Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article Special Issues

The strength of uncoated and coated ultra-thin flexible glass under cyclic load

  • Received: 14 December 2023 Revised: 08 February 2024 Accepted: 04 March 2024 Published: 21 March 2024
  • Ultra-thin flexible glass with thicknesses of 100 µm or below is a substrate in the fields of optics, electronics, and semiconductors. Its brittleness is challenging in production processes like physical vapor deposition processes, especially in roll-to-roll production. In many cases, multiple geometric deformations take place and each step, like coating or cutting, influences the glass strength. By now, the relation between the strength of ultra-thin glass under quasi-static conditions and its strength under cyclic load has not been studied. Moreover, the effect of coatings has not been investigated. Both aspects are crucial to design reliable production processes. Therefore, the strength of ultra-thin glass under cyclic load was studied for uncoated and coated substrates. Two coating types were investigated: a single indium tin oxide film and a seven-layer antireflective layer stack. The coatings significantly influence the strength of the underlying glass in both test modes. The barrier properties, thin film stress, and the morphology/crystalline structure are identified as the major characteristics influencing the strength.

    Citation: Wiebke Langgemach, Andreas Baumann, Manuela Ehrhardt, Thomas Preußner, Edda Rädlein. The strength of uncoated and coated ultra-thin flexible glass under cyclic load[J]. AIMS Materials Science, 2024, 11(2): 343-368. doi: 10.3934/matersci.2024019

    Related Papers:

    [1] Jalil Manafian, Onur Alp Ilhan, Sizar Abid Mohammed . Forming localized waves of the nonlinearity of the DNA dynamics arising in oscillator-chain of Peyrard-Bishop model. AIMS Mathematics, 2020, 5(3): 2461-2483. doi: 10.3934/math.2020163
    [2] Mahmoud A. E. Abdelrahman, Sherif I. Ammar, Kholod M. Abualnaja, Mustafa Inc . New solutions for the unstable nonlinear Schrödinger equation arising in natural science. AIMS Mathematics, 2020, 5(3): 1893-1912. doi: 10.3934/math.2020126
    [3] M. Hafiz Uddin, M. Ali Akbar, Md. Ashrafuzzaman Khan, Md. Abdul Haque . New exact solitary wave solutions to the space-time fractional differential equations with conformable derivative. AIMS Mathematics, 2019, 4(2): 199-214. doi: 10.3934/math.2019.2.199
    [4] Haikun Liu, Yongqiang Fu . On the variable exponential fractional Sobolev space Ws(·),p(·). AIMS Mathematics, 2020, 5(6): 6261-6276. doi: 10.3934/math.2020403
    [5] Samir Kumar Bhandari, Dhananjay Gopal, Pulak Konar . Probabilistic α-min Ciric type contraction results using a control function. AIMS Mathematics, 2020, 5(2): 1186-1198. doi: 10.3934/math.2020082
    [6] Manikandan G, Perumal R . Mate and mutual mate functions in a seminearring. AIMS Mathematics, 2020, 5(5): 4974-4982. doi: 10.3934/math.2020318
    [7] Huaji Cheng, Yanxia Hu . Exact solutions of the generalized (2+1)-dimensional BKP equation by the G'/G-expansion method and the first integral method. AIMS Mathematics, 2017, 2(3): 562-579. doi: 10.3934/Math.2017.2.562
    [8] Johnny Henderson, Abdelghani Ouahab, Samia Youcefi . Existence results for ϕ-Laplacian impulsive differential equations with periodic conditions. AIMS Mathematics, 2019, 4(6): 1610-1633. doi: 10.3934/math.2019.6.1610
    [9] Abdelkrim Salim, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On the nonlocal hybrid (k,φ)-Hilfer inverse problem with delay and anticipation. AIMS Mathematics, 2024, 9(8): 22859-22882. doi: 10.3934/math.20241112
    [10] Murali Ramdoss, Divyakumari Pachaiyappan, Inho Hwang, Choonkil Park . Stability of an n-variable mixed type functional equation in probabilistic modular spaces. AIMS Mathematics, 2020, 5(6): 5903-5915. doi: 10.3934/math.2020378
  • Ultra-thin flexible glass with thicknesses of 100 µm or below is a substrate in the fields of optics, electronics, and semiconductors. Its brittleness is challenging in production processes like physical vapor deposition processes, especially in roll-to-roll production. In many cases, multiple geometric deformations take place and each step, like coating or cutting, influences the glass strength. By now, the relation between the strength of ultra-thin glass under quasi-static conditions and its strength under cyclic load has not been studied. Moreover, the effect of coatings has not been investigated. Both aspects are crucial to design reliable production processes. Therefore, the strength of ultra-thin glass under cyclic load was studied for uncoated and coated substrates. Two coating types were investigated: a single indium tin oxide film and a seven-layer antireflective layer stack. The coatings significantly influence the strength of the underlying glass in both test modes. The barrier properties, thin film stress, and the morphology/crystalline structure are identified as the major characteristics influencing the strength.



