This research investigates the relationship between Green Finance (GF) and Gender Equality (GE) within the context of sustainable development, revealing that existing frameworks lack an integrated approach to incorporating GE into GF. By reviewing 125 relevant articles published from 2004 to 2024, the author also found that women's empowerment significantly promotes GF development, while gender diversity enhances environmental management and corporate performance. Furthermore, the contributions of women in climate adaptation and environmental sustainability should not be overlooked. In conclusion, there is a pressing need to incorporate a gender perspective into GF policies and practices, which calls for further exploration of gender-sensitive financing models and the culture impact on GF and GE, aiming to achieve the Sustainable Development Goals (SDGs) more effectively.
Citation: Fu-Hsaun Chen. Green finance and gender equality: Keys to achieving sustainable development[J]. Green Finance, 2024, 6(4): 585-611. doi: 10.3934/GF.2024022
[1] | D. L. Suthar, D. Baleanu, S. D. Purohit, F. Uçar . Certain k-fractional calculus operators and image formulas of k-Struve function. AIMS Mathematics, 2020, 5(3): 1706-1719. doi: 10.3934/math.2020115 |
[2] | Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Thabet Abdeljawad, Kottakkaran Sooppy Nisar . Integral transforms of an extended generalized multi-index Bessel function. AIMS Mathematics, 2020, 5(6): 7531-7547. doi: 10.3934/math.2020482 |
[3] | Gauhar Rahman, Shahid Mubeen, Kottakkaran Sooppy Nisar . On generalized k-fractional derivative operator. AIMS Mathematics, 2020, 5(3): 1936-1945. doi: 10.3934/math.2020129 |
[4] | Saima Naheed, Shahid Mubeen, Gauhar Rahman, M. R. Alharthi, Kottakkaran Sooppy Nisar . Some new inequalities for the generalized Fox-Wright functions. AIMS Mathematics, 2021, 6(6): 5452-5464. doi: 10.3934/math.2021322 |
[5] | Khaled Mehrez, Abdulaziz Alenazi . Bounds for certain function related to the incomplete Fox-Wright function. AIMS Mathematics, 2024, 9(7): 19070-19088. doi: 10.3934/math.2024929 |
[6] | Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565 |
[7] | Muajebah Hidan, Mohamed Akel, Hala Abd-Elmageed, Mohamed Abdalla . Solution of fractional kinetic equations involving extended (k,τ)-Gauss hypergeometric matrix functions. AIMS Mathematics, 2022, 7(8): 14474-14491. doi: 10.3934/math.2022798 |
[8] | D. L. Suthar, A. M. Khan, A. Alaria, S. D. Purohit, J. Singh . Extended Bessel-Maitland function and its properties pertaining to integral transforms and fractional calculus. AIMS Mathematics, 2020, 5(2): 1400-1410. doi: 10.3934/math.2020096 |
[9] | Ji Hyang Park, Hari Mohan Srivastava, Nak Eun Cho . Univalence and convexity conditions for certain integral operators associated with the Lommel function of the first kind. AIMS Mathematics, 2021, 6(10): 11380-11402. doi: 10.3934/math.2021660 |
[10] | Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Suliman Alsaeed, Kottakkaran Sooppy Nisar . New interpretation of topological degree method of Hilfer fractional neutral functional integro-differential equation with nonlocal condition. AIMS Mathematics, 2023, 8(7): 17154-17170. doi: 10.3934/math.2023876 |
This research investigates the relationship between Green Finance (GF) and Gender Equality (GE) within the context of sustainable development, revealing that existing frameworks lack an integrated approach to incorporating GE into GF. By reviewing 125 relevant articles published from 2004 to 2024, the author also found that women's empowerment significantly promotes GF development, while gender diversity enhances environmental management and corporate performance. Furthermore, the contributions of women in climate adaptation and environmental sustainability should not be overlooked. In conclusion, there is a pressing need to incorporate a gender perspective into GF policies and practices, which calls for further exploration of gender-sensitive financing models and the culture impact on GF and GE, aiming to achieve the Sustainable Development Goals (SDGs) more effectively.
Fractional calculus is an essential research area, which is equally useful not only in pure mathematics but also in applied mathematics, physics, biology, engineering, economics and control theory etc. In recent years, study on fractional differential equations is very dynamic and widespread around the world. Some of its applications in diverse fields are discussed in [1,2]. Optical solitons of time-fractional higher-order nonlinear Schr¨odinger equation and soliton molecule solutions of nonlinear Schr¨odinger equations are established by Dai et al. [3,4]. A hybrid analytical solution to examine the fractional model of the nonlinear wave-like equation is explored by Kumar et al. [5]. Numerical solutions with linearization techniques of the fractional Harry Dym equation are established in [6].
Many researchers have discussed fractional calculus operators [7,8]. The composition of Erdélyi-Kober fractional operators is presented in [9]. Mishra et al. discussed the Marichev-Saigo-Maeda fractional calculus operators on the product of Srivastava polynomials and generalized Mittag-Leffler function [10]. Certain Integral operators involving the Gauss hypergeometric functions are elaborated in [11,12]. A brief study of fractional calculus operators on generalized multivariable Mittag-Leffler function is presented by Suthar et al. [13]. A brief systematic history of the generalized fractional calculus operators and their applications is being profoundly analyzed in [14,15]. A concise description of generalized fractional calculus operators together with their applications is available in [16,17,18].
A variety of research publications are continuously in progress regarding the generalization of classical fractional calculus operators. In this continuation, many researchers established generalized fractional operator and their applications[19,20]. Smraiz et al. modified the (k,s) fractional integral operator involving k-Mittag-Leffler function and also discussed the applications of (k,s)-Hilfer-Prabhakar fractional derivative in mathematical physics [21,22]. Can et al. have discussed the global existence for a mild solution of fractional Volterra integro-differential equations [23] and inverse source problem for the time-fractional diffusion equation with Mittag-Leffler kernel [24]. They also explored regularized solution approximation for the fractional pseudo-parabolic problem with a nonlinear source term in [25].
For our study, we start with k versions of Saigo fractional integral and derivative operators involving the k-hypergeometric function in the kernel which were introduced by Gupta and Parihar [26] and are defined as follows:
For w∈R+, ϵ,ϱ,χ∈C with Re(ϵ)>0, k>0, we have
(Iϵ,ϱ,χ0+,kf)(w)=w−ϵ−ϱkkΓk(ϵ)∫w0(w−t)ϵk−1×2F1,k((ϵ+ϱ,k),(−χ,k);(ϵ,k);(1−tw))f(t)dt. | (1.1) |
(Iϵ,ϱ,χ−,kf)(w)=1kΓk(ϵ)∫∞w(t−w)ϵk−1t−ϵ−ϱk×2F1,k((ϵ+ϱ,k),(−χ,k);(ϵ,k);(1−wt))f(t)dt. | (1.2) |
(Dϵ,ϱ,χ0+,kf)(w)=(ddw)n(I−ϵ+n,−ϱ−n,ϵ+χ−n0+,kf)w,n=[Re(ϵ)+1]=(ddw)nwϵ+ϱkkΓk(−ϵ+n)∫w0(w−t)−ϵk+n−1×2F1,k((−ϵ−ϱ,k),(−χ−ϵ+n,k);(−ϵ+n,k);(1−tw))f(t)dt. | (1.3) |
(Dϵ,ϱ,χ−,kf)(w)=(ddw)n(I−ϵ+n,−ϱ−n,ϵ+χ−,kf)w,n=[Re(ϵ)+1]=(ddw)n1kΓk(−ϵ+n)∫∞w(t−w)−ϵ−nk−1tϵ+ϱk×2F1,k((−ϵ−ϱ,k),(−χ−ϵ+n,k);(−ϵ+n,k);(1−wt))f(t)dt. | (1.4) |
Where [Re(ϵ)] is the integer part of Re(ϵ) and 2F1,k((ϵ,k),(ϱ,k);(χ,k);w) is the k-hypergeometric function defined by Mubeen and Habibullah in [19] as:
For w∈C, |w|<1, Re(χ)>Re(ϱ)>0,
2F1,k((ϵ,k),(ϱ,k);(χ,k);w)=∞∑n=0(ϵ)n,k(ϱ)n,kwn(χ)n,kn!. | (1.5) |
The benefit of the generalized k-fractional calculus operators is that they generalize classical Saigo's fractional operators and classical Riemann-Liouville operators. For k→1, (1.1)–(1.4) condense to the Saigo's fractional integral and differential operators [11]. If we take ϱ=−ϵ in (1.1)–(1.4), we have the k- Riemann-Liouville operators as follows:
(Iϵ,ϱ,χ0+,kf)(w)=(Iϵ0+,kf)(w), | (1.6) |
(Iϵ,ϱ,χ−,kf)(w)=(Iϵ−,kf)(w), | (1.7) |
(Dϵ,ϱ,χ0+,kf)(w)=(Dϵ0+,kf)(w), | (1.8) |
(Dϵ,ϱ,χ−,kf)(w)=(Dϵ−,kf)(w) | (1.9) |
and for k→1, Eqs (1.6)–(1.9) reduce to classical Riemann-Liouville fractional operators.
Now, we will state the lemmas presented in [26] which will be helpful to prove our main results.
Lemma 1.1. Let ϵ,ρ,χ,λ∈C, k∈R+(0,∞), Re(λ)>max[0,Re(ϱ−χ)]. Then
(Iϵ,ϱ,χ0+,ktλk−1)(w)=∞∑n=0knΓk(λ)Γk(λ−ϱ+χ)Γk(λ−ϱ)Γk(λ+ϵ+χ)wλ−ϱk−1. | (1.10) |
Lemma 1.2. Let ϵ,ρ,χ,λ∈C, k∈R+(0,∞), Re(λ)>max[Re(−ϱ),Re(−χ)]. Then
(Iϵ,ϱ,χ−,kt−λk)(w)=∞∑n=0knΓk(λ+ϱ)Γk(λ+χ)Γk(λ)Γk(λ+ϵ+ϱ+χ)w−λ−ϱk. | (1.11) |
Lemma 1.3. Let ϵ,ρ,χ,λ∈C, k∈R+(0,∞), n=Re[ϵ]+1 such that Re(λ)>max[0,Re(−ϵ−ϱ−χ)]. Then
(Dϵ,ϱ,χ0+,ktλk−1)(w)=∞∑n=0Γk(λ)Γk(λ+ϱ+χ+ϵ)Γk(λ+χ)Γk(λ+ϱ+n−nk)wλ+ϱ+nk−n−1. | (1.12) |
Lemma 1.4. Let ϵ,ρ,χ,λ∈C, n=Re[ϵ]+1, k∈R+(0,∞) such that Re(λ)>max[Re(−ϵ−χ),Re(ϱ−nk+n)]. Then
(Dϵ,ϱ,χ−,kt−λk)(w)=∞∑n=0Γk(λ−ϱ−n+nk)Γk(λ+ϵ+χ)Γk(λ)Γk(λ−ϱ+χ)w−λ−ϱ+nk−n. | (1.13) |
Gehlot and Prajapati in [27] defined the k-Wright function as follows:
For k∈R+, w,ai,bj∈C, Ai,Bj∈R(Ai,Bj)≠0 where i=1,2,..u;j=1,2,..v and (ai+Ain),(bj+Bjn)∈C∖kZ−,
uψkv[(a1,A1),..(au,Au);(b1,B1),..(bv,Bv);z]=∞∑n=0Γk(a1,nA1)..Γk(au,nAu)znΓk(b1,nB1)..Γk(bv,nBv)n!, | (1.14) |
with convergence condition
1+u∑j=1Bjk−v∑i=1Aik>0, | (1.15) |
for reasonably bounded values of |z|.
