝑆஺்ூூூ is the RST of ATIII, 𝐶஺்ூூூ is the concentration of ATIII, 𝑘௜,஺்ூூூ
ାା  and 𝑘௜,஺்ூூூ

ା  are 
the second-order and first-order kinetic rates of inhibition of species i,…,n by ATIII, respectively, and 
𝐶௜ is the concentration of species i,…,n that suffers inhibition by ATIII. 

Rezaeimoghaddam and van de Vosse [110] used coupled CDR equations to illustrate platelet and 
biomolecule transport, modeling thrombus formation and growth [Eq (S4.1)]. Equation (1) outlines 
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the spatiotemporal dynamics of ATIII, depicting its consumption due to IIa inhibition with a second-
order rate [Eq (2)]. This same approach was adopted by Bouchnita et al. [81] and Méndez Rojano et 
al. [109] [Eq (S4.1)]. In subsequent studies, Bouchnita et al. [99,104] expanded their investigation 
beyond ATIII consumption via thrombin inhibition alone. They introduced an additional term 
accounting for consumption through a second-order rate mechanism, specifically targeting the 
inhibition of the combined factors IXa and Xa by ATIII [Eq (S4.2)]. However, they did not specify the 
reaction rates for each factor individually, only providing the sum for factors IXa and Xa. Jordan and 
Chaikof [70] employed a similar approach, offering detailed kinetic rate information for factors IXa 
and Xa [Eq (S4.3)]. Notably, the rates of IXa and Xa were 1,000 times greater than those used by 
Bouchnita et al. [99,104]. This discrepancy can be attributed to the fact that the kinetic constant in the 
study of Jordan and Chaikof [70] was taken from the study of Rezaie and Olson [116], which 
investigated the Ca2+ catalyzed reaction of antithrombin III with blood factor Xa, resulting in an 
accelerated kinetic rate. Ou et al. [89] modeled the ATIII source term, considering inhibition of 
thrombin, factors IXa, and Xa, utilizing a first-order rate constant [Eq (S4.4)]. 

Most models in this systematic review employed ATIII as an RST, representing a second-order 
inhibition of factors IIa, IXa, Xa, and XIa [Eq (S4.5)] [75,78,80,90,107,113], based on the model by 
Anand et al. [117]. For personalized patient modeling, integrating factors IIa, IXa, Xa, and XIa offers 
two key benefits: 1) it better reflects the dynamics of the coagulation cascade; and 2) it enables 
modeling of patients with deficiencies in these factors (hemophilia B, factor X deficiency, and 
hemophilia C). Horn et al. [94] incorporated factor XIIa in the PDE system, inhibited by thrombin with 
second-order kinetics [see Eq (S4.6)]. 

Bouchnita et al. [84] overlooked the dynamic evolution of ATIII, using it solely as a thrombin 
inhibitor [Eq (S4.7)]. Their study explored thrombin generation under two conditions, with and without 
blood flux, yielding distinct ATIII concentration expressions that impeded thrombin propagation. 
Remarkably, the threshold was lower with blood flow than without it. Pavlova et al. [78,86] proposed 
a synthetic blood coagulation model focusing on prothrombinase, thrombin, and fibrin. ATIII inhibits 
IIa and prothrombinase with second-order kinetics [Eq (S4.8)], providing a simpler alternative to the 
model by Anand et al. [117]. While flexible for ATIII deficiency studies, it may not suit hemophilia 
cases, where models involving factors IXa, Xa, and XIa could be more applicable.  

Xu et al. [68] simulated thrombin generation under static ODEs and PDEs under flow. In the static 
model, thrombin production stabilizes after peaking; however, in the ATIII-incorporated model, 
thrombin concentration decreases over time. The authors attributed this difference to the assumption 
in the ODE model of an infinite supply of binding sites on platelet surfaces for coagulant factors, 
contrasting with the finite number in the multiscale model. Both Xu et al. [68] and Ngoepe and 
Ventikos [83] employed the same expression for the antithrombin RST: second-order rate inhibition of 
thrombin, intermediate meizothrombin (mIIa), factor IXa, Xa, and 𝑇𝐹 ≡ 𝑉𝐼𝐼௔ [Eq (S4.9)]. 

Dydek and Chaikof [85] incorporated heparin into their mathematical model, enhancing ATIII’s 
thrombin inhibition capacity [Eq (S4.10)]. The model encompasses the inhibition of factors IIa, IXa, 
and Xa. Heparin interacts with ATIII through second-order kinetics, while the complex dissociation 
between ATIII surface-bound heparin of lengths 5, 26, and 70 saccharides follows first-order kinetics.  

Pisaryuk et al. [111] developed a comprehensive model to define personalized hemostasis profiles 
under low-molecular-weight heparin therapy [Eq (S4.11)]. Among the reviewed studies, this model 
stands out for its complexity in representing thrombin dynamics. It includes second-order inhibition 
kinetics for factors IIa, IXa, Xa, XIa, 𝑋௔ ≡ 𝑉௔

௘, 𝑋௔ ≡ 𝑉௔
௩, and HC (see Table S3 of the SM file for 
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variable description), along with thrombin aggregation with fibrinogen and fibrin. Additionally, it 
models 𝐻𝐶 ≡ 𝐴𝑇𝐼𝐼𝐼 dissociation using first-order kinetics.  