    Fractional partial differential equations (FPDEs) are the generalizations of classical partial differential equations with integer orders, which are used to describe several phenomena in many fields of sciences, such as mechanics, signal processing, plasma physics, systems identification, electricity, chemistry, biology, control theory and other areas.

    The exact solutions of FPDEs play a crucial role in the study of nonlinear sciences. It is used to describe observed various qualitative and quantitative features of nonlinear phenomenons in many fields of mathematical physics, it can let our better understand some complex physics phenomena. Therefore, it is an important task to seek more exact solutions of different forms for the FPDEs.

    In recent decades, with the development of science and technology, especially symbolic computation package such as Maple and Mathematica, many researchers have presented many direct and powerful approaches to establish exact solutions of fractional partial differential equations. For example, the fractional sub-equation method [1,2], the first integral method [3], the extended fractional Riccati expansion method [4], the fractional complex transform [5], the Jacobi elliptic equation method [6], the fractional mapping method [7], the (G/G)-expansion method [8], the improved fractional (DαG/G) method [9], the extended fractional (DαξG/G)-expansion method [10], the separation variables approach [11], the modified extended tanh method [12], the exp(Φ(ξ)) method [13,14], the invariant subspace method [15], and other methods [16,17,18,19]. Due to these methods, various exact solutions or numerical solutions of FPDEs have been established successfully.

    The two variable (ϕ/ϕ,1/ϕ)-expansion method is the generalization of (G/G)-expansion method, the main idea of this method is that the solutions to FPDEs are represented as a polynomial in two variables (ϕ/ϕ) and (1/ϕ), wherein ϕ=ϕ(ξ) satisfies the second order ODE ϕ+δϕ=μ, where δ and μ are constants. The objective of this article is to establish further general and some fresh close form solitary wave solution to the time-fractional Kuramoto-Sivashinsky (K-S) equation, (3+1)-dimensional time-fractional KdV-Zakharov-Kuznetsov (KdV-ZK) equation and time-fractional Sharma-Tasso-Olver (FSTO) equation by means of the two variable (ϕ/ϕ,1/ϕ)-expansion method, the results suggest that the method is significative and further general.

    The organization of the paper is as follows. In Section 2, the description of conformable fractional derivative and its properties are given. In Section 3, we describe the algorithm for solving time-fractional partial differential equations by using the two variable (ϕ/ϕ,1/ϕ)-expansion method with the help of fractional complex transform. In Section 4, we apply the two variable (ϕ/ϕ,1/ϕ)-expansion to the time-fractional K-S equation, (3+1)-dimensional KdV-ZK equation and FSTO equation. In Section 5, some typical wave figures of the exact solutions are given. Results and discussion part are added in Section 6. The conclusion part is in Section 7.