The Lommel-Wright k-function is defined as follows:
J℘,mℵ,ℏ,k(z)=(z2)ℵ+2ℏk∞∑n=0(−1)n(z2)2n(Γk(ℏ+k+nk))mΓk(ℵ+ℏ+k+n℘), | (1.16) |
where z∈C|(−∞,0],℘>0,m∈N,k∈R,ℵ,ℏ∈C and Γk(Z) is the k-gamma function introduced by Diaz and Pariguan [28] given by
Γk(z)=limn→∞n!kn(nk)ωk−1(ω)n,k, |
with k-Pochhammer symbol (ω)n,k given by
(ω)n,k=ω(ω+k)(ω+2k)....(ω+(n−1)k),x∈C,k∈R,n∈N+. |
The classical Eulers Gamma function and Gamma k-function are related with following relation
Γk(ω)=kωk−1Γ(ωk). |
The Lommel-Wright k-function can also be expressed in the form of k-Wright function as:
J℘,mℵ,ℏ,k(z)=(z2)ℵ+2ℏk1ψkm+1[(k,k);(ℏ+k,k)⏟m−times,(ℵ+ℏ+k,℘);−z24k]. | (1.17) |
For m=1 in (1.16), we define the generalized Bessel-Maitland k-function as:
J℘ℵ,ℏ,k(z)=(z2)ℵ+2ℏk∞∑n=0(−1)n(z2)2nΓk(ℏ+k+nk)Γk(ℵ+ℏ+k+n℘). | (1.18) |
It is observed that for k=1, generalized Lommel-Wright k-function reduces to generalized Lommel-Wright function as given in [29] and for m=k=1, we get the Bessel-Maitland function presented in [29]. It also capitulates connection with the classical Bessel function Jℵ(z) mentioned in [30] for m=℘=k=1 and ℏ=0.
As various kinds of generalized fractional calculus operators involving different special functions are in consistent development. The papers on certain generalized fractional operators and integral transform [31,32,33] serve as inspiration for our presented work. This work backs up the prior results and contributes to the field by making broad generalizations.
The layout of the paper is as follows: In section 2, we established the formulas for generalized Saigo fractional integrals involving generalized Lommel-Wright function and some of its cases are also discussed as corollaries. Section 3 is devoted to developing the generalized Saigo fractional differentiation formulas involving generalized Lommel-Wright function along with its special consequences. In Section 4, extended Beta transform is applied to the generalized Lommel-Wright function. The last section contains concluding remarks.
In this section, we develop the formulas for Saigo k-fractional integrals (1.1) and (1.2) associated with Lommel-Wright k-function. These results are expressed in terms of k-Wright function.
Theorem 2.1. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, m∈N, k∈R+, such that Re(ϵ)>0, Reλ>max[0,Re(ϱ−χ)] and Re(λ+χ−ϱ)>0. If condition given by (1.15) is satisfied and Iϵ,ϱ,χ0+,k is the left sided integral operator of the generalized k-fractional integration considering k-hypergeometric function. Then the subsequent formula
(Iϵ,ϱ,χ0+,ktλk−1J℘,mℵ,ℏ,k(tσk))(w)=wσ(ℵ+2ℏk)+λ−ϱk−1(12)(ℵ+2ℏk)×3ψkm+3[(σ(ℵ+2ℏk)+λ,2σ),(σ(ℵ+2ℏk)+λ−ϱ+χ,2σ),(k,k);(ℏ+k,k)⏟m−times,(ℵ+ℏ+k,℘),(σ(ℵ+2ℏk)+λ−ϱ,2σ),(σ(ℵ+2ℏk)+λ+ϵ+ϱ+χ,2σ);−w2σk4] | (2.1) |
holds.
Proof. Using Eq (1.16) in the left hand side of Eq (2.1), we get
=[Iϵ,ϱ,χ0+,ktλk−1∞∑n=0(−1)n(Γk(ℏ+k+nk))mΓk(ℵ+ℏ+k+n℘)(tσk2)ℵ+2ℏk+2n](w) | (2.2) |
=∞∑n=0(−1)n12ℵ+2ℏk+2n(Γk(ℏ+k+nk))mΓk(ℵ+ℏ+k+n℘)[Iϵ,ϱ,χ0+,k(tσ(ℵ+2ℏk)+λ+2σnk−1)](w). | (2.3) |
Applying Lemma 1.1, we obtain
=wσ(ℵ+2ℏk)+λ−ϱk−1(12)ℵ+2ℏk∞∑n=01(Γk(ℏ+k+nk))mΓk(ℵ+ℏ+k+n℘)×Γk(σ(ℵ+2ℏk)+λ+2σn)Γk(σ(ℵ+2ℏk)+λ−ϱ+χ+2σn)Γk(σ(ℵ+2ℏk)+λ−ϱ+2σn)Γk(σ(ℵ+2ℏk)+λ+ϱ+ϵ+χ+2σn)(−kw2σk4)n. | (2.4) |
Multiplying and dividing by Γ(n+1) and using Γ(n+1)=k−nΓk(nk+k), we get
=wσ(ℵ+2ℏk)+λ−ϱk−1(12)ℵ+2ℏk∞∑n=0k−nΓk(k+nk)(Γk(ℏ+k+nk))mΓk(ℵ+ℏ+k+n℘)n!×Γk(σ(ℵ+2ℏk)+λ+2σn)Γk(σ(ℵ+2ℏk)+λ−ϱ+χ+2σn)Γk(σ(ℵ+2ℏk)+λ−ϱ+2σn)Γk(σ(ℵ+2ℏk)+λ+ϱ+ϵ+χ+2σn)(−kw2σk4)n. | (2.5) |
Using Eq (1.14) in (2.5), we have the desired formula.
Theorem 2.2. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, m∈N, k∈R+, such that Re(ϵ)>0, Re(λ+ϵ)>max[−Re(ϱ)−Re(χ)] and Re(ϱ)≠Re(χ). If condition (1.15) is satisfied and Iϵ,ϱ,χ−,k is the right sided integral operator of the generalized k-fractional integration considering k-hypergeometric function. Then the subsequent formula
(Iϵ,ϱ,χ−,kt−ϵ−λkJ℘,mℵ,ℏ,k(t−σk))(w)=w−σ(ℵ+2ℏk)+ϵ+λ−ϱk(12)(ℵ+2ℏk)×3ψkm+3[(σ(ℵ+2ℏk)+ϵ+λ+ϱ,2σ),(σ(ℵ+2ℏk)+ϵ+λ+χ,2σ),(k,k);(ℏ+k,k)⏟m−times,(ℵ+ℏ+k,℘),(σ(ℵ+2ℏk)+ϵ+λ,2σ),(σ(ℵ+2ℏk)+2ϵ+λ+ϱ+χ,2σ);−w−2σk4] | (2.6) |
holds.
Proof. The proof of Theorem 2.2 runs parallel to Theorem 2.1.
The findings in (2.1) and (2.6) are very general in nature and can result in a large number of individual cases. Allocating some acceptable values to the parameters involved, we have the following corollaries.
Using m=1, the results (2.1) and (2.6) take the form.
Corollary 2.3. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, k∈R+, such that Re(ϵ)>0, Reλ>max[0,Re(ϱ−χ)] and Re(λ+χ−ϱ)>0. Then the subsequent formula
(Iϵ,ϱ,χ0+,ktλk−1J℘ℵ,ℏ,k(tσk))(w)=wσ(ℵ+2ℏk)+λ−ϱk−1(12)(ℵ+2ℏk)×3ψk4[(σ(ℵ+2ℏk)+λ,2σ),(σ(ℵ+2ℏk)+λ−ϱ+χ,2σ),(k,k);(ℏ+k,k),(ℵ+ℏ+k,℘),(σ(ℵ+2ℏk)+λ−ϱ,2σ),(σ(ℵ+2ℏk)+λ+ϵ+ϱ+χ,2σ);−w2σk4] | (2.7) |
is true.
Corollary 2.4. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, m∈N, k∈R+, such that Re(ϵ)>0, Re(λ+ϵ)>max[−Re(ϱ)−Re(χ)] and Re(ϱ)≠Re(χ). Then the subsequent formula
(Iϵ,ϱ,χ−,kt−ϵ−λkJ℘ℵ,ℏ,k(t−σk))(w)=w−σ(ℵ+2ℏk)+ϵ+λ−ϱk(12)(ℵ+2ℏk)×3ψk4[(σ(ℵ+2ℏk)+ϵ+λ+ϱ,2σ),(σ(ℵ+2ℏk)+ϵ+λ+χ,2σ),(k,k);(ℏ+k,k),(ℵ+ℏ+k,℘),(σ(ℵ+2ℏk)+ϵ+λ,2σ),(σ(ℵ+2ℏk)+2ϵ+λ+ϱ+χ,2σ);−w−2σk4] | (2.8) |
is true.
Letting k=1, we have the generalized Lommel-Wright function and the corresponding formulas are presented in subsequent corollaries.
Corollary 2.5. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, m∈N, such that Re(ϵ)>0, Reλ>max[0,Re(ϱ−χ)] and Re(λ+χ−ϱ)>0. Then the subsequent formula
(Iϵ,ϱ,χ0+tλ−1J℘,mℵ,ℏ(tσ))(w)=wσ(ℵ+2ℏ)+λ−ϱ−1(12)(ℵ+2ℏ)×3ψm+3[(σ(ℵ+2ℏ)+λ,2σ),(σ(ℵ+2ℏ)+λ−ϱ+χ,2σ),(1,1);(ℏ+1,1)⏟m−times,(ℵ+ℏ+1,℘),(σ(ℵ+2ℏ)+λ−ϱ,2σ),(σ(ℵ+2ℏ)+λ+ϵ+ϱ+χ,2σ);−w2σ4] | (2.9) |
holds.
Corollary 2.6. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, m∈N, such that Re(ϵ)>0, Re(λ+ϵ)>max[−Re(ϱ)−Re(χ)] and Re(ϱ)≠Re(χ). Then the subsequent formula
(Iϵ,ϱ,χ−t−ϵ−λJ℘,mℵ,ℏ(t−σ))(w)=w−σ(ℵ+2ℏ)+ϵ+λ+ϱ(12)(ℵ+2ℏ)×3ψm+3[(σ(ℵ+2ℏ)+ϵ+λ+ϱ,2σ),(σ(ℵ+2ℏ)+ϵ+λ+χ,2σ),(1,1);(ℏ+1,1)⏟m−times,(ℵ+ℏ+1,℘),(σ(ℵ+2ℏ)+ϵ+λ,2σ),(σ(ℵ+2ℏ)+2ϵλ+ϱ+χ,2σ);−w−2σ4] | (2.10) |
holds.
For m=k=℘=1 and ℏ=0, the corresponding corollaries are as given below.
Corollary 2.7. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, m∈N, such that Re(ϵ)>0, Reλ>max[0,Re(ϱ−χ)] and Re(λ+χ−ϱ)>0. Then the subsequent formula holds
(Iϵ,ϱ,χ0+tλ−1J1,1ℵ(tσ))(w)=wσ(ℵ+)+λ−ϱ−1(12)ℵ×2ψ3[(σℵ+λ,2σ),(σℵ+λ−ϱ+χ,2σ);(ℵ+1,1),(σℵ+λ−ϱ,2σ),(σℵ+λ+ϵ+ϱ+χ,2σ);−w2σ4]. | (2.11) |
Corollary 2.8. Let ϵ,ϱ,χ,λ,σ∈C, m∈N, such that Re(ϵ)>0, Re(λ+ϵ)>max[−Re(ϱ)−Re(χ)] and Re(ϱ)≠Re(χ). Then the subsequent formula holds
(Iϵ,ϱ,χ−t−ϵ−λJ1,1ℵ(t−σ))(w)=w−σℵ+ϵ+λ+ϱ(12)ℵ×2ψ3[(σℵ+ϵ+λ+ϱ,2σ),(σℵ+ϵ+λ+χ,2σ);(ℵ+1,1),(σℵ+ϵ+λ,2σ),(σℵ+2ϵλ+ϱ+χ,2σ);−w−2σ4]. | (2.12) |
In this part, we will present formulas for differentiation using Saigo k-fractional differential operators given by (1.3) and (1.4) involving generalized Lomme-Wright k-function. These formulae are presented in terms of k-Wright function.