Several studies [63,67,91,100,103,112] employed Griffith’s model [118,119] to simulate the 
spatiotemporal evolution of ATIII in the presence of heparin. This model elucidates the kinetics of 
heparin-catalyzed thrombin inactivation by ATIII [Eq (S4.12)]. While Griffith’s [118,119] model 
provides a valuable framework for understanding the kinetics of heparin-catalyzed thrombin 
inactivation by ATIII, it has several limitations, such as assumptions of homogeneity and simplified 
kinetics, as well as sensitivity to parameter values, which are challenging to accurately determine 
experimentally. 

Blood clot growth can be modeled by considering platelet binding sites, where coagulation factors 
bind, react, and produce thrombin, contributing to platelet activation and aggregation. Leiderman and 
Fogelson [71] proposed a model for platelet aggregation and blood coagulation under flow, focusing 
on the chemical species bound to activated platelets [see Eq (S4.13)]. However, ATIII’s spatiotemporal 
evolution was not addressed in this model. Instead, ATIII acted as a first-order inhibitor in equations 
for IIa, IXa, and Xa. In the proposed model, platelet activation and aggregation impact both flow and 
diffusion processes, as platelet aggregation introduces a resistance term that impedes blood flow. 
Consequently, the effect of ATIII on other factors cascades through the system, altering thrombin 
production and further influencing flow and diffusion dynamics. The same model proposed by 
Leiderman and Fogelson [71] was used in two other studies [73,88] [see Eq (S4.13)]. Fogelson et al. [72] 
extended the model to include factor XIa, with ATIII also acting as a first-order inhibitor of Xa [see Eq 
(S4.14)]. Miyazawa et al. [115] introduced an equation describing the temporal evolution of ATIII [Eq 
(S4.15)] with second-order inhibition of factors IIa, IXa, Xa, XIa, and heparin. Finally, Shibeko et al. 
[69] considered second-order kinetic pathways for IIa, IXa, Xa, and the complex formed between Xa 
and Va [Eq (S4.16)].  

According to Table 2, kinetic parameter values for ATIII inhibition may vary by up to three orders 
of magnitude, which significantly impacts the reliability, accuracy, and applicability of the models. 
ATIII exhibits high sensitivity in the coagulation cascade (Danforth et al. [120] and Naidu and Anand 
[121]), necessitating exact definitions of the kinetic parameters in the model to achieve the desired 
outcomes. Initial concentrations typically represent ATIII levels in blood plasma, ranging from 9.08 to 
19.52 mg/dL (assuming a molecular weight of 58,000 g/mol for ATIII [122]), whereas normal blood 
levels range from 17.0 to 30.0 mg/dL [123]. The models cover scenarios of low ATIII concentration 
observed in conditions like sepsis or disseminated intravascular coagulation but do not encompass the 
entire spectrum of typical values (up to 30 mg/dL). 

From a patient-specific perspective, a model validated for the entire spectrum of typical ATIII 
concentrations would be most appropriate. None of the models presented can be considered ideal on 
their own, as they all rely on additional factors such as the use of heparin and the conditions under 
which the kinetic constants were obtained (e.g., the presence of Ca2+). 

Regarding complexity, the models typically do not exceed summations of nonlinear terms of at 
most second order. This is advantageous for computational models, as these terms are usually easily 
resolved by computational software and generic algorithms when included in the source term. 

Future studies could enhance the analysis of the range of kinetic values related to ATIII inhibition 
and the effects of typical patient characteristics, such as genetic differences, heparin resistance, or 
antithrombin deficiency. 

It is crucial to recognize that the choice of the mathematical expression for ATIII significantly 
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impacts the range of diseases the proposed computational model can accurately represent. For instance, 
a model that includes only the effects of factor IIa (such as [81,109,110]) will be unable to 
quantitatively capture the impact of deficiencies in factors IX, X, and XI. Conversely, if the goal is to 
develop a computational model capable of representing a broader spectrum of coagulation disorders, 
it is essential to select mathematical formulations that incorporate factors relevant to those conditions 
(such as [75,78,80,90,107,113]). For example, by including factors IX, X, and XI in the mathematical 
expression, the model could quantitatively represent diseases such as hemophilia B, hemophilia C, and 
factor X deficiency. 

Table 2. Range of commonly utilized kinetic parameter values for modeling ATIII 
dynamics and ATIII initial concentration. 

Variable Description Range 

𝑘ூூೌ/஺்ூூூ
ାା  

Second-order inhibition rate 

constant of IIa by ATIII 

4.817 × 10ଷ M-1.s-1 [99,104]–1.19 × 10଻ M-1.s-1 

[75,78,80,90,107,113] 

𝑘ூ௑ೌ/஺்ூூூ
ାା  

Second-order inhibition rate 

constant of IXa by ATIII 
1.36 × 10ଶ M-1.s-1 [69] –2.7 × 10ହ M-1.s-1 [75,78,80,90,107,113] 

𝑘௑ೌ/஺்ூூூ
ାା  

Second-order inhibition rate 

constant of Xa by ATIII 

2.5 × 10ଷ M-1.s-1 [111] –5.783 × 10଺ M-1.s-1 

[75,78,80,90,107,113] 

𝑘௑ூೌ/஺்ூூூ
ାା  

Second-order inhibition rate 

constant of XIa by ATIII 
8.0 M-1.s-1 [111] –1.0 × 10ଷ M-1.s-1 [94] 

𝑘௑ூூೌ/஺்ூூூ
ାା  

Second-order inhibition rate 

constant of XIIa by ATIII 
3.645 × 10ଵ M-1.s-1 [94] 