    In fractional calculus, the most famous fractional derivatives are the Riemann-Liouville and the Caputo fractional derivatives, the Riemann-Liouville fractional derivative is defined as follows [20]:

    If n is a positive integer and αϵ[n1,n], the α derivative of a function f is given by

     Dαt(f)(t)=1Γ(nα)dndtntaf(x)(tx)αn+1dx. (2.1)

    Also, the Caputo fractional derivative is defined as follows [20]

     Dαt(f)(t)=1Γ(nα)dndtntaf(n)(x)(tx)αn+1dx. (2.2)

    Some flaws arise in these definitions of these fractional derivatives, for example, all these derivatives do not satisfy: the known formula of the derivative of the product of two functions, the known formula of the derivative of the quotient of two functions and the chain rule of two functions.

    In 2014, Khalil et al. [21] introduced a novel definition of fractional derivative named the conformable fractional derivative to overcome the flaws found in Riemann-Liouville and the Caupto fractional derivatives.

    Definition 1. Suppose f: [0,)R is a function. Then, the conformable fractional derivative of f of order α is defined as

     Dαt(f)(t)=lim (2.3)

    for all t > 0 and \alpha\in(0, 1] . If f is \alpha -differentiable in some (0, a) , a > 0 , and lim_{t\rightarrow 0^+}f^{(\alpha)}(t) exists, then f^{(\alpha)}(0) = lim_{t\rightarrow 0^+}f^{(\alpha)}(t) .

    Some properties of the conformable fractional derivative are given below as in [21]

    Thereom 1. Suppose \alpha\in(0, 1] , and f = f(t) and g = g(t) are \alpha- differentiable at t > 0 . Then

    \begin{equation} \ D^\alpha_t(af+bg) = aD^\alpha_t(f)+bD^\alpha_t(g), \ \ \ \ \ \forall a, b\in R. \end{equation} (2.4)
    \begin{equation} \ D^\alpha_t(t^\mu) = \mu t^{\mu-\alpha}, \ \ \ \ \ \forall \mu \in R. \end{equation} (2.5)
    \begin{equation} \ D^\alpha_t(fg) = fD^\alpha_t(g)+gD^\alpha_t(f). \end{equation} (2.6)
    \begin{equation} \ D^\alpha_t(\frac{f}{g}) = \frac{gD^\alpha_t(f)-fD^\alpha_t(g)}{g^2}. \end{equation} (2.7)

    If, in addition to f differentiable, then

    \begin{equation} \ D^\alpha_t(f)(t) = t^{1-\alpha}\frac{df}{dt}. \end{equation} (2.8)

    Thereom 2. Suppose functions f, g : [0, \infty) \rightarrow R be \alpha- differentiable, where (0 < \alpha \leq1) . Then the following rule is obtained

    \begin{equation} \ D^\alpha_t(f\circ g)(t) = t^{1-\alpha}g'(t)f'(g(t)). \end{equation} (2.9)

    The above equations play an important role in fractional calculus in the following sections.

    In this section we give the description of the two variable (\phi'/\phi, 1/\phi) -expansion method to find exact traveling wave solutions of time-fractional partial differential equation.

    Suppose that a time-fractional partial differential equation in the variables x, y, z, t is given by

    \begin{equation} \ P(u, u_{x}, u_{y}, u_{z}, u_{xx}, u_{xy}, u_{xz}, u_{xxx}, \cdots, D_{t}^{\alpha}u, D_{tt}^{2\alpha}u, \cdots) = 0, \ \ \ \ 0 \lt \alpha\leq 1, \end{equation} (3.1)

    where D_{t}^{\alpha}u, D_{tt}^{2\alpha}u are fraction-order derivatives of u with respect to t , P is a polynomial of u = u(x, y, z, t) and its various partial conformable derivatives including the highest order derivatives and nonlinear terms.