Theorem 3.1. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, m∈N, k∈R+, such that Re(ϵ)>0, Re(λ)>max[0,Re(−ϵ−ϱ−χ)] and Re(λ+χ+ϱ)>0. If condition (1.15) holds and Dϵ,ϱ,χ0+,k is the left sided operator of the generalized k-fractional differentiation considering k-hypergeometric function. Then the following formula
(Dϵ,ϱ,χ0+,ktλk−1J℘,mℵ,ℏ,k(tσk))(w)=wσ(ℵ+2ℏk)+λ−ϱk−1(12)(ℵ+2ℏk)×3ψkm+3[(σ(ℵ+2ℏk)+λ,2σ),(σ(ℵ+2ℏk)+λ+ϵ+ϱ+χ,2σ),(k,k);(ℏ+k,k)⏟m−times,(ℵ+ℏ+k,℘),(σ(ℵ+2ℏk)+λ+χ,2σ),(σ(ℵ+2ℏk)+λ,2σ−k+1);−w(2σ+1k)−14k] | (3.1) |
holds true.
Proof. By means of Eq (1.16) we can write the left hand side of Eq (3.1) as follows:
=[Dϵ,ϱ,χ0+,ktλk−1∞∑n=0(−1)n(Γk(ℏ+k+nk))mΓk(ℵ+ℏ+k+n℘)(tσk2)ℵ+2ℏk+2n](w), | (3.2) |
=∞∑n=0(−1)n12ℵ+2ℏk+2n(Γk(ℏ+k+nk))mΓk(ℵ+ℏ+k+n℘)[Dϵ,ϱ,χ0+,k(tσ(ℵ+2ℏk)+λ+2σnk−1)](w). | (3.3) |
Using Lemma 1.3 in Eq (3.3), we obtain
=wσ(ℵ+2ℏk)+λ+ϱk−1(12)ℵ+2ℏk∞∑n=01(Γk(ℏ+k+nk))mΓk(ℵ+ℏ+k+n℘)×Γk(σ(ℵ+2ℏk)+λ+2σn)Γk(σ(ℵ+2ℏk)+λ+ϵ+ϱ+χ+2σn)Γk(σ(ℵ+2ℏk)+λ+χ+2σn)Γk(σ(ℵ+2ℏk)+λ+2σn−kn+n).(−w2σ+1k−14)n. | (3.4) |
Multiplying and dividing by Γ(n+1) and using Γ(n+1)=k−nΓk(nk+k), we get
=wσ(ℵ+2ℏk)+λ+ϱk−1(12)ℵ+2ℏk∞∑n=0k−nΓk(nk+k)(Γk(ℏ+k+nk))mΓk(ℵ+ℏ+k+n℘)n!×Γk(σ(ℵ+2ℏk)+λ+2σn)Γk(σ(ℵ+2ℏk)+λ+ϵ+ϱ+χ+2σn)Γk(σ(ℵ+2ℏk)+λ+χ+2σn)Γk(σ(ℵ+2ℏk)+λ+2σn−kn+n)(−w2σ+1k−14)n. | (3.5) |
By means of Definition (1.14) in (3.5), we obtain the formula (3.1).
Theorem 3.2. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, m∈N, k∈R+, such that Re(ϵ)>0, Re(ϱ)>max[Re(ϵ+ϱ)+n−Re(χ)] and Re(ϵ+ϱ−χ)+n≠0, where n=[Re(ϵ)+1] If condition (1.15) is satisfied and (Dϵ,ϱ,χ−,k is the right sided operator of the generalized k-fractional differentiation considering k-hypergeometric function. Then the subsequent formula
(Dϵ,ϱ,χ−,kt−ϵ−λkJ℘,mℵ,ℏ,k(t−σk))(w)=w−σ(ℵ+2ℏk)+ϵ−λ+ϱk(12)(ℵ+2ℏk)×3ψkm+3[(σ(ℵ+2ℏk)+λ−ϵ−ϱ,2σ+k−1),(σ(ℵ+2ℏk)+λ+χ,2σ),(k,k);(ℏ+k,k)⏟m−times,(ℵ+ℏ+k,℘),(σ(ℵ+2ℏk)+λ−ϵ,2σ),(σ(ℵ+2ℏk)+λ−ϵ−ϱ+χ,2σ);−w−2σ+1k−14k] | (3.6) |
holds.
Proof. The proof of Theorem 3.2 is similiar to Theorem 3.1.
Now, we discuss some special cases.
For m=1 the results (3.1) and (3.6) are established in the form of following corollaries.
Corollary 3.3. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, k∈R+, such that Re(ϵ)>0, Re(λ)>max[0,Re(−ϵ−ϱ−χ)] and Re(λ+χ+ϱ)>0. If condition in (1.15) holds then the subsequent formula
(Dϵ,ϱ,χ0+,ktλk−1J℘ℵ,ℏ,k(tσk))(w)=wσ(ℵ+2ℏk)+λ−ϱk−1(12)(ℵ+2ℏk)×3ψk4[(σ(ℵ+2ℏk)+λ,2σ),(σ(ℵ+2ℏk)+λ+ϵ+ϱ+χ,2σ),(k,k);(ℏ+k,k),(ℵ+ℏ+k,℘),(σ(ℵ+2ℏk)+λ+χ,2σ),(σ(ℵ+2ℏk)+λ,2σ−k+1);−w(2σ+1k)−14k] | (3.7) |
is true.
Corollary 3.4. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, k∈R+, such that Re(ϵ)>0, Re(ϱ)>max[Re(ϵ+ϱ)+n−Re(χ)] and Re(ϵ+ϱ−χ)+n≠0, where n=[Re(ϵ)+1]. If condition in (1.15) is satisfied then the subsequent formula holds
(Dϵ,ϱ,χ−,kt−ϵ−λkJ℘,mℵ,ℏ,k(t−σk))(w)=w−σ(ℵ+2ℏk)+ϵ−λ+ϱk(12)(ℵ+2ℏk)×3ψk4[(σ(ℵ+2ℏk)+λ−ϵ−ϱ,2σ+k−1),(σ(ℵ+2ℏk)+λ+χ,2σ),(k,k);(ℏ+k,k),(ℵ+ℏ+k,℘),(σ(ℵ+2ℏk)+λ−ϵ,2σ),(σ(ℵ+2ℏk)+λ−ϵ−ϱ+χ,2σ);−w−2σ+1k−14k]. | (3.8) |
For k=1, in Eqs. (3.1) and (3.6), the obtained corollaries are given below.
Corollary 3.5. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, m∈N, such that Re(ϵ)>0, Re(λ)>max[0,Re(−ϵ−ϱ−χ)] and Re(λ+χ+ϱ)>0. If condition in (1.15) holds then the subsequent formula is true
(Dϵ,ϱ,χ0+tλ−1J℘,mℵ,ℏ(tσ))(w)=wσ(ℵ+2ℏ)+λ−ϱ−1(12)(ℵ+2ℏ)×3ψm+3[(σ(ℵ+2ℏ)+λ,2σ),(σ(ℵ+2ℏ)+λ+ϵ+ϱ+χ,2σ),(1,1);(ℏ+1,1)⏟m−times,(ℵ+ℏ+1,℘),(σ(ℵ+2ℏ)+λ+χ,2σ),(σ(ℵ+2ℏ)+λ,2σ);−w2σ4]. | (3.9) |
Corollary 3.6. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, m∈N, such that Re(ϵ)>0, Re(ϱ)>max[Re(ϵ+ϱ)+n−Re(χ)] and Re(ϵ+ϱ−χ)+n≠0, where n=[Re(ϵ)+1]. If condition in (1.15) is satisfied then the subsequent formula holds
(Dϵ,ϱ,χ−t−ϵ−λJ℘,mℵ,ℏ(t−σ))(w)=w−σ(ℵ+2ℏ)+ϵ−λ+ϱ(12)(ℵ+2ℏ)×3ψm+3[(σ(ℵ+2ℏ)+λ−ϵ−ϱ,2σ),(σ(ℵ+2ℏ)+λ+χ,2σ),(1,1);(ℏ+1,1)⏟m−times,(ℵ+ℏ+1,℘),(σ(ℵ+2ℏ)+λ−ϵ,2σ),(σ(ℵ+2ℏ)+λ−ϵ−ϱ+χ,2σ);−w−2σ4]. | (3.10) |
For m=k=℘=1 and ℏ=0, the subsequent corollaries are as follows:
Corollary 3.7. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, m∈N, such that Re(ϵ)>0, Re(λ)>max[0,Re(−ϵ−ϱ−χ)] and Re(λ+χ+ϱ)>0. If condition in (1.15) holds then the subsequent formula is true
(Dϵ,ϱ,χ0+tλ−1J1,1ℵ(tσ))(w)=wσℵ)+λ−ϱ−1(12)(ℵ)×2ψ3[(σℵ)+λ,2σ),(σℵ+λ+ϵ+ϱ+χ,2σ);(ℵ+1,1),(σℵ+λ+χ,2σ),(σℵ+λ,2σ);−w2σ4]. | (3.11) |
Corollary 3.8. Let ϵ,ϱ,χ,λ,σ∈C such that Re(ϵ)>0, Re(ϱ)>max[Re(ϵ+ϱ)+n−Re(χ)] and Re(ϵ+ϱ−χ)+n≠0, where n=[Re(ϵ)+1] If condition in (1.15) is satisfied then the subsequent formula holds
(Dϵ,ϱ,χ−t−ϵ−λJ1,1ℵ(t−σ))(w)=w−σℵ+ϵ−λ+ϱ(12)ℵ×2ψ3[(σℵ+λ−ϵ−ϱ,2σ),(σℵ+λ+χ,2σ),(1,1);(ℵ+1,1),(σℵ+λ−ϵ,2σ),(σℵ+λ−ϵ−ϱ+χ,2σ);−w−2σ4]. | (3.12) |
In this part, we will discuss some theorems on integral transforms of generalized Lommel-Wright k-function connecting with the results established in previous sections.