C஺்ூூூ(𝑡 = 0)  Initial concentration of ATIII 1.566 × 10ି଺ M [78,86] –3.44 × 10ି଺ M [78,86] 

3.2. Factor VIII 

Factor VIII and its activated form, factor VIIIa, are depicted mathematically with a RST, similar to 
ATIII. The equations extracted from the reviewed studies are listed in Table S5 of the SM file. Table 3 
outlines the kinetic parameters used for factor VIII and factor VIIIa. A complete list of values is 
available in Tables S3 and S5 in the SM file. Bouchnita et al. [84] presented an essential model where 
factor VIII is activated by thrombin through first-order kinetics, generating VIIIa, with subsequent 
inhibition [Eq (S5.1)]. Seo et al. [82] used the model of coagulation cascade proposed by Jones and 
Mann [124], depicting factor VIII activation by thrombin and factor Xa via second-order kinetics. This 
activation is crucial in the intrinsic pathway, leading to the formation of tenase complexes and thrombin 
generation. The model includes factor VIIIa consumption by factor IXa, with second-order kinetics 
[Eq (S5.2)]. Xu et al. [66] employed a similar approach but incorporated mIIa, operating with second-
order kinetics to activate factor VIII [Eq (S5.4)]. Ngoepe et al. [83] applied the model of blood clotting 
proposed by Hockin et al. [125], where factor VIII activation is mediated by thrombin through second-
order kinetics. The model also accounts for factor VIIIa generation through thrombin activation, its 
consumption in forming the VIIIa-IXa complex, and its production from dissociating the VIIIa-IXa 
complex [Eq (S5.3)]. Additionally, the model distinguishes between the 𝛼ଵ and 𝛼ଶ domains of factor 
VIIIa.  

Jordan and Chaikof [70] modeled factor VIII activation by thrombin using the Michaelis–Menten 
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mechanism, delineating two kinetic parameters: the catalytic rate and the Michaelis–Menten constant 
[Eq (S5.5)]. Shibeko et al. [69] adopted a similar approach, including a first-order term for factor VIIIa 
inhibition [Eq (S5.6)]. Dydek and Chaikof [85] also utilized the Michaelis–Menten mechanism for factor 
VIII activation [Eq (S5.7)]. The expression for factor VIIIa accounts for consumption and generation 
due to the VIIIa-IXa complex, as seen in other studies [66,82]. Several studies [75,78,80,89,90,94,107] 
employed the model for coagulation cascade proposed by Anand et al. [117], akin to the model by Dydek 
and Chaikof [85], with an additional term for factor VIIIa consumption by PCA using the Michaelis–
Menten mechanism [Eq (S5.8)]. Mendez Rojano et al. [126] adopted the kinetic model proposed by 
Chatterjee et al. [127], describing factors VIII and VIIIa dynamics with second-order kinetics, 
considering thrombin activation, VIII binding to Xa, VIIIa-IXa complex formation, and domain 
differentiation [Eq (S5.9)]. Pisaryuk et al. [111] characterized VIII and VIIIa dynamics based on 
lipid binding, employing second-order kinetics for binding and first-order kinetics for unbinding 
[Eq (S5.10)]. 

Xu et al. [68] introduced a model where factor VIII undergoes activation by thrombin via second-
order kinetics and can bind to platelet surfaces through second-order kinetics while unbinding with 
first-order kinetics. Factor VIIIa follows a similar pattern, with differentiation between the 𝛼ଵ and 
𝛼ଶ domains [Eq (S5.11)]. Leiderman and Fogelson [71] proposed a model where factors VIII and 
VIIIa interact with platelet surfaces based on available binding sites [Eq (S5.12)]. This model also 
includes second-order activation by thrombin and first-order generation of factor VIII from 
dissociating the VIII-IIa complex. Fogelson et al. [72] and Miyazawa et al. [115] used ODEs instead 
of PDEs, with convective-diffusive effects represented by a kinetic constant. PCA was incorporated, 
leading to the consumption of factor VIIIa through the VIIIa-PCA complex formation (second-order 
kinetics) and dissociation (first-order kinetics) [Eq (S5.13)]. Govindarajan et al. [88] proposed a 
simplified model with second-order activation of factor VIII by thrombin and binding/unbinding of 
factors VIII and VIIIa on platelet surfaces [Eq (S5.14)]. Although simplified, considering platelet 
concentration is appealing from a patient-specific modeling perspective because platelet counts can 
vary significantly between patients and may indicate certain diseases. 

Factor VIII and its activated form, VIIIa, are crucial components in models of the coagulation 
cascade, particularly in the intrinsic pathway involving thrombin and factor Xa activation. Various 
mathematical models have been employed to describe their dynamics, often using second-order 
kinetics for activation and inhibition processes. These models vary in complexity, ranging from simple 
Michaelis–Menten mechanisms to more detailed descriptions, including platelet interactions and 
domain-specific dynamics.  