    We use the conformable wave transformation:

    \begin{equation} \ u(x, y, z, t) = u(\xi), \xi = c(x+y+z-\frac{\upsilon t^{\alpha}}{\alpha}), \end{equation} (3.2)

    where c and \upsilon are constant to be determine later, the FPDE (3.1) is reduced to the following nonlinear ordinary differential equation (ODE) for u(x, y, z, t) = u(\xi) :

    \begin{equation} \ P(u, cu', c^2u'', c^3u''', \cdots, -c\upsilon u', \ldots) = 0, \end{equation} (3.3)

    where u' = u_\xi, u'' = u_{\xi\xi}, \cdots.

    We suppose the solution u of (3.3) can be expressed in the following form:

    \begin{equation} u = \sum\limits_{i = 0}^{n} a_i (\frac{\phi'}{\phi})^i+\sum\limits_{j = 0}^{n-1} b_i (\frac{\phi'}{\phi})^j\frac{1}{\phi}, \end{equation} (3.4)

    where a_i, b_j(i = 0, 1, 2, \ldots, n; j = 0, 1, 2, \ldots, n-1) are constants and a_nb_{n-1}\neq 0 . The positive number n can be determined by considering the homogeneous balance between the highest order derivatives and nonlinear terms appearing in (3.3). The function \phi = \phi(\xi) satisfies the second order linear ODE in the form

    \begin{equation} \phi''+\delta \phi = \mu, \end{equation} (3.5)

    where \delta and \mu are constants. Equation (3.5) has three types of general solution with double arbitrary parameters as follows [22]:

    \begin{equation} \ \phi(\xi) = \left\{\begin{array}{cc} A_1\cosh(\sqrt{-\delta}\xi)+A_2\sinh(\sqrt{-\delta}\xi)+\frac{\mu}{\delta}, \ \rm{when} \ \ \ \delta \lt 0, \\ A_1\cos(\sqrt{\delta}\xi)+A_2\sin(\sqrt{\delta}\xi)+\frac{\mu}{\delta}, \ \ \ \ \ \ \ \ \ \rm{when} \ \ \ \delta \gt 0, \\ A_1\xi+A_2+\frac{\mu}{2}\xi^2, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \rm{when} \ \ \ \delta = 0.\ \end{array}\right. \end{equation} (3.6)

    and

    \begin{equation} \ \left(\frac{\phi'}{\phi}\right)^2 = \left\{\begin{array}{cc} (\delta A_1^2-\delta A_2^2-\frac{\mu^2}{\delta})(\frac{1}{\phi})^2-\delta+\frac{2\mu}{\phi}, \ \ \ \rm{when} \ \delta \lt 0, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ (\delta A_1^2+\delta A_2^2-\frac{\mu^2}{\delta})(\frac{1}{\phi})^2-\delta+\frac{2\mu}{\phi}, \ \ \ \rm{when} \ \delta \gt 0, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ (A_1^2-2\mu A_2)(\frac{1}{\phi})^2+\frac{2\mu}{\phi}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \rm{when} \ \delta = 0. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \end{array}\right. \end{equation} (3.7)

    where A_1, A_2 are arbitrary constants.

    By substituting (3.4) into (3.3) and using the second order linear ODE (3.5) and (3.7), collecting all terms with the same order of \frac{1}{\phi^i} and \frac{1}{\phi^i}\frac{\phi'}{\phi} together, the left-hand side of (3.3) is converted into another polynomial in \frac{1}{\phi^i} and \frac{1}{\phi^i}\frac{\phi'}{\phi} . Equating each coefficient of this different power terms to zero yields a set of algebraic equations for a_i, b_j(i = 0, 1, 2, \ldots, n; j = 0, 1, 2, \ldots, n-1), \delta, \mu, c and \upsilon .

    Assuming constants a_i, b_j(i = 0, 1, 2, \ldots, n; j = 0, 1, 2, \ldots, n-1), \delta, \mu, c and \upsilon can be determined by solving the nonlinear algebraic equations. Then substituting these terms and the general solutions (3.6) of (3.5) into (3.4), we can obtain more exact traveling wave solutions of (3.1).