The k-beta function presented in [34] as:
For r,s>0
Bk(r,s)=1k∫10trk−1(1−t)sk−1dt. | (4.1) |
It can also be written as
Bk(l(t);r,s)=1k∫10trk−1(1−t)sk−1l(t)dt. | (4.2) |
The relation between k-beta function and the classical one is
Bk(r,s)=1kB(rk,sk)=Γk(r)Γk(s)Γk(r+s). | (4.3) |
Theorem 4.1. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, m∈N, k∈R+, such that Re(ϵ)>0, Reλ>max[0,Re(ϱ−χ)]. Then the following formula is true
Bk((Iϵ,ϱ,χ0+,ktλk−1J℘,mℵ,ℏ,k(zt)σk))(w);r,s)=wσ(ℵ+2ℏk)+λ−ϱk−1(12)(ℵ+2ℏk)Γk(s)×4ψkm+4[(σ(ℵ+2ℏk)+λ,2σ),(σ(ℵ+2ℏk)+λ−ϱ+χ,2σ),(r+σ(ℵ+2ℏk),2σ),(k,k);(ℏ+k,k)⏟m−times,(ℵ+ℏ+k,℘),(σ(ℵ+2ℏk)+λ−ϱ,2σ),(σ(ℵ+2ℏk)+λ+ϵ+ϱ+χ,2σ),(r+s+σ(ℵ+2ℏk,2σ);−w2σk4]. | (4.4) |
Proof. Using Eqs (1.16) and (4.2) in the left hand side of Eq (4.4), we can write
=1k∫10zrk−1(1−z)sk−1[Iϵ,ϱ,χ0+,ktλk−1∞∑n=0(−1)n(Γk(ℏ+k+nk))mΓk(ℵ+ℏ+k+n℘)×((zt)σk2)ℵ+2ℏk+2n](w)dz, | (4.5) |
which implies
=∞∑n=0(−1)n12ℵ+2ℏk+2n(Γk(ℏ+k+nk))mΓk(ℵ+ℏ+k+n℘)[Iϵ,ϱ,χ0+,k(tσ(ℵ+2ℏk)+λ+2σnk−1)](w)×∫10zr+σ(ℵ+2ℏk)+2σnk−1(1−z)sk−1dz. | (4.6) |
Applying Lemma 1.1 and using Eq (4.3), we obtain
=wσ(ℵ+2ℏk)+λ−ϱk−1(12)ℵ+2ℏk∞∑n=01(Γk(ℏ+k+nk))mΓk(ℵ+ℏ+k+n℘)×Γk(σ(ℵ+2ℏk)+λ+2σn)Γk(σ(ℵ+2ℏk)+λ−ϱ+χ+2σn)Γk(σ(ℵ+2ℏk)+λ−ϱ+2σn)Γk(σ(ℵ+2ℏk)+λ+ϱ+ϵ+χ+2σn)×Γk(r+σ(ℵ+2ℏk)+2σn)Γk(s)Γk(r+s+σ(ℵ+2ℏk)+2σn)(−kw2σk4)n. | (4.7) |
Multiplying and dividing by Γ(n+1) and using Γ(n+1)=k−nΓk(nk+k), we get
=wσ(ℵ+2ℏk)+λ−ϱk−1(12)ℵ+2ℏk∞∑n=0k−nΓk(k+nk)(Γk(ℏ+k+nk))mΓk(ℵ+ℏ+k+n℘)n!×Γk(σ(ℵ+2ℏk)+λ+2σn)Γk(σ(ℵ+2ℏk)+λ−ϱ+χ+2σn)Γk(σ(ℵ+2ℏk)+λ−ϱ+2σn)Γk(σ(ℵ+2ℏk)+λ+ϱ+ϵ+χ+2σn)×Γk(r+σ(ℵ+2ℏk)+2σn)Γk(s)Γk(r+s+σ(ℵ+2ℏk)+2σn)(−w2σk4)n. | (4.8) |
By combining Eqs (1.14) and (4.8), we get our required result (4.4).
Theorem 4.2. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, m∈N, k∈R+, such that Re(ϵ)>0, Re(λ+ϵ)>max[−Re(ϱ)−Re(χ)]. Then the following formula is true
Bk((Iϵ,ϱ,χ−,kt−ϵ−λkJ℘,mℵ,ℏ,k(zt)−σk)(w);r,s)=w−σ(ℵ+2ℏk)+ϵ+λ−ϱk(12)(ℵ+2ℏk)Γk(s)×4ψkm+4[(σ(ℵ+2ℏk)+ϵ+λ+ϱ,2σ),(σ(ℵ+2ℏk)+ϵ+λ+χ,2σ),(r+σ(ℵ+2ℏk,2σ),(k,k);(ℏ+k,k)⏟m−times,(ℵ+ℏ+k,℘),(σ(ℵ+2ℏk)+ϵ+λ,2σ),(σ(ℵ+2ℏk)+2ϵ+λ+ϱ+χ,2σ),(r+s+σ(ℵ+2ℏk,2σ);−w−2σk4]. | (4.9) |
Proof. The proof is similar to Theorem 4.1.
Theorem 4.3. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, m∈N, k∈R+, such that Re(ϵ)>0, Re(λ)>max[0,Re(−ϵ−ϱ−χ)]. Then the subsequent formula is true
Bk((Dϵ,ϱ,χ0+,ktλk−1J℘,mℵ,ℏ,k(zt)σk)(w);r,s)=wσ(ℵ+2ℏk)+λ−ϱk−1(12)(ℵ+2ℏk)Γk(s)×4ψkm+4[(σ(ℵ+2ℏk)+λ,2σ),(σ(ℵ+2ℏk)+λ+ϵ+ϱ+χ,2σ),(r+σ(ℵ+2ℏk,2σ),(k,k);(ℏ+k,k)⏟m−times,(ℵ+ℏ+k,℘),(σ(ℵ+2ℏk)+λ+χ,2σ),(σ(ℵ+2ℏk)+λ,2σ−k+1),(r+s+σ(ℵ+2ℏk,2σ);−w(2σ+1k)−14k]. | (4.10) |
Proof. By means of Eqs (1.16) and (4.2) in the left hand side of Eq (4.10), we have
=1k∫10zrk−1(1−z)sk−1[Dϵ,ϱ,χ0+,ktλk−1∞∑n=0(−1)n(Γk(ℏ+k+nk))mΓk(ℵ+ℏ+k+n℘)×(tσk2)ℵ+2ℏk+2n](w)dz. | (4.11) |
On simplification, we obtain
=∞∑n=0(−1)n12ℵ+2ℏk+2n(Γk(ℏ+k+nk))mΓk(ℵ+ℏ+k+n℘)[Dϵ,ϱ,χ0+,k(tσ(ℵ+2ℏk)+λ+2σnk−1)](w)×∫10zr+σ(ℵ+2ℏk)+2σnk−1(1−z)sk−1dz. | (4.12) |
Using Lemma 1.3 and relation (4.3), we get
=wσ(ℵ+2ℏk)+λ+ϱk−1(12)ℵ+2ℏk∞∑n=01(Γk(ℏ+k+nk))mΓk(ℵ+ℏ+k+n℘)×Γk(σ(ℵ+2ℏk)+λ+2σn)Γk(σ(ℵ+2ℏk)+λ+ϵ+ϱ+χ+2σn)Γk(σ(ℵ+2ℏk)+λ+χ+2σn)Γk(σ(ℵ+2ℏk)+λ+2σn−kn+n)×Γk(r+σ(ℵ+2ℏk)+2σn)Γk(s)Γk(r+s+σ(ℵ+2ℏk)+2σn)(−w2σ+1k−14)n. | (4.13) |
Multiplying and dividing by Γ(n+1) and using Γ(n+1)=k−nΓk(nk+k), we get
=wσ(ℵ+2ℏk)+λ+ϱk−1(12)ℵ+2ℏk∞∑n=0k−nΓk(nk+k)(Γk(ℏ+k+nk))mΓk(ℵ+ℏ+k+n℘)n!×Γk(σ(ℵ+2ℏk)+λ+2σn)Γk(σ(ℵ+2ℏk)+λ+ϵ+ϱ+χ+2σn)Γk(σ(ℵ+2ℏk)+λ+χ+2σn)Γk(σ(ℵ+2ℏk)+λ+2σn−kn+n)×Γk(r+σ(ℵ+2ℏk)+2σn)Γk(s)Γk(r+s+σ(ℵ+2ℏk)+2σn)(−w2σ+1k−14)n. | (4.14) |
By means of definition (1.14), the proof is done.
Theorem 4.4. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, m∈N, k∈R+, such that Re(ϵ)>0, Re(λ)>max[Re(−ϵ−χ)−nk+n]. Then the subsequent formula is true
Bk((Dϵ,ϱ,χ−,kt−ϵ−λkJ℘,mℵ,ℏ,k(zt)−σk)(w);r,s)=w−σ(ℵ+2ℏk)+ϵ−λ+ϱk(12)(ℵ+2ℏk)Γk(s)×4ψkm+4[(σ(ℵ+2ℏk)+λ−ϵ−ϱ,2σ+k−1),(σ(ℵ+2ℏk)+λ+χ,2σ),(r+σ(ℵ+2ℏk,2σ),(k,k);(ℏ+k,k)⏟m−times,(ℵ+ℏ+k,℘),(σ(ℵ+2ℏk)+λ−ϵ,2σ),(σ(ℵ+2ℏk)+λ−ϵ−ϱ+χ,2σ),(r+s+σ(ℵ+2ℏk,2σ);−w−2σ+1k−14k]. | (4.15) |
Proof. The proof of Theorem 4.4 runs parallel to Theorem 4.3.
Now, we will discuss some special cases.
By substituting m=1 in Eqs (4.4), (4.9), (4.10) and (4.15), we establish the following corollaries.
Corollary 4.5. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, k∈R+, such that Re(ϵ)>0, Reλ>max[0,Re(ϱ−χ)]. Then the following formula is true
Bk((Iϵ,ϱ,χ0+,ktλk−1J℘ℵ,ℏ,k(zt)σk))(w);r,s)=wσ(ℵ+2ℏk)+λ−ϱk−1(12)(ℵ+2ℏk)Γk(s)×4ψk5[(σ(ℵ+2ℏk)+λ,2σ),(σ(ℵ+2ℏk)+λ−ϱ+χ,2σ),(r+σ(ℵ+2ℏk,2σ),(k,k);(ℏ+k,k),(ℵ+ℏ+k,℘),(σ(ℵ+2ℏk)+λ−ϱ,2σ),(σ(ℵ+2ℏk)+λ+ϵ+ϱ+χ,2σ),(r+s+σ(ℵ+2ℏk,2σ);−w2σk4]. | (4.16) |
Corollary 4.6. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, k∈R+, such that Re(ϵ)>0, Re(λ+ϵ)>max[−Re(ϱ)−Re(χ)]. Then prove the following formula
Bk((Iϵ,ϱ,χ−,kt−ϵ−λkJ℘ℵ,ℏ,k(zt)−σk)(w);r,s)=w−σ(ℵ+2ℏk)+ϵ+λ−ϱk(12)(ℵ+2ℏk)Γk(s)×4ψk5[(σ(ℵ+2ℏk)+ϵ+λ+ϱ,2σ),(σ(ℵ+2ℏk)+ϵ+λ+χ,2σ),(r+σ(ℵ+2ℏk,2σ),(k,k);(ℏ+k,k),(ℵ+ℏ+k,℘),(σ(ℵ+2ℏk)+ϵ+λ,2σ),(σ(ℵ+2ℏk)+2ϵ+λ+ϱ+χ,2σ),(r+s+σ(ℵ+2ℏk,2σ);−w−2σk4]. | (4.17) |
Corollary 4.7. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, m∈N, k∈R+, such that Re(ϵ)>0, Re(λ)>max[0,Re(−ϵ−ϱ−χ)]. Then the subsequent formula is true
Bk((Dϵ,ϱ,χ0+,ktλk−1J℘ℵ,ℏ,k(zt)σk)(w);r,s)=wσ(ℵ+2ℏk)+λ−ϱk−1(12)(ℵ+2ℏk)Γk(s)×4ψk5[(σ(ℵ+2ℏk)+λ,2σ),(σ(ℵ+2ℏk)+λ+ϵ+ϱ+χ,2σ),(r+σ(ℵ+2ℏk,2σ),(k,k);(ℏ+k,k),(ℵ+ℏ+k,℘),(σ(ℵ+2ℏk)+λ+χ,2σ),(σ(ℵ+2ℏk)+λ,2σ−k+1),(r+s+σ(ℵ+2ℏk,2σ);−w(2σ+1k)−14k]. | (4.18) |
Corollary 4.8. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, k∈R+, such that Re(ϵ)>0, Re(λ)>max[Re(−ϵ−χ)−nk+n]. Then the subsequent formula is true
Bk((Dϵ,ϱ,χ−,kt−ϵ−λkJ℘ℵ,ℏ,k(zt)−σk)(w);r,s)=w−σ(ℵ+2ℏk)+ϵ−λ+ϱk(12)(ℵ+2ℏk)Γk(s)×4ψk5[(σ(ℵ+2ℏk)+λ−ϵ−ϱ,2σ+k−1),(σ(ℵ+2ℏk)+λ+χ,2σ),(r+σ(ℵ+2ℏk,2σ),(k,k);(ℏ+k,k),(ℵ+ℏ+k,℘),(σ(ℵ+2ℏk)+λ−ϵ,2σ),(σ(ℵ+2ℏk)+λ−ϵ−ϱ+χ,2σ),(r+s+σ(ℵ+2ℏk,2σ);−w−2σ+1k−14k]. | (4.19) |
For k=1, we establish the following formulas from Eqs (4.4), (4.9), (4.10) and (4.15).