Identifying a single, optimal model for factor VIII dynamics is challenging due to the diversity of 
approaches used across studies. However, models that integrate both intrinsic pathway activation—via 
thrombin and factor Xa—and subsequent interactions, such as factor VIIIa-IXa complex formation, 
offer comprehensive insights. For instance, models that include the activation of factor VIII by 
thrombin and factor Xa shed light on the early phases of the coagulation cascade. By incorporating 
these critical initiators, such models capture the key process of factor VIII activation and the 
subsequent amplification of clotting signals. This initial phase is especially significant, as thrombin 
acts as a potent activator of factor VIII, converting it into its active form, factor VIIIa, which then plays 
a central role in promoting clot formation. Once activated, factor VIIIa binds with factor IXa to form 
the essential factor VIIIa-IXa complex, which catalyzes the generation of factor Xa. This production 
of factor Xa sustains the coagulation cascade, establishing a positive feedback loop that ensures robust 
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thrombin generation, ultimately leading to stable clot formation. By modeling these interactions, the 
framework captures the mechanisms behind factor VIII activation and highlights how the factor VIIIa-
IXa complex supports ongoing thrombin production, reinforcing durable clot formation. Additionally, 
such models are valuable for simulating factor IX deficiencies, as seen in hemophilia B. Insufficient 
factor IXa disrupts the formation and function of the factor VIIIa-IXa complex, impairing clot 
formation. This approach provides deeper insights into the effects of factor IX deficiency on clotting 
dynamics and can inform targeted treatment strategies for hemophilia B and similar clotting disorders. 

One significant limitation is the variation in kinetic parameter values across different models, as 
shown in Table 3. The wide range of values for catalytic activation rates by thrombin underscores the 
uncertainty in parameter estimation and the potential impact on model predictions. Simplified 
assumptions, such as neglecting certain interactions or domain-specific differentiation, also limit the 
accuracy of some models in capturing real-world complexities. 

Table 3. Range of commonly utilized kinetic parameter values for modeling factor VIII 
and VIIIa dynamics and its initial concentration. 

Variable Description Range 

𝑘௏ூூூ/ூூೌ

௖௔௧   
Catalytic rate for the activation of factor 

VIII by IIa 
0.9 s-1 [70] –3.24 s-1 [75,78,80,89,90,94,107] 

𝐾௏ூூூ/ூூೌ

௠   
Michaelis–Menten constant for the 

activation of factor VIII by IIa 

1.47 × 10ି଻ M [69] –1.12 × 10ିସ M 

[75,78,80,89,90,94,107] 

𝑘௏ூூூ/௑ೌ

ାା   
Second-order rate constant for the 

activation of factor VIII by factor Xa 
1.0 × 10଻ M-1.s-1 [82] –1.0 × 10଼ M-1.s-1 [95] 

𝑘௏ூூூ/ூூೌ

ାା   

𝑘௏ூூூ,௠
ାା   

Second-order rate constant for the 

activation of factor VIII by factor IIa 
2.0 × 10଻ M-1.s-1 [82]–5.0 × 10଻ M-1.s-1 [88] 

𝑘௏ூூூೌభಽ
ା   

First-order rate constant for the 

formation of 𝑉𝐼𝐼𝐼௔ଵ௅  
2.2 × 10ିହ s-1 [83] –6.0 × 10ିଷ s-1 [68] 

𝑘௏ூூூೌభಽ/௏ூூூೌమ

ାା   Second-order rate constant for VIIIa 2.2 × 10ସ M-1.s-1 [95]–6.0 × 10଺ M-1.s-1 [83] 

𝐶௏ூூூ(𝑡 = 0)   Initial concentration of VIII 1.0 × 10ିଵ଴ M [71] –7.0 × 10ିଵ଴ M [82] 

𝐶௏ூூூೌ
(𝑡 = 0)  Initial concentration of VIIIa 0 M [83]–1.0 × 10ିଵ଴ M [82] 

3.3. PCA 

Table S6 in the SM file presents mathematical equations governing the dynamics of PC and PCA. 
Like ATIII and factor VIII, these formulations are integrated into the RST. In studies by Bouchnita et 
al. [81] and Bouchnita et al. [99], the CDR equation models the spatiotemporal distribution of PC and 
PCA, with both undergoing inactivation via first-order kinetics [Eq (S6.1)]. Dydek and Chaikof [85] 
employed a Michaelis–Menten mechanism for PC activation, influenced by PC concentrations and 
thrombomodulin bound with thrombin [Eq (S6.2)]. This representation reflects thrombin’s qualitative 
binding to thrombomodulin, inducing a conformational change and enhancing its ability to cleave PC, 
producing PCA. PCA acts as an anticoagulant by inhibiting factors Va and VIIIa, modulating thrombin 
generation to prevent excessive clotting. In this model, PCA concentration also affects factor Va 
dynamics. Conversely, Ou et al. [89] did not explicitly consider thrombomodulin bound with thrombin. 



7722 

Mathematical Biosciences and Engineering  Volume 21, Issue 12, 7707–7739. 

Instead, a kinetic model with a Michaelis–Menten mechanism accounts for thrombin concentration 
alone [Eq (S6.3)]. PCA concentration influences factors Va and VIIIa, serving as inhibitors. 

Multiple studies [75,78,80,90,94,107] have utilized the model proposed by Anand et al. [117] to 
depict PC and PCA dynamics. For PC, thrombin activates it through the Michaelis–Menten 
mechanism, and it is inhibited by 𝛼ଵ-antitrypsin via second-order kinetics [see Eq (S6.4)]. PCA, in 
turn, inhibits factors Va and VIIIa. Pavlova et al. [78] expanded on this framework, introducing PCA 
inhibition by prothrombinase via second-order kinetics [see Eq (S6.5)], although it does not include 
the dynamics of factors Va and VIIIa influenced by PCA. Leiderman and Fogelson [71] and 
Leiderman and Fogelson [73] incorporated PCA≡Va and PCA≡VIIIa complex formation and 
dissociation through second and first-order kinetics, respectively [Eq (S6.6)], impacting factors Va 
and VIIIa dynamics. Govindarajan et al. [88] modeled APC but omitted PCA≡VIIIa complex 
formation [Eq (S6.8)]. In the study conducted by Jordan and Chaikof [70], PC activation solely 
occurs on the thrombomodulin-thrombin surface via the Michaelis–Menten mechanism, akin to 
Dydek and Chaikof [85] representation. 