    In this subsection, we investigate more general and new exact traveling wave solutions of time-fractional differential equations by means of the two variable (\phi'/\phi, 1/\phi) -expansion method.

    we consider the time-fractional Kuramoto-Sivashinsky (K-S) equation [23]:

    \begin{equation} \ D_{t}^{\alpha}u+auu_x+bu_{xx}+ku_{xxxx} = 0, \end{equation} (4.1)

    where 0 < \alpha\leq 1 and a, b, k are arbitrary constants.

    The K-S equation (4.1) was examined as a prototypical example of spatiotemporal chaos in one space dimension. This equation represents the motion of a fluid going down a vertical wall, the variations of the position of a flame front, or a spatially uniform oscillating chemical reaction in a homogeneous medium.

    To solve (4.1), we use the wave transformations:

    \begin{equation} \ u = u(\xi), \ \ \ \xi = c(x-\frac{\upsilon t^{\alpha}}{\alpha}), \end{equation} (4.2)

    then (4.1) is reduced into a nonlinear ODE in the form

    \begin{equation} \ -c\upsilon u'(\xi)+acu(\xi)u'(\xi)+bc^2u''(\xi)+kc^4u^{(4)}(\xi) = 0. \end{equation} (4.3)

    By reducing (4.3), we get

    \begin{equation} \ -\upsilon u'(\xi)+au(\xi)u'(\xi)+bcu''(\xi)+kc^3u^{(4)}(\xi) = 0. \end{equation} (4.4)

    By balancing the highest order derivative term u^{(4)} and nonlinear term uu' in (4.4), the value of n can be determined, which is n = 3 in this problem. Therefore, by (3.4), we have the following ansatz:

    \begin{equation} u(\xi) = a_0+a_1\left(\frac{\phi'}{\phi}\right)+a_2\left(\frac{\phi'}{\phi}\right)^{2}+a_3\left(\frac{\phi'}{\phi}\right)^{3}+b_0\frac{1}{\phi}+b_1\left(\frac{\phi'}{\phi}\right) \frac{1}{\phi}+b_2\left(\frac{\phi'}{\phi}\right)^{2}\frac{1}{\phi}, \end{equation} (4.5)

    where a_0, a_1, a_2, a_3, b_0, b_1 and b_2 are constants to be determined later, and function \phi(\xi) satisfies (3.5).

    By substituting (4.5) into (4.4) and using the second order linear ODE (3.5) and (3.7), collecting all terms with the same order of \frac{1}{\phi^i} and \frac{1}{\phi^i}\frac{\phi'}{\phi} together, the left-hand side of (4.4) is converted into another polynomial in \frac{1}{\phi^i} and \frac{1}{\phi^i}\frac{\phi'}{\phi} . Equating each coefficient of this different power terms to zero yields a set of algebraic equations for a_0, a_1, a_2, a_3, b_0, b_1, b_2, \delta, \mu, k, a, b, c and \upsilon . Solving this system of algebraic equations, with the aid of Maple, we obtain

    1. a_1 = \pm\frac{3b_2\delta}{2\sqrt{\Xi_i}}, \ a_2 = -\frac{b_2\mu}{2\Xi_i}, \ a_3 = \pm\frac{b_2}{\sqrt{\Xi_i}}, b_0 = \frac{b_2(\mu^2+\Xi_i\delta)}{\Xi_i}, \ b_1 = \mp\frac{3b_2\mu}{2\sqrt{\Xi_i}}, \ b = \pm\frac{19b_2a\delta}{60c\sqrt{\Xi_i}}, \ \
    \begin{equation} \ k = \pm\frac{ab_2}{60c^3\sqrt{\Xi_i}}, \ \ \upsilon = \frac{a(b_2\mu\delta+2a_0\Xi_i)}{2\Xi_i}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \end{equation} (4.6)
    2. a_1 = \pm\frac{21b_2\delta}{22\sqrt{\Xi_i}}, \ a_2 = -\frac{b_2\mu}{2\Xi_i}, \ a_3 = \pm\frac{b_2}{\sqrt{\Xi_i}}, b_0 = \frac{b_2(11\mu^2+5\Xi_i\delta)}{11\Xi_i}, \ \ b_1 = \mp\frac{3b_2\mu}{2\sqrt{\Xi_i}}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
    \begin{equation} \ b = \mp\frac{19b_2a\delta}{660c\sqrt{\Xi_i}}, \ \ k = \pm\frac{ab_2}{60c^3\sqrt{\Xi_i}}, \ \ \upsilon = \frac{a(b_2\mu\delta+2a_0\Xi_i)}{2\Xi_i}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \end{equation} (4.7)