Corollary 4.9. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, m∈N, such that Re(ϵ)>0, Reλ>max[0,Re(ϱ−χ)]. Then the following formula is true
B((Iϵ,ϱ,χ0+tλ−1J℘,mℵ,ℏ(zt)σ))(w);r,s)=wσ(ℵ+2ℏ)+λ−ϱ−1(12)ℵ+2ℏΓ(s)×4ψm+4[(σ(ℵ+2ℏ)+λ,2σ),(σ(ℵ+2ℏ)+λ−ϱ+χ,2σ),(r+σ(ℵ+2ℏ),2σ),(1,1);(ℏ+1,1)⏟m−times,(ℵ+ℏ+1,℘),(σ(ℵ+2ℏ)+λ−ϱ,2σ),(σ(ℵ+2ℏ)+λ+ϵ+ϱ+χ,2σ),(r+s+σ(ℵ+2ℏ),2σ);−w2σ4]. | (4.20) |
Corollary 4.10. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, m∈N, such that Re(ϵ)>0, Re(λ+ϵ)>max[−Re(ϱ)−Re(χ)]. Then the following formula is true
B((Iϵ,ϱ,χ−t−ϵ−λJ℘,mℵ,ℏ(zt)−σ)(w);r,s)=w−σ(ℵ+2ℏ)+ϵ+λ−ϱ(12)(ℵ+2ℏ)Γ(s)×4ψm+4[(σ(ℵ+2ℏ)+ϵ+λ+ϱ,2σ),(σ(ℵ+2ℏ)+ϵ+λ+χ,2σ),(r+σ(ℵ+2ℏ),2σ),(1,1);(ℏ+1,1)⏟m−times,(ℵ+ℏ+1,℘),(σ(ℵ+2ℏ)+ϵ+λ,2σ),(σ(ℵ+2ℏk)+2ϵ+λ+ϱ+χ,2σ),(r+s+σ(ℵ+2ℏ),2σ);−w−2σ4]. | (4.21) |
Corollary 4.11. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, m∈N, such that Re(ϵ)>0, Re(λ)>max[0,Re(−ϵ−ϱ−χ)]. Then the subsequent formula is true
B((Dϵ,ϱ,χ0+tλ−1J℘,mℵ,ℏ(zt)σ)(w);r,s)=wσ(ℵ+2ℏ)+λ−ϱ−1(12)(ℵ+2ℏ)Γ(s)×4ψm+4[(σ(ℵ+2ℏ)+λ,2σ),(σ(ℵ+2ℏ)+λ+ϵ+ϱ+χ,2σ),(r+σ(ℵ+2ℏ),2σ),(1,1);(ℏ+1,1)⏟m−times,(ℵ+ℏ+1,℘),(σ(ℵ+2ℏ)+λ+χ,2σ),(σ(ℵ+2ℏ)+λ,2σ),(r+s+σ(ℵ+2ℏ),2σ);−w2σ4]. | (4.22) |
Corollary 4.12. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, m∈N, such that Re(ϵ)>0, Re(λ)>max[Re(−ϵ−χ)]. Then the subsequent formula is true
B((Dϵ,ϱ,χ−t−ϵ−λJ℘,mℵ,ℏ(zt)−σ)(w);r,s)=w−σ(ℵ+2ℏ)+ϵ−λ+ϱ(12)(ℵ+2ℏ)Γ(s)×4ψm+4[(σ(ℵ+2ℏ)+λ−ϵ−ϱ,2σ),(σ(ℵ+2ℏ)+λ+χ,2σ),(r+σ(ℵ+2ℏ),2σ),(1,1);(ℏ+1,1)⏟m−times,(ℵ+ℏ+1,℘),(σ(ℵ+2ℏ)+λ−ϵ,2σ),(σ(ℵ+2ℏ)+λ−ϵ−ϱ+χ,2σ),(r+s+σ(ℵ+2ℏ),2σ);−w−2σ4]. | (4.23) |
For m=k=℘=1 and ℏ=0, the subsequent corollaries are as follows.
Corollary 4.13. Let ϵ,ϱ,χ,λ,σ∈C, such that Re(ϵ)>0, Reλ>max[0,Re(ϱ−χ)]. Then the following formula is true
B((Iϵ,ϱ,χ0+tλ−1J1,1ℵ(zt)σ))(w);r,s)=wσℵ+λ−ϱ−1(12)ℵΓ(s)×3ψ4[(σℵ+λ,2σ),(σℵ+λ−ϱ+χ,2σ),(r+σℵ,2σ);(ℵ+1,1),(σℵ+λ−ϱ,2σ),(σℵ+λ+ϵ+ϱ+χ,2σ),(r+s+σℵ,2σ);−w2σ4]. | (4.24) |
Corollary 4.14. Let ϵ,ϱ,χ,λ,σ∈C, such that Re(ϵ)>0, Re(λ+ϵ)>max[−Re(ϱ)−Re(χ)]. Then the following formula is true
B((Iϵ,ϱ,χ−t−ϵ−λJ1,1ℵ(zt)−σ)(w);r,s)=w−σℵ+ϵ+λ−ϱ(12)ℵΓ(s)×3ψ4[(σℵ+ϵ+λ+ϱ,2σ),(σℵ+ϵ+λ+χ,2σ),(r+σℵ,2σ);(ℵ+1,1),(σℵ+ϵ+λ,2σ),(σℵ+2ϵ+λ+ϱ+χ,2σ),(r+s+σℵ,2σ);−w−2σ4]. | (4.25) |
Corollary 4.15. Let ϵ,ϱ,χ,λ,σ∈C, such that Re(ϵ)>0, Re(λ)>max[0,Re(−ϵ−ϱ−χ)]. Then the subsequent formula is true
B((Dϵ,ϱ,χ0+tλ−1J1,1ℵ(zt)σ)(w);r,s)=wσℵ+λ−ϱ−1(12)ℵΓ(s)×3ψ4[(σℵ+λ,2σ),(σℵ+λ+ϵ+ϱ+χ,2σ),(r+σℵ,2σ);(ℵ+1,1),(σℵ+λ+χ,2σ),(σℵ+λ,2σ),(r+s+σℵ,2σ);−w2σ4]. | (4.26) |
Corollary 4.16. Let ϵ,ϱ,χ,λ,σ∈C, such that Re(ϵ)>0, Re(λ)>max[Re(−ϵ−χ)]. Then the subsequent formula is true
B((Dϵ,ϱ,χ−t−ϵ−λJ1,1ℵ(zt)−σ)(w);r,s)=w−σℵ+ϵ−λ+ϱ(12)ℵΓ(s)×3ψ4[(σℵ+λ−ϵ−ϱ,2σ),(σℵ+λ+χ,2σ),(r+σℵ+,2σ);(ℵ+1,1),(σℵ+λ−ϵ,2σ),(σℵ+λ−ϵ−ϱ+χ,2σ),(r+s+σℵ,2σ);−w−2σ4]. | (4.27) |
In this article, we established the relations of fractional integration and differentiation associated with the generalized Lommel-Wright function. We conclude that many other interesting image formulas can be derived as the specific cases of our main results. Like the generalized Lommel-Wright function certain other special functions can also be discussed in the same perspective. Briefly, the recent study confirms the earlier results and plays a significant role by making generalizations. Furthermore, for the choice ϱ=−ϵ in our main results and corollaries, we obtain the results for k-Riemann-Liouville fractional operators. We also deduce the results for Saigo's fractional operators by substituting k=1 and for Riemann-Liouville fractional operators, we need to opt k=1 and ϱ=−ϵ in our main results.
The authors declares that there is no conflict of interests regarding the publication of this paper.
[1] |
Acosta M, Riley S, Bonilla-Findji O, et al. (2021) Exploring Women's Differentiated Access to Climate-Smart Agricultural Interventions in Selected Climate-Smart Villages of Latin America. Sustainability 13: 10951. https://doi.org/10.3390/su131910951 doi: 10.3390/su131910951
![]() |
[2] |
Afolabi AO, Tunji-Olayeni PF, Oyeyipo OO, et al. (2017) The Socio-Economics of Women Inclusion in Green Construction. Constr Econ Build 17: 70–89. https://doi.org/10.5130/AJCEB.v17i1.5344 doi: 10.5130/AJCEB.v17i1.5344
![]() |
[3] |
Afzal A, Rasoulinezhad E, Malik Z (2022) Green finance and sustainable development in Europe. Econ Res-Ekonomska istraživanja 35: 5150–5163. https://doi.org/10.1080/1331677X.2021.2024081 doi: 10.1080/1331677X.2021.2024081
![]() |
[4] |
Agrawal R, Agrawal S, Samadhiya A, et al. (2024) Adoption of green finance and green innovation for achieving circularity: An exploratory review and future directions. Geosci Front 15: 101669. https://doi.org/10.1016/j.gsf.2023.101669 doi: 10.1016/j.gsf.2023.101669
![]() |
[5] |
Aiswarya TP, Parayil C, Bonny BP, et al. (2023) Gendered vulnerabilities in small scale agricultural households of Southern India. Int J Disast Risk Re 84: 103475. https://doi.org/10.1016/j.ijdrr.2022.103475 doi: 10.1016/j.ijdrr.2022.103475
![]() |
[6] |
Ampaire EL, Acosta M, Huyer S, et al. (2020) Gender in climate change, agriculture, and natural resource policies: Insights from East Africa. Climatic Change 158: 43–60. https://doi.org/10.1007/s10584-019-02447-0 doi: 10.1007/s10584-019-02447-0
![]() |
[7] |
Andrijevic M, Crespo Cuaresma J, Lissner T, et al. (2020) Overcoming gender inequality for climate resilient development. Nat Commun 11: 6261. https://doi.org/10.1038/s41467-020-19856-w doi: 10.1038/s41467-020-19856-w
![]() |
[8] |
Ante L (2024) The scope of green finance research: Research streams, influential works and future research paths. Ecol Econ 224: 108302. https://doi.org/10.1016/j.ecolecon.2024.108302 doi: 10.1016/j.ecolecon.2024.108302
![]() |
[9] |
Asongu SA, Messono OO, Guttemberg KTJ (2022) Women political empowerment and vulnerability to climate change: Evidence from 169 countries. Climatic Change 174: 30. https://doi.org/10.1007/s10584-022-03451-7 doi: 10.1007/s10584-022-03451-7
![]() |
[10] |
Austin CR, Bobek DD, Harris LL (2021) Does information about gender pay matter to investors? An experimental investigation. Accounting Org Soc 90: 101193. https://doi.org/10.1016/j.aos.2020.101193 doi: 10.1016/j.aos.2020.101193
![]() |
[11] |
Banerjee S, Gogoi P (2023) Exploring the role of financial empowerment in mitigating the gender differentials in subjective and objective health outcomes among the older population in India. PLOS ONE 18: e0280887. https://doi.org/10.1371/journal.pone.0280887 doi: 10.1371/journal.pone.0280887
![]() |
[12] |
Baruah B (2017) Renewable inequity? Women's employment in clean energy in industrialized, emerging and developing economies. Nat Resour Forum 41: 18–29. https://doi.org/10.1111/1477-8947.12105 doi: 10.1111/1477-8947.12105
![]() |
[13] |
Baruah B, Gaudet C (2022) Creating and Optimizing Employment Opportunities for Women in the Clean Energy Sector in Canada. J Can Stud 56: 240–270. https://doi.org/10.3138/jcs.2019-0010 doi: 10.3138/jcs.2019-0010
![]() |
[14] |
Bataineh MJ, Sánchez‐Sellero P, Ayad F (2024a) Green is the new black: How research and development and green innovation provide businesses a competitive edge. Bus Strateg Environ 33: 1004–1023. https://doi.org/10.1002/bse.3533 doi: 10.1002/bse.3533
![]() |
[15] |
Bataineh MJ, Sánchez-Sellero P, Ayad F (2024b) The role of organizational innovation in the development of green innovations in Spanish firms. Eur Manag J 42: 527–538. https://doi.org/10.1016/j.emj.2023.01.006 doi: 10.1016/j.emj.2023.01.006
![]() |
[16] |
Bazbauers AR (2023) The multilateral development banks: Conceptualising and operationalising gender. Women's Stud Int Forum 99: 102758. https://doi.org/10.1016/j.wsif.2023.102758 doi: 10.1016/j.wsif.2023.102758
![]() |
[17] |
Belingheri P, Chiarello F, Fronzetti Colladon A, et al. (2021) Twenty years of gender equality research: A scoping review based on a new semantic indicator. PLOS ONE 16: e0256474. https://doi.org/10.1371/journal.pone.0256474 doi: 10.1371/journal.pone.0256474
![]() |
[18] |
Bhatnagar S, Sharma D (2022) Evolution of green finance and its enablers: A bibliometric analysis. Renew Sust Energ Rev 162: 112405. https://doi.org/10.1016/j.rser.2022.112405 doi: 10.1016/j.rser.2022.112405
![]() |
[19] |
Bian Y, Gao H, Wang R, et al. (2023) Sustainable development for private equity: Integrating environment, social, and governance factors into partnership valuation. Bus Strateg Environ 32: 3359–3370. https://doi.org/10.1002/bse.3304 doi: 10.1002/bse.3304
![]() |
[20] |
Billings MB, Klein A, Shi YC (2022) Investors' response to the #MeToo movement: Does corporate culture matter? Rev Accounting Stud 27: 897–937. https://doi.org/10.1007/s11142-022-09695-z doi: 10.1007/s11142-022-09695-z
![]() |
[21] |
Binagwaho A, Mathewos K, Bayingana AU, et al. (2021) Commitment to gender equality through gender sensitive financing. BMJ Glob Health 6: e006747. https://doi.org/10.1136/bmjgh-2021-006747 doi: 10.1136/bmjgh-2021-006747
![]() |
[22] |
Bird CE, Sharman Z (2014) Gender-Based Analysis Is Essential to Improving Women's Health and Health Care. Women's Health Iss 24: e163–e164. https://doi.org/10.1016/j.whi.2013.11.008 doi: 10.1016/j.whi.2013.11.008
![]() |
[23] |
Brenton S (2023) The institutionalization of gender budgeting and prospects for intersectional analysis. Public Money Manage 43: 533–542. https://doi.org/10.1080/09540962.2022.2159167 doi: 10.1080/09540962.2022.2159167
![]() |
[24] |