Miyazawa et al. [115] employed an ODE to describe PCA, substituting PDE terms with a rate 
constant for convective and diffusive effects. Since activation occurs in both phases, the convective 
and diffusive effects influence the spatiotemporal distribution of PCA and its role in the coagulation 
cascade. The model includes PCA complex formation with factors VIIIa, Va, and partially activated 
factor V in both the fluid phase and platelet surface. Complex formation operates via second-order 
kinetics, while dissociation occurs via first-order kinetics [Eq (S6.9)]. Fogelson et al. [72] adopted a 
similar approach, considering associations/dissociations of factors Va and VIIIa in both phases Eq 
(S6.10). Xu et al. [68] presented a similar expression, focusing on platelet surface 
associations/dissociations [Eq (S6.11)]. Shibeko et al. [69] depicted PC with two terms using the 
Michaelis–Menten mechanism: one influenced by free thrombin and another by thrombomodulin-
thrombin activation. PCA’s equation includes these activations and consumption by 𝛼ଶ M (𝛼ଶ -
macroglobulin), 𝛼ଶ AP (𝛼ଶ -antiplasmin), 𝛼ଵ AT (𝛼ଵ -antitrypsin), and PCI (protein C inhibitor) (Eq 
(S6.12)). These components were assumed to have constant concentrations. 

3.4. Fibrin(ogen) 

Table S7 in the SM file outlines fibrin(ogen) mathematical expressions. In Bouchnita et al. studies 
[81,84], fibrinogen and fibrin were part of the RST. Fibrinogen depletion occurs through thrombin-
induced conversion to fibrin. Fibrin expression includes activation by thrombin and negative 
conversion to a fibrin polymer. The fibrin polymer is assumed to be immobile in the clot [Eq. (S7.1)]. 
While this assumption is common and aids in modeling clot formation, it is essential to recognize that 
in biological reality, fibrin may undergo some degree of dynamic reorganization or degradation, 
especially under certain physiological or pathological conditions, such as hyperfibrinolysis or 
hypofibrinolysis. Pisaryuk et al. [111] integrated fibrinogen and fibrin similarly with thrombin 
activation and ATIII inhibition [Eq (S7.2)]. In Bouchnita et al. [99,104], fibrinogen activation by 
thrombin followed the Michaelis–Menten mechanism. Fibrin formation included a first-order term for 
degradation during polymerization [Eq (S7.3)]. Shibeko et al. [69] employed a simpler model with 
thrombin-driven fibrinogen/fibrin production [Eq (S7.4)], with only a Michaelis–Menten mechanism 
activation by thrombin. Several studies [75,78,80,86,89,90,94,96,107] adopted the model proposed by 
Anand et al. [117] for fibrin(ogen) dynamics. Fibrinogen decreases via Michaelis–Menten kinetics 
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regulated by thrombin and fibrinogen concentrations. A similar term positively influences fibrin, 
while plasmin cleavage negatively impacts fibrin [Eq (S7.5)]. In the model utilized by Govindarajan 
et al. [88], a departure from previous approaches is observed as fibrinogen activation is driven by the 
concentration of thrombin present on the platelet surface, operating via second-order kinetics. 
Furthermore, in the expression for fibrin, the convective term is omitted, with only the diffusive term 
being accounted for in the PDE [Eq (S7.6)]. 

Seo et al. [82] adopted a model similar to that proposed by Shibeko et al. [69]. However, they 
introduced an additional positive term to augment the fibrin concentration. The term is a function of 
the square of fibrin concentration and a rate constant [Eq (S7.7)]. Tosenberger et al. [74] employed a 
model where blood and platelets were represented with discrete particle dynamics, while the chemical 
species involved in the coagulation cascade, including fibrin, were depicted as PDE. Fibrin conversion 
was characterized in a manner where the RST diminishes as the fibrin concentration nears saturation 
[Eq (S7.8)]. However, a limitation of this equation is its failure to consider the thrombin concentration. 
This limitation was addressed in subsequent studies [76,87], where fibrinogen activation was modeled 
as a function of thrombin concentration through second-order kinetics. A term for fibrinogen saturation 
was also included, proportional to the disparity between saturated fibrinogen and fibrinogen 
concentration [Eq (S7.9)]. In the study conducted by Mendez Rojano et al. [109], four classes were 
delineated: fibrinogen, fibrin, deposited fibrinogen, and deposited fibrin [see Eq (S7.10)]. Similar to 
other investigations, fibrinogen activation ensues through a thrombin-mediated Michaelis–Menten 
mechanism. However, in the expressions for fibrinogen and fibrin, positive terms pertaining to platelet 
embolization are introduced, which are proportional to the concentrations of deposited fibrinogen and 
fibrin. Conversely, the consumption/generation of deposited fibrinogen and fibrin is augmented based 
on the concentrations of fibrinogen and fibrin, with a portion converted into fibrinogen and fibrin via 
embolization. Chen and Diamond [98] introduced a simplified model where fibrin evolution is 
contingent upon thrombin concentration, featuring a term that can be calibrated to fit experimental 
data [Eq (S7.11)]. 

In the study conducted by Rukhlenko et al. [77], the spatiotemporal evolution of fibrinogen is 
determined by its concentration and the activator of the biochemical network of blood coagulation, 
employing second-order kinetics. Additionally, the model incorporates a fibrinogen removal term 
proportional to the difference between the current and initial fibrinogen concentration. Furthermore, 
the activation of fibrin is characterized in terms of the first and second fibrin moments [Eq (S7.12)]. 
This modeling approach aimed to represent both polymerized and non-polymerized forms of fibrin, 
capturing essential phenomenological aspects of fibrin dynamics. 

Boryczko et al. [64] introduced a model for fibrin polymerization, where fibrin monomers are 
incorporated into fluid particles representing plasma. Assumptions included the presence of activated 
fibrinogen, clotting factors, and fluid particles’ ability to form fibrin gel fragments with a specified 
probability. Bonds between particles are governed by elastic and repulsive forces, with attachment and 
detachment restrictions. Interaction between fibrin chains and particles forming red blood cells varies 
based on distance, alongside considering the probability of bond breaking [Eq (S7.13)]. Xu et al. [66] 
treated fibrin concentration as an ODE, with fibrin growth directly proportional to thrombin 
concentration [Eq (S7.14)]. Piebalgs and Xu [79] developed a multi-physics continuum model for clot 
dissolution, influencing clot properties over time [Eq (S7.15)]. Pivkin et al. [65] used a coupling force 
model to simulate platelet behavior, including fibrin interaction [Eq (S7.16)]. Haynes et al. [92] 
described thrombin-fibrin binding, considering high- and low-affinity sites [Eq (S7.17)]. Kamada et 
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al. [93] simulated clot formation in narrowed vessels using a mechanical spring model to mimic ligand 
behavior between glycoprotein IIb/IIIa (𝛼ூூ௕𝛽ଷ) and fibrinogen [Eq (S7.18)]. Du et al. [102] proposed 
an alternative model for 𝛼ூூ௕𝛽ଷ –fibrin interaction, emphasizing platelet receptors’ role in bond 
formation [Eq (S7.19)]. Petkantchin et al. [114] introduced a permeability coefficient for fibrin clots 
based on fiber properties [Eq (S7.20)]. 

The investigation into fibrin(ogen) dynamics through various mathematical models has revealed 
more complex and multifaceted interactions compared to the models for ATIII, factor VIII, and PC. 
The modeling strategies employed encompass a spectrum of factors, including the activation and 
depletion of fibrinogen, the formation and degradation of fibrin, and the influence of thrombin and 
other clotting factors. Some models incorporate detailed kinetics, such as second-order and Michaelis–
Menten mechanisms, to capture the intricate dynamics of fibrinogen activation and fibrin formation. 
Others adopt simplified representations to streamline computational complexity while maintaining 
essential physiological insights. Critical aspects considered in these models include the interplay 
between thrombin and fibrinogen concentrations, the role of platelet receptors in bond formation, and 
the influence of mechanical forces on fibrin polymerization. Additionally, factors like thrombin 
concentration gradients, fibrinogen saturation, and platelet embolization effects are considered to 
enhance the models’ realism. 

Despite their differences, these models collectively contribute to our understanding of fibrin (ogen) 
kinetics and its implications for blood clot formation and dissolution. They offer valuable insights into 
the underlying mechanisms governing hemostasis and thrombosis, aiding in the development of 
therapeutic interventions and predictive tools for clinical applications. 

3.5. vWF 

Table S8 in the SM file presents the mathematical expressions related to vWF. Kamada et al. [93] 
employed a spring model to simulate the interaction between GPIB/IX/V receptors and vWF, where 
virtual springs increase in response to shear rate. Similarly, the same expression was utilized to 
determine the number of virtual springs for the interaction between GPIIB/III and vWF. The adhesion 
force between an adhered platelet and the injured wall is also modeled based on a spring constant and 
the distance between the particles [Eq (S8.1)]. Ayabe et al. [97] employed a spring model, specifically 
the Kelvin–Voigt model. Aligned with the model employed by Kamada et al. [93], the binding between 
GPIb𝛼 and vWF is influenced by shear stress and is determined based on a spring constant. 

Additionally, it is assumed that the interaction between GPIIa/IIIa and vWF occurs only when the 
platelet is in an activated state, resulting in a gradual increase in the spring constant value [Eq (S8.2)]. 
Du et al. [102] modeled the formation of bridges between two platelets via GPIb𝛼 using Eq. S8.3, 
which incorporates second-order rate kinetics based on platelets in four states: mobile activated and 
unactivated and bound activated and unactivated. 

Wu et al. [103] considered that shear stress accumulation, a crucial factor in modeling platelet 
activation, is enhanced as a function of vWF. They represented this relationship with a sigmoid 
characteristic [see Eq (S8.4)]. Kaneva et al. [106] employed both deterministic and stochastic 
equations [Eqs (S8.5a) and (S8.5b)] to model GPIb-mediated platelet interaction with vWF. 
Additionally, they introduced an equation to quantify the probability of bond formation based on the 
level of platelet activation [Eq (S8.5c)]. Liu et al. [105] introduced a model where the on-rate of GP1b-
A1 binding to tethered vWF depends on internal tension force, energy barrier, and the maximum on-



7725 

Mathematical Biosciences and Engineering  Volume 21, Issue 12, 7707–7739. 

rate under high vWF tension [Eq (S8.6)]. Ma et al. [108] developed a model to represent the adhesion 
and aggregation forces mediated by vWF as a function of shear rate [Eq (S8.7)]. Zhussupbekov et 
al. [112] employed two equations to model vWF in collapsed and stretched conformations. These 
equations act as an RST and follow first-order kinetics [Eq (S8.8)]. 