Butticè V, Croce A, Ughetto E (2023) Gender Diversity, Role Congruity and the Success of VC Investments. Entrep Theory Pract 47: 1660–1698. https://doi.org/10.1177/10422587221096906 doi: 10.1177/10422587221096906
![]() |
[25] |
Cannon CEB, Dobbin KB (2022) Unpacking sustainability. Elementa: Sci Anthropocene 10: 00038. https://doi.org/10.1525/elementa.2022.00038 doi: 10.1525/elementa.2022.00038
![]() |
[26] |
Carlsen L, Bruggemann R (2021) Gender Equality in Europe: The Development of the Sustainable Development Goal No. 5 Illustrated by Exemplary Cases. Soc Indic Res 158: 1127–1151. https://doi.org/10.1007/s11205-021-02732-5 doi: 10.1007/s11205-021-02732-5
![]() |
[27] |
Carroll P (2022). Gender Mainstreaming the European Union Energy Transition. Energies 15: 8087. https://doi.org/10.3390/en15218087 doi: 10.3390/en15218087
![]() |
[28] | Cen T, He R (2018) Fintech, green finance and sustainable development. 2018 International Conference on Management, Economics, Education, Arts and Humanities (MEEAH 2018): 222–225. https://doi.org/10.2991/meeah-18.2018.40 |
[29] |
Chen Z, Hu L, He X, et al. (2022) Green financial reform and corporate ESG performance in China: Empirical evidence from the green financial reform and innovation pilot zone. Int J Env Res Pub He 19: 14981. https://doi.org/10.3390/ijerph192214981 doi: 10.3390/ijerph192214981
![]() |
[30] |
Choudhury B. (2021) Investor Obligations for Human Rights. ICSID Review - Foreign Invest Law J 35: 82–104. https://doi.org/10.1093/icsidreview/siaa002 doi: 10.1093/icsidreview/siaa002
![]() |
[31] |
Clancy JS, Mohlakoana N (2020) Gender audits: An approach to engendering energy policy in Nepal, Kenya and Senegal. Energy Res Soc Sci 62: 101378. https://doi.org/10.1016/j.erss.2019.101378 doi: 10.1016/j.erss.2019.101378
![]() |
[32] |
Cohen MG (2018) Gender and Climate Change Financing: Coming Out of the Margin. Fem Econ 24: 188–190. https://doi.org/10.1080/13545701.2017.1421319 doi: 10.1080/13545701.2017.1421319
![]() |
[33] |
Cohn C, Duncanson C (2023) Critical Feminist Engagements with Green New Deals. Fem Econ 29: 15–39. https://doi.org/10.1080/13545701.2023.2184844 doi: 10.1080/13545701.2023.2184844
![]() |
[34] |
Compion S, Lough BJ, Jeong BG (2022) Gendered Disparities in Funding for Non-Profit, Hybrid, and for-Profit Start-Ups. J Soc Entrep, 1–14. https://doi.org/10.1080/19420676.2022.2143871 doi: 10.1080/19420676.2022.2143871
![]() |
[35] |
Cowling M, Marlow S, Liu W (2020) Gender and bank lending after the global financial crisis: Are women entrepreneurs safer bets? Small Bus Econ 55: 853–880. https://doi.org/10.1007/s11187-019-00168-3 doi: 10.1007/s11187-019-00168-3
![]() |
[36] |
Dai YY, Shie AJ, Chu JH, et al. (2022) Low-carbon travel motivation and constraint: Scales development and validation. Int J Env Res Pub He 19: 5123. https://doi.org/10.3390/ijerph19095123 doi: 10.3390/ijerph19095123
![]() |
[37] |
Dawkins E, Strambo C, Xylia M, et al. (2023) Who is most at risk of losing out from low-carbon transition in the food and transport sectors in Sweden? Equity considerations from a consumption perspective. Energy Res Soc Sci 95: 102881. https://doi.org/10.1016/j.erss.2022.102881 doi: 10.1016/j.erss.2022.102881
![]() |
[38] |
Debrah C, Darko A, Chan APC (2023) A bibliometric-qualitative literature review of green finance gap and future research directions. Clim Dev 15: 432–455. https://doi.org/10.1080/17565529.2022.2095331 doi: 10.1080/17565529.2022.2095331
![]() |
[39] |
Dev DS, Manalo JA (2023) Gender and adaptive capacity in climate change scholarship of developing countries: A systematic review of literature. Clim Dev 15: 829–840. https://doi.org/10.1080/17565529.2023.2166781 doi: 10.1080/17565529.2023.2166781
![]() |
[40] |
Dev DS, Van De Fliert E (2023) Discourses on gender in climate change adaptation projects of Bangladesh: New dimensions or reinscribing the old? J Lang Polit 22: 707–729. https://doi.org/10.1075/jlp.22121.dev doi: 10.1075/jlp.22121.dev
![]() |
[41] |
Del Gaudio G, Parvez MO, Hossain MS, et al. (2024) The antecedents of top management's involvement in green technology innovation. J Hosp Market Manag, 1–24. https://doi.org/10.1080/19368623.2024.2367463 doi: 10.1080/19368623.2024.2367463
![]() |
[42] |
Dorman DR, Ciplet D (2022) Sustainable Energy for All? Assessing Global Distributive Justice in the Green Climate Fund's Energy Finance. Global Environ Polit 22: 94–116. https://doi.org/10.1162/glep_a_00621 doi: 10.1162/glep_a_00621
![]() |
[43] | Dubois G, Sovacool B, Aall C, et al. (2019) It starts at home? Climate policies targeting household consumption and behavioral decisions are key to low-carbon futures. Energy Res Soc Sci 52: 144–158. https://doi.org/10.1016/j.erss.2019.02.001 |
[44] |
Edmans A, Kacperczyk M (2022) Sustainable finance. Rev Financ 26: 1309–1313. https://doi.org/10.1093/rof/rfac069 doi: 10.1093/rof/rfac069
![]() |
[45] |
Erten B, Çağatay N (2017) Proposal for a Global Fund for Women through Innovative Finance. Fem Econ 23: 170–200. https://doi.org/10.1080/13545701.2017.1287931 doi: 10.1080/13545701.2017.1287931
![]() |
[46] |
Espinoza Trujano J, Lévesque AM (2022) Development finance institutions and the care economy: Opportunities for building more resilient and gender-equitable economies. J Sustain Financ Inv 12: 704–723. https://doi.org/10.1080/20430795.2022.2030662 doi: 10.1080/20430795.2022.2030662
![]() |
[47] |
Everitt J, Albaugh Q M (2022) The origins of gender-targeted public finance measures: The case of New Brunswick, Canada. Eur J Politics Gender 5: 127–144. https://doi.org/10.1332/251510821X16354220366241 doi: 10.1332/251510821X16354220366241
![]() |
[48] |
Fatema SR, East L, Islam S, et al. (2023) Gender-based vulnerabilities for women during natural disasters in Bangladesh. Front Commun 8: 1180406. https://doi.org/10.3389/fcomm.2023.1180406 doi: 10.3389/fcomm.2023.1180406
![]() |
[49] |
Fletcher J, Longnecker N, Higham J (2019) Envisioning future travel: Moving from high to low carbon systems. Futures 109: 63–72. https://doi.org/10.1016/j.futures.2019.04.004 doi: 10.1016/j.futures.2019.04.004
![]() |
[50] |
Gangi F, Daniele LM, D'Angelo E, et al. (2023) The impact of board gender diversity on banks' environmental policy: The moderating role of gender inequality in national culture. Corp Soc Resp Env Ma 30: 1273–1291. https://doi.org/10.1002/csr.2418 doi: 10.1002/csr.2418
![]() |
[51] |
Goli I, Omidi Najaf Abadi M, Lashgarara F, et al. (2023) Women and climate change adaptation behaviour: What's the problem and solution? Clim Dev 15: 535–552. https://doi.org/10.1080/17565529.2022.2121597 doi: 10.1080/17565529.2022.2121597
![]() |
[52] |
Guthridge M, Kirkman M, Penovic T, et al. (2022) Promoting Gender Equality: A Systematic Review of Interventions. Soc Justice Res 35: 318–343. https://doi.org/10.1007/s11211-022-00398-z doi: 10.1007/s11211-022-00398-z
![]() |
[53] |
Haque ATMS, Kumar L, Bhullar N (2023) Gendered perceptions of climate change and agricultural adaptation practices: A systematic review. Clim Dev 15: 885–902. https://doi.org/10.1080/17565529.2023.2176185 doi: 10.1080/17565529.2023.2176185
![]() |
[54] |
Hlahla S (2022). Gender perspectives of the water, energy, land, and food security nexus in sub-Saharan Africa. Front Sustainable Food Syst 6: 719913. https://doi.org/10.3389/fsufs.2022.719913 doi: 10.3389/fsufs.2022.719913
![]() |
[55] |
Hlahla S, Simatele MD, Hill T, et al. (2022) Climate–Urban Nexus: A Study of Vulnerable Women in Urban Areas of KwaZulu-Natal Province, South Africa. Weather Clim Soc 14: 933–948. https://doi.org/10.1175/WCAS-D-20-0180.1 doi: 10.1175/WCAS-D-20-0180.1
![]() |
[56] |
Howell RA (2013) It's not (just) "the environment, stupid!" Values, motivations, and routes to engagement of people adopting lower-carbon lifestyles. Global Environ Chang 23: 281–290. https://doi.org/10.1016/j.gloenvcha.2012.10.015 doi: 10.1016/j.gloenvcha.2012.10.015
![]() |
[57] |
Huang H, Mbanyele W, Wang F, et al. (2022) Climbing the quality ladder of green innovation: Does green finance matter? Technol Forecast Soc 184: 122007. https://doi.org/10.1016/j.techfore.2022.122007 doi: 10.1016/j.techfore.2022.122007
![]() |
[58] |
Huang H, Mbanyele W, Wang F, et al. (2023) Nudging corporate environmental responsibility through green finance? Quasi-natural experimental evidence from China. J Bus Res 167: 114147. https://doi.org/10.1016/j.jbusres.2023.114147 doi: 10.1016/j.jbusres.2023.114147
![]() |
[59] |
Issa A (2023) Shaping a sustainable future: The impact of board gender diversity on clean energy use and the moderating role of environmental, social and governance controversies. Corp Soc Resp Env Ma 30: 2731–2746. https://doi.org/10.1002/csr.2512 doi: 10.1002/csr.2512
![]() |
[60] |
Javaid A, Creutzig F, Bamberg S (2020) Determinants of low-carbon transport mode adoption: Systematic review of reviews. Environ Res Lett 15: 103002. https://doi.org/10.1088/1748-9326/aba032 doi: 10.1088/1748-9326/aba032
![]() |
[61] |
Jerin T, Azad MAK, Khan MN (2023) Climate change-triggered vulnerability assessment of the flood-prone communities in Bangladesh: A gender perspective. Int J Disast Risk Re 95: 103851. https://doi.org/10.1016/j.ijdrr.2023.103851 doi: 10.1016/j.ijdrr.2023.103851
![]() |
[62] |
Jha B, Bakhshi P (2019) Green finance: Fostering sustainable development in India. Int J Recent Technol Eng 8: 3798–3801. https://doi.org/10.35940/ijrte.D8172.118419 doi: 10.35940/ijrte.D8172.118419
![]() |
[63] |
Johnson OW, Han, JYC, Knight AL, et al. (2020) Intersectionality and energy transitions: A review of gender, social equity and low-carbon energy. Energy Res Soc Sci 70: 101774. https://doi.org/10.1016/j.erss.2020.101774 doi: 10.1016/j.erss.2020.101774
![]() |
[64] |
Kreutzer W, Millerd C, Timbs N (2023) Disasters and the diminishing of women's economic empowerment. Disasters 47: 891–912. https://doi.org/10.1111/disa.12582 doi: 10.1111/disa.12582
![]() |
[65] |
Kwauk CT, Wyss N (2023) Gender equality and climate justice programming for youth in low- and middle-income countries: An analysis of gaps and opportunities. Environ Edu Res 29: 1573–1596. https://doi.org/10.1080/13504622.2022.2123894 doi: 10.1080/13504622.2022.2123894
![]() |
[66] |
Kwon H, Moon C, Kim J (2023) The impact of female board directors on effective investment management: Evidence from Korean firms. Gender Manage An Int J 38: 705–729. https://doi.org/10.1108/GM-04-2022-0131 doi: 10.1108/GM-04-2022-0131
![]() |
[67] |
La Torre M, Leo S, Palma A, et al. (2023) Public spending and green finance: A systematic literature review. Res Int Bus Financ 68: 102197. https://doi.org/10.1016/j.ribaf.2023.102197 doi: 10.1016/j.ribaf.2023.102197
![]() |
[68] |
Lange S, Wyndham V (2021) Gender, regulation, and corporate social responsibility in the extractive sector: The case of Equinor's social investments in Tanzania. Women's Stud Int Forum 84: 102434. https://doi.org/10.1016/j.wsif.2020.102434 doi: 10.1016/j.wsif.2020.102434
![]() |
[69] |
Łapniewska Z (2019) Energy, equality and sustainability? European electricity cooperatives from a gender perspective. Energy Res Soc Sci 57: 101247. https://doi.org/10.1016/j.erss.2019.101247 doi: 10.1016/j.erss.2019.101247
![]() |
[70] | Leach M, Mehta L, Prabhakaran P (2016) Gender equality and sustainable development: A pathways approach. The UN Women Discussion Paper 13: 2016. |
[71] |
Leduchowicz-Municio A, Domenech B, Ferrer-Martí L, et al. (2023) Women, equality, and energy access: Emerging lessons for last-mile rural electrification in Brazil. Energy Res Soc Sci 102: 103181. https://doi.org/10.1016/j.erss.2023.103181 doi: 10.1016/j.erss.2023.103181
![]() |
[72] |
Lee CW, Huruta AD (2022) Green Microfinance and Women's Empowerment: Why Does Financial Literacy Matter? Sustainability 14: 3130. https://doi.org/10.3390/su14053130 doi: 10.3390/su14053130
![]() |
[73] |
Lee JW (2020) Green Finance and Sustainable Development Goals: The Case of China. J Asian Financ Econ Bus 7: 577–586. https://doi.org/10.13106/jafeb.2020.vol7.no7.577 doi: 10.13106/jafeb.2020.vol7.no7.577
![]() |
[74] |
Li J, Lo K, Guo M (2018) Do socio-economic characteristics affect travel behavior? A comparative study of low-carbon and non-low-carbon shopping travel in Shenyang City, China. Int J Env Res Pub He 15: 1346. https://doi.org/10.3390/ijerph15071346 doi: 10.3390/ijerph15071346
![]() |
[75] |
Lindberg B, Rerucha C, Givens M (2023) Occupational and Environmental Challenges for Women. Curr Sport Med Rep 22: 120–125. https://doi.org/10.1249/JSR.0000000000001055 doi: 10.1249/JSR.0000000000001055
![]() |
[76] |
Mani M, Narayanan Gopalakrishnan B, Wadhwa D (2020) Regional integration in south asia: Implications for green growth, female labor force participation, and the gender wage gap. World Bank Policy Research Working Paper 9119. https://doi.org/10.1596/1813-9450-9119 doi: 10.1596/1813-9450-9119
![]() |
[77] |
Mapedza E, Huyer S, Chanana N, et al. (2022) Framework for Incorporating Gender Equality and Social Inclusion (GESI) Elements in Climate Information Services (CIS). Sustainability 15: 190. https://doi.org/10.3390/su15010190 doi: 10.3390/su15010190
![]() |
[78] |
Martínez Guzmán JP (2024) Can gender‐responsive budgeting change how governments budget?: Lessons from the case of Ecuador. Public Admin 102: 388–404. https://doi.org/10.1111/padm.12926 doi: 10.1111/padm.12926
![]() |
[79] |
Mbanyele W, Huang H, Muchenje LT, et al. (2024) How does climate regulatory risk influence labor employment decisions? Evidence from a quasi-natural experiment. China Econ Rev 87: 102236. https://doi.org/10.1016/j.chieco.2024.102236 doi: 10.1016/j.chieco.2024.102236
![]() |
[80] |
Memon FS, Abdullah FB, Iqbal R, et al. (2023) Addressing women's climate change awareness in Sindh, Pakistan: An empirical study of rural and urban women. Clim Dev 15: 565–577. https://doi.org/10.1080/17565529.2022.2125784 doi: 10.1080/17565529.2022.2125784
![]() |
[81] |
Mia MA, Dalla Pellegrina, L, Wong, W.et al. (2023) Gender pay gap in the microfinance industry: A global perspective. Ann Public Coop Econ 95: 835–862. https://doi.org/10.1111/apce.12461 doi: 10.1111/apce.12461
![]() |
[82] |
Mininni GM (2022) The Barefoot College 'eco-village' approach to women's entrepreneurship in energy. EnviroN Innov Soc Tr 42: 112–123. https://doi.org/10.1016/j.eist.2021.12.002 doi: 10.1016/j.eist.2021.12.002
![]() |
[83] |
Mohd S, Kaushal VK (2018) Green finance: A step towards sustainable development. MUDRA J Financ Accoun 5: 59–74. https://doi.org/10.17492/mudra.v5i01.13036 doi: 10.17492/mudra.v5i01.13036
![]() |
[84] |
Mumtaz MZ, Smith ZA (2019) Green finance for sustainable development in Pakistan. IPRI J 19: 1–34. https://doi.org/10.31945/iprij.190201 doi: 10.31945/iprij.190201
![]() |
[85] |
Mundaca L, Román-Collado R, Cansino JM (2022) Assessing the impacts of social norms on low-carbon mobility options. Energ Policy 162: 112814. https://doi.org/10.1016/j.enpol.2022.112814 doi: 10.1016/j.enpol.2022.112814
![]() |
[86] |
Namukombo J (2016) Information and communication technologies and gender in climate change and green economy: Situating women's opportunities and challenges in Zambian policies and strategies. Jàmbá J Dis Risk Stud 8: 1–7. https://doi.org/10.4102/jamba.v8i3.243 doi: 10.4102/jamba.v8i3.243
![]() |
[87] |
Naz F, Doneys P (2022) Gender-based differences in access to and use of loans from rural credit programs for flood adaptation in the farming-dependent char communities of Bangladesh. Women's Stud Int Forum 95: 102651. https://doi.org/10.1016/j.wsif.2022.102651 doi: 10.1016/j.wsif.2022.102651
![]() |
[88] |
Nel K, Mans-Kemp N, Erasmus PD (2023) Sustainable Thematic Investing: Identifying Opportunities Based on an Analysis of Stewardship Reports. Sustainability 15: 8411. https://doi.org/10.3390/su15108411 doi: 10.3390/su15108411
![]() |
[89] |
Ngcamu BS (2023) Climate change effects on vulnerable populations in the Global South: A systematic review. Nat Hazards 118: 977–991. https://doi.org/10.1007/s11069-023-06070-2 doi: 10.1007/s11069-023-06070-2
![]() |
[90] |
Nhamo G, Mukonza C (2020) Opportunities for women in the green economy and environmental sectors. Sustain Dev 28: 823–832. https://doi.org/10.1002/sd.2033 doi: 10.1002/sd.2033
![]() |
[91] |
Nuhu MG, Matsui K (2022) Gender Dimensions of Climate Change Adaptation Needs for Smallholder Farmers in the Upper East Region of Ghana. Sustainability 14: 10432. https://doi.org/10.3390/su141610432 doi: 10.3390/su141610432
![]() |
[92] |
Nyahunda L, Tirivangasi HM (2022) Adaptation strategies employed by rural women in the face of climate change impacts in Vhembe district, Limpopo province, South Africa. Manag Environ Qual 33: 1061–1075. https://doi.org/10.1108/MEQ-09-2021-0207 doi: 10.1108/MEQ-09-2021-0207
![]() |
[93] |
Odrowaz-Coates A (2021) Definitions of Sustainability in the Context of Gender. Sustainability 13: 6862. https://doi.org/10.3390/su13126862 doi: 10.3390/su13126862
![]() |
[94] |
O'Garra T, Fouquet R (2022) Willingness to reduce travel consumption to support a low-carbon transition beyond COVID-19. Ecol Econ 193: 107297. https://doi.org/10.1016/j.ecolecon.2021.107297 doi: 10.1016/j.ecolecon.2021.107297
![]() |
[95] |
O'Manique C, Fourie P (2016) Affirming Our World: Gender Justice, Social Reproduction, and the Sustainable Development Goals. Development 59: 121–126. https://doi.org/10.1057/s41301-017-0066-0 doi: 10.1057/s41301-017-0066-0
![]() |
[96] |
Oppi C, Cavicchi C, Vagnoni E (2021) The Journey to Gender-Responsive Budgeting: Lessons Learned from Higher Education. Sustainability 13: 2019. https://doi.org/10.3390/su13042019 doi: 10.3390/su13042019
![]() |
[97] |
Ozili PK (2024) Effect of gender equality on financial stability and financial inclusion. Soc Responsib J 20: 205–223. https://doi.org/10.1108/SRJ-12-2022-0565 doi: 10.1108/SRJ-12-2022-0565
![]() |
[98] |
Pailman W, De Groot J (2022) Rethinking education for SDG 7: A framework for embedding gender and critical skills in energy access masters programmes in Africa. Energy Res Soc Sci 90: 102615. https://doi.org/10.1016/j.erss.2022.102615 doi: 10.1016/j.erss.2022.102615
![]() |
[99] |
Palacios HV, Sexsmith K, Matheu M, et al. (2023) Gendered adaptations to climate change in the Honduran coffee sector. Women's Stud Int Forum 98: 102720. https://doi.org/10.1016/j.wsif.2023.102720 doi: 10.1016/j.wsif.2023.102720
![]() |
[100] |
Pasupuleti A, Ayyagari LR (2023) A Thematic Study of Green Finance with Special Reference to Polluting Companies: A Review and Future Direction. Environ Processes 10: 24. https://doi.org/10.1007/s40710-023-00642-x doi: 10.1007/s40710-023-00642-x
![]() |
[101] |
Pérez‐Escamilla R, Moran VH (2023) Maternal and child nutrition must be at the heart of the climate change agendas. Maternal Child Nutrition 19: e13444. https://doi.org/10.1111/mcn.13444 doi: 10.1111/mcn.13444
![]() |
[102] |