A critical observation among the cited studies is that while the models incorporate qualitative 
aspects of vWF influence, there is a notable absence of quantitative modeling based on the 
concentration of vWF in the bloodstream. 

3.6. D-dimer and p-selectin 

None of the reviewed studies directly integrated a D-dimer model into their computational blood 
coagulation models. However, Chen and Diamon [98] utilized D-dimer measurements to empirically 
determine the time-varying fibrin concentration, calibrated by end-point D-dimer ELISA. They 
examined fibrin dynamics by incorporating fluorescent fibrinogen and then calibrated the model using 
the end-point D-dimer assay following plasmin degradation. 

Kadri et al. [101] conducted an in vivo assessment of blood clot mechanics using computational 
fluid dynamics and intravital microscopy images. They utilized these images to quantify the area of 
the blood clot nucleus using the p-selectin exposure marking to identify the activated core. Such data 
are crucial for enhancing our understanding of in vivo blood coagulation, given the inherent challenges 
in obtaining spatiotemporal data in vivo compared to in vitro experiments. 

3.7. PT and APTT 

Pisaryuk et al. [111] proposed a personalized hemostasis profile by adjusting blood factors based 
on PT and APTT. The adjustment involves modifying the concentrations of fibrinogen, as well as blood 
factors VIII, IX, and XI, according to APTT, based on the following equation: 

 𝐹௜ = 𝐹଴
௠௘௔௡(஺௉்்೔)

஺௉்்೔
  (4) 

where 𝐹௜  is the factor (fibrinogen, factor VIII, IX, or XI) of patient i, 𝐹଴  is the normal average 
concentration of factor F, and 𝐴𝑃𝑇𝑇௜ is the APTT of patient i. 

The adjustment of the blood factors II, V, VII, and X was based on PT, according to the following 
equation: 

 𝐹௜ = 𝐹଴
௠௘௔௡(௉்೔)

௉்೔
 (5) 

where 𝐹௜ is the factor (factor II, V, VII, or X) of patient i, 𝐹଴ is the normal average concentration of 
factor F, and 𝐴𝑃𝑇𝑇௜ is the APTT of patient i. 

𝐹଴ values can be readily acquired from existing literature sources. APTT and PT measurements 
are inexpensive and readily available, often requested by healthcare providers when assessing potential 
disruptions in the hemostatic system. By gathering patient data and determining the average APTT and 
PT, personalized concentration values for the mentioned factors can be established for each patient. 

The adjustment proposed by Pisaryuk et al. [111] effectively mimics the results of global 
hemostasis assays, such as thrombin generation and thrombodynamics-4D, for each patient with 



7726 

Mathematical Biosciences and Engineering  Volume 21, Issue 12, 7707–7739. 

considerable accuracy. The proposed in silico model offers significant advantages, including reduced 
treatment costs and the facilitation of therapy adjustments. 

One key reason for the improvement in model accuracy when altering initial concentrations is 
that these initial concentrations and the associated kinetic parameters primarily influence the 
mathematical modeling of coagulation dynamics. Since the kinetic parameters remain constant, 
varying the initial concentrations becomes essential for accurate modeling. 

Estimating these initial parameters through simple laboratory tests, such as APTT and PT, is 
particularly advantageous, as it enables the development of a tailored coagulation profile for each 
patient. 

3.8. General discussion 

An important aspect of computational models recently gaining attention in the literature is their 
capacity to represent diseases associated with blood coagulation disorders and their impact on 
hemostasis. These models frequently identify thrombin as a pivotal factor that amplifies the 
coagulation cascade and influences platelet activation and aggregation. Such interactions significantly 
affect the convective and diffusive dynamics within the system. Consequently, any alterations in the 
coagulation cascade that impact thrombin production can markedly influence the results generated by 
these computational models. Furthermore, genetic mutations and deficiencies—such as prothrombin 
mutations, protein C deficiency, and factor IX deficiency—directly alter various components of the 
coagulation cascade. For instance, Ranc et al. [128] illustrate how modifications to established 
numerical methods can effectively simulate the behavior of plasmas deficient in factors XII, XI, and 
VIII, underscoring the critical importance of accurately calibrating initial concentrations and model 
parameters for effective representation. Despite these advancements, it is noteworthy that the studies 
reviewed do not explicitly examine the effects of mutations, like those seen in hemophilia, on the 
spatiotemporal formation of blood clots. This gap presents a compelling opportunity for future research 
to incorporate disease conditions into computational models, thereby enhancing our understanding of 
their influence on hemostatic processes. Addressing this void could pave the way for the development 
of more comprehensive models that accurately reflect the complexities of coagulation disorders and 
their clinical implications. 

Figure 2 summarizes the main factors associated with each biomarker and diseases linked to 
abnormalities in these factors. These biomarkers are primarily associated with components of the 
coagulation cascade. Mutations, hemophilia, deficiencies, and treatments affect their concentrations 
and kinetics, which are crucial for the mathematical model. 

An intriguing insight gleaned from this study, particularly from the perspective of personalized 
medicine, is the underutilization of variables commonly requested to assess hemostatic imbalances, 
such as D-dimer, APTT, and PT, in computational investigations of blood clot formation under flow 
conditions. Future research in this domain could greatly benefit from efforts to integrate and enhance 
the representation of these variables within computational models, whether through direct 
incorporation or via phenomenological modeling and data-driven approaches. Such endeavors hold 
the potential to enrich our understanding of clot formation dynamics and contribute to more 
comprehensive and accurate predictive models in hemostasis research. 

In several studies examined in this review, the mathematical modeling of key components such 
as ATIII, FVIII, PC, and fibrin(ogen) was accomplished by implementing previously validated models 
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of the coagulation cascade, particularly those proposed by Hockin et al. [129], Anand et al. [117], Jones 
and Mann [124], and Chatterjee et al. [127]. It is crucial to note that the kinetic parameters utilized in 
these studies are often derived from experiments conducted under specific experimental conditions. 
For instance, some parameters were evaluated under non-physiological conditions [129], certain 
assumptions were made, such as all ATIII being active [117], and some rate constants were deduced, 
estimated [124], or obtained in solution [127]. Moreover, upon examining the original literature (as 
cited throughout the SM file), it is noticeable that patient-specific characteristics of the blood analyzed 
are often not provided. While it has been commonly assumed that data is derived from healthy patients, 
this lack of patient-specific information presents a challenge when applying these models to patients 
with hemostatic disorders such as thrombosis predisposition, genetic mutations, or hemophilia. 
Consequently, the accuracy of patient-specific computational models derived from these generalized 
parameters may be compromised. Future studies could delve into comparing the kinetic parameters of 
the coagulation cascade in vivo and under flow conditions between healthy individuals and patients 
with hemostatic disturbances. Such research endeavors can offer valuable insights into refining and 
tailoring computational models to accurately represent the dynamics of clot formation in specific 
patient populations. 

An important aspect to consider is the range of kinetic parameters observed across the studies 
analyzed. These parameters can vary significantly, sometimes by up to 1000 times, among different 
studies. Such variations can substantially impact critical applications like sensitivity analysis 
[120,126,130,131] for identifying potential drug targets. Additionally, when modeling individualized 
or patient-specific conditions (e.g., hemophilia, thrombophilia), variability in kinetic parameters can 
significantly affect the accuracy of treatment response predictions. For instance, a model using a high 
inhibition rate for ATIII might predict a lower clotting potential than a model with a lower rate, thereby 
influencing recommendations for anticoagulant therapy. High variability in kinetic parameters also 
complicates the validation and reproducibility of coagulation models. Different studies may produce 
divergent outcomes even when modeling the same clinical condition, making establishing standardized 
models for general use or regulatory approval challenging. This observation underscores the 
importance of carefully selecting or calibrating kinetic parameters in coagulation models, particularly 
when aiming to translate these models into clinical practice or individualized treatment plans. 

Furthermore, there is a notable absence of focused analyses on these biomarkers and their 
individual impacts. Investigating the effects of these biomarkers and kinetic parameters within 
phenomenological models can be challenging due to the scarcity of in vivo experimental data and the 
complex, multivariable nature of the phenomenon. Therefore, a valuable direction for future research 
would be to systematically assess the influence of these markers on clot formation independently. This 
could involve varying model configurations and kinetic parameters to simulate diverse physiological 
conditions and diseases.  
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Figure 2. Summary of biomarkers, their associated factors, and diseases that affect 
concentrations and kinetics. 

4. Conclusions 

In conclusion, the studies reviewed underscore the crucial role of computational models in 
advancing our understanding of blood coagulation dynamics. Mathematical expressions for key factors 
like ATIII, factor VIII, and PC are typically incorporated into the reactive source term, employing first-
order, second-order, and Michaelis–Menten kinetics. Fibrin(ogen) dynamics are also modeled this way, 
with some studies employing multiscale approaches and alternative models, such as coupled force and 
spring models. Variables related to hemostatic balance disorders, such as D-dimer, PT, and APTT, are 



7729 

Mathematical Biosciences and Engineering  Volume 21, Issue 12, 7707–7739. 

rarely utilized efficiently in computational models of blood clot formation under flow conditions. This 
study highlights the underutilization of these key variables in computational models, especially 
concerning personalized medicine. Integrating these variables into computational models could 
significantly enhance our understanding of clot formation dynamics and lead to more accurate 
predictive and practical models in hemostasis research.  

Our study shows that the kinetic parameters used in models widely used for blood coagulation 
are often derived from experiments conducted under specific conditions, leading to potential 
inaccuracies. Additionally, patient-specific characteristics are often lacking, posing challenges when 
applying these models to individuals with hemostatic disorders. Future research should focus on 
comparing kinetic parameters between healthy individuals and patients with hemostatic disturbances 
to improve the accuracy of computational models tailored to specific patient populations. 

Future research should also prioritize comparing kinetic parameters between healthy individuals 
and patients with hemostatic disorders, while efforts to standardize parameter estimation 
methodologies could improve model accuracy and reliability. Additionally, given the wide range of 
kinetic parameter variations observed across studies (upon 1000 times), sensitivity analysis becomes 
crucial for identifying potential drug targets and optimizing therapeutic interventions in the context of 
hemostasis and thrombosis. 
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