Plaček M, Del Campo C, Valentinov V, et al. (2022) Gender Heterogeneity and Politics in Decision-Making About Green Public Procurement in the Czech Republic. Politics Gov 10. https://doi.org/10.17645/pag.v10i3.5408 doi: 10.17645/pag.v10i3.5408
![]() |
[103] |
Polzer T, Nolte IM, Seiwald J (2023) Gender budgeting in public financial management: A literature review and research agenda. Int Rev Adm Sci 89: 450–466. https://doi.org/10.1177/00208523211031796 doi: 10.1177/00208523211031796
![]() |
[104] |
Predmore S (2023) Inclusion or co-optation? Navigating recruitment as a gender diversity candidate in finance. New Polit Econ 28: 897–909. https://doi.org/10.1080/13563467.2023.2200242 doi: 10.1080/13563467.2023.2200242
![]() |
[105] | Puaschunder J M (2021) Gender inequality in the global warming era: The disparate impact of climate change on female. Available at SSRN 3942935. https://doi.org/10.2139/ssrn.3942935 |
[106] |
Quang NM (2022) A method for measuring women climate vulnerability: A case study in Vietnam's Mekong Delta. Int J Clim Chang Str 14: 101–124. https://doi.org/10.1108/IJCCSM-05-2021-0047 doi: 10.1108/IJCCSM-05-2021-0047
![]() |
[107] |
Radović-Marković M, Živanović B (2019) Fostering Green Entrepreneurship and Women's Empowerment through Education and Banks' Investments in Tourism: Evidence from Serbia. Sustainability 11: 6826. https://doi.org/10.3390/su11236826 doi: 10.3390/su11236826
![]() |
[108] |
Ramos A, Latorre F, Tomás I, et al. (2022) Women's Promotion to Management and Unfairness Perceptions—A Challenge to the Social Sustainability of the Organizations and Beyond. Sustainability 14: 788. https://doi.org/10.3390/su14020788 doi: 10.3390/su14020788
![]() |
[109] |
Rehman S, Orij R, Khan H (2020) The search for alignment of board gender diversity, the adoption of environmental management systems, and the association with firm performance in Asian firms. Corp Soc Resp Env Ma 27: 2161–2175. https://doi.org/10.1002/csr.1955 doi: 10.1002/csr.1955
![]() |
[110] |
Roy J, Prakash A, Some S, et al. (2022) Synergies and trade-offs between climate change adaptation options and gender equality: A review of the global literature. Hum Soc Sci Commun 9: 251. https://doi.org/10.1057/s41599-022-01266-6 doi: 10.1057/s41599-022-01266-6
![]() |
[111] |
Saha T, Sinha A, Abbas S (2022) Green financing of eco-innovations: Is the gender inclusivity taken care of? Econ Res-Ekonomska istraživanja 35: 5514–5535. https://doi.org/10.1080/1331677X.2022.2029715 doi: 10.1080/1331677X.2022.2029715
![]() |
[112] |
Sani Y, Scholz M (2022) Gender and Other Vulnerabilities to Water–Energy Accessibility in Rural Households of Katsina State, Northern Nigeria. Sustainability 14: 7499. https://doi.org/10.3390/su14127499 doi: 10.3390/su14127499
![]() |
[113] | Schalatek L (2009) Gender and climate finance: Double mainstreaming for sustainable development. Heinrich Böll Foundation Berlin Available from: http://www.indiaenvironmentportal.org.in/files/DoubleMainstreaming_Final.pdf. |
[114] | Seguino S (2016) Financing for Gender Equality in the Context of the Sustainable Development Goals. UN Women New York Available from: https://www.undp.org/sites/g/files/zskgke326/files/migration/by/financing-for-gender-equality-in-the-context-of-the-SDGs.pdf. |
[115] |
Septanaya IDMF, Fortuna S (2023) Gender mainstreaming efforts in disaster management plans: Case study West Nusa Tenggara province, Indonesia. Int J Disast Risk Re 87: 103576. https://doi.org/10.1016/j.ijdrr.2023.103576 doi: 10.1016/j.ijdrr.2023.103576
![]() |
[116] |
Shang Y, Sivertsen G, Cao Z, et al. (2022) Gender differences among first authors in research focused on the Sustainable Development Goal of Gender Equality. Scientometrics 127: 4769–4796. https://doi.org/10.1007/s11192-022-04430-6 doi: 10.1007/s11192-022-04430-6
![]() |
[117] | Sharma N, Pundir V, Goel M, et al. (2022) Green Entrepreneurship: Prospects and Challenges. 2022 International Conference on Fourth Industrial Revolution Based Technology and Practices (ICFIRTP): 96–100. https://doi.org/10.1109/ICFIRTP56122.2022.10059446 |
[118] |
Singh P, Tabe T, Martin T (2022) The role of women in community resilience to climate change: A case study of an Indigenous Fijian community. Women's Stud Int Forum 90: 102550. https://doi.org/10.1016/j.wsif.2021.102550 doi: 10.1016/j.wsif.2021.102550
![]() |
[119] |
Smith JP, Borg B, Iellamo A, et al. (2023) Innovative financing for a gender-equitable first-food system to mitigate greenhouse gas impacts of commercial milk formula: Investing in breastfeeding as a carbon offset. Front Sustainable Food Syst 7: 1155279. https://doi.org/10.3389/fsufs.2023.1155279 doi: 10.3389/fsufs.2023.1155279
![]() |
[120] |
Sovacool BK, Newell P, Carley S, et al. (2022) Equity, technological innovation and sustainable behaviour in a low-carbon future. Nat Hum Behav 6: 326–337. https://doi.org/10.1038/s41562-021-01257-8 doi: 10.1038/s41562-021-01257-8
![]() |
[121] |
Sraieb MM, Labadze L (2022) A Dynamic Perspective on the Gender Diversity–Firms' Environmental Performances Nexus: Evidence from the Energy Industry. Sustainability 14: 7346. https://doi.org/10.3390/su14127346 doi: 10.3390/su14127346
![]() |
[122] |
Sujakhu NM, Ranjitkar S, Su Y, et al. (2023) A gendered perspective on climate change adaptation strategies: A case study from Yunnan, China. Local Environ 28: 117–133. https://doi.org/10.1080/13549839.2022.2130883 doi: 10.1080/13549839.2022.2130883
![]() |
[123] |
Sun X, Zhou C, Gan Z (2023) Green finance policy and ESG performance: Evidence from Chinese manufacturing firms. Sustainability 15: 6781. https://doi.org/10.3390/su15086781 doi: 10.3390/su15086781
![]() |
[124] |
Taghizadeh-Hesary F, Yoshino N (2020) Sustainable Solutions for Green Financing and Investment in Renewable Energy Projects. Energies 13: 788. https://doi.org/10.3390/en13040788 doi: 10.3390/en13040788
![]() |
[125] |
Tanjeela M (2023) Understanding the struggles of Bangladeshi women in coping with climate change through a gender analysis. Gender Technol Dev 27: 250–265. https://doi.org/10.1080/09718524.2022.2144101 doi: 10.1080/09718524.2022.2144101
![]() |
[126] |
Vasileiou E, Georgantzis N, Attanasi G, et al. (2024) The role of innovation portfolio in green innovation decisions: A study of French and Italian firms. Technovation 130: 102921. https://doi.org/10.1016/j.technovation.2023.102921. doi: 10.1016/j.technovation.2023.102921
![]() |
[127] | Volz U (2018) Fostering green finance for sustainable development in Asia, Routledge handbook of banking and finance in Asia, Routledge, 488–504. https://doi.org/10.4324/9781315543222-27 |
[128] |
Wang KH, Zhao YX, Jiang CF, et al. (2022) Does green finance inspire sustainable development? Evidence from a global perspective. Econ Anal Policy 75: 412–426. https://doi.org/10.1016/j.eap.2022.06.002 doi: 10.1016/j.eap.2022.06.002
![]() |
[129] |
Wang T, Shen B, Springer CH, et al. (2021) What prevents us from taking low-carbon actions? A comprehensive review of influencing factors affecting low-carbon behaviors. Energy Res Soc Sci 71: 101844. https://doi.org/10.1016/j.erss.2020.101844 doi: 10.1016/j.erss.2020.101844
![]() |
[130] |
Wray B, Veidis EM, Flores EC, et al. (2023) A Call to Action for Gender Equity in Climate Leadership. Am J Tropical Med Hygiene 108: 1088–1092. https://doi.org/10.4269/ajtmh.22-0674 doi: 10.4269/ajtmh.22-0674
![]() |
[131] |
Xie Y (2024) The Interactive Impact of Green Finance, ESG Performance, and Carbon Neutrality. J Clean Prod 456: 142269. https://doi.org/10.1016/j.jclepro.2024.142269 doi: 10.1016/j.jclepro.2024.142269
![]() |
[132] |
Xu K, Zhao P (2023) Does Green Finance Promote Green Total Factor Productivity? Empirical Evidence from China. Sustainability 15: 11204. https://doi.org/10.3390/su151411204 doi: 10.3390/su151411204
![]() |
[133] |
Yang Q, Du Q, Razzaq A, et al. (2022) How volatility in green financing, clean energy, and green economic practices derive sustainable performance through ESG indicators? A sectoral study of G7 countries. Resour Policy 75: 102526. https://doi.org/10.1016/j.resourpol.2021.102526 doi: 10.1016/j.resourpol.2021.102526
![]() |
[134] |
Yenglier Yiridomoh G, Owusu V (2022) Do women farmers cope or adapt to strategies in response to climate extreme events? Evidence from rural Ghana. Clim Dev 14: 678–687. https://doi.org/10.1080/17565529.2021.1971943 doi: 10.1080/17565529.2021.1971943
![]() |
[135] |
Yu H, Zhao Y, Qiao G, et al. (2023) Can Green Financial Reform Policies Promote Enterprise Development? Empirical Evidence from China. Sustainability 15: 2692. https://doi.org/10.3390/su15032692 doi: 10.3390/su15032692
![]() |
[136] |
Zhang AT, Patnaik S, Jha S, et al. (2022) Evidence of multidimensional gender inequality in energy services from a large-scale household survey in India. Nature Energy 7: 698–707. https://doi.org/10.1038/s41560-022-01044-3 doi: 10.1038/s41560-022-01044-3
![]() |
[137] |
Zhang B, Wang Y (2021) The Effect of Green Finance on Energy Sustainable Development: A Case Study in China. Emerg Mark Financ Tr 57: 3435–3454. https://doi.org/10.1080/1540496X.2019.1695595 doi: 10.1080/1540496X.2019.1695595
![]() |
[138] |
Zhang Z, Liu Y, Han Z, et al. (2022) Green Finance and Carbon Emission Reduction: A Bibliometric Analysis and Systematic Review. Front Environ Sci 10: 929250. https://doi.org/10.3389/fenvs.2022.929250 doi: 10.3389/fenvs.2022.929250
![]() |