    where \Xi_i(i = 1, 2, 3) are given later.

    Substituting (4.6) and (4.7) and the general solutions (3.6) of Eq. (3.5) into (4.5), we obtain more exact traveling wave solutions of (4.1):

    \begin{equation} u_{1i}(\xi) = a_0\pm\frac{3b_2\delta}{2\sqrt{\Xi_i}}\Phi_i-\frac{b_2\mu}{2\Xi_i}\Phi_i^2\pm\frac{b_2}{\sqrt{\Xi_i}}\Phi_i^3+\Psi_i(\frac{b_2(\mu^2+\Xi_i\delta)}{\Xi_i} \mp\frac{3b_2\mu}{2\sqrt{\Xi_i}}\Phi_i+b_2\Phi_i^2), \end{equation} (4.8)

    where \xi = c(x-\frac{(b_2\delta\mu+2a_0\Xi_i)a}{2\Xi_i\alpha}t^\alpha), \ \ b = \pm\frac{19b_2a\delta}{60c\sqrt{\Xi_i}}, \ \ k = \pm\frac{ab_2}{60c^3\sqrt{\Xi_i}}.

    \begin{equation} u_{2i}(\xi) = a_0\pm\frac{21b_2\delta}{22\sqrt{\Xi_i}}\Phi_i-\frac{b_2\mu}{2\Xi_i}\Phi_i^2\pm\frac{b_2}{\sqrt{\Xi_i}}\Phi_i^3+\Psi_i(\frac{b_2(11\mu^2+5\Xi_i\delta)}{11\Xi_i} \mp\frac{3b_2\mu}{2\sqrt{\Xi_i}}\Phi_i+b_2\Phi_i^2), \end{equation} (4.9)

    where \xi = c(x-\frac{(b_2\delta\mu+2a_0\Xi_i)a}{2\Xi_i\alpha}t^\alpha), \ \ b = \mp\frac{19b_2a\delta}{660c\sqrt{\Xi_i}}, \ \ k = \pm\frac{ab_2}{60c^3\sqrt{\Xi_i}} .

    When i = 1 for \delta < 0 , i = 2 for \delta > 0 , i = 3 for \delta = 0 . And

    \begin{equation} \Phi_1 = \frac{A_1\sinh(\sqrt{-\delta}\xi)+A_2\cosh(\sqrt{-\delta}\xi)}{A_1\cosh(\sqrt{-\delta}\xi)+A_2\sinh(\sqrt{-\delta}\xi)+\mu/\delta}\cdot\sqrt{-\delta}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \end{equation} (4.10)
    \begin{equation} \Psi_1 = \frac{1}{A_1\cosh(\sqrt{-\delta}\xi)+A_2\sinh(\sqrt{-\delta}\xi)+\mu/\delta}, \ \ \Xi_1 = A_1^2\delta-A_2^2\delta-\mu^2/\delta. \end{equation} (4.11)
    \begin{equation} \Phi_2 = \frac{-A_1\sin(\sqrt{\delta}\xi)+A_2\cos(\sqrt{\delta}\xi)}{A_1\cos(\sqrt{\delta}\xi)+A_2\sin(\sqrt{\delta}\xi)+\mu/\delta}\cdot\sqrt{\delta}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \end{equation} (4.12)
    \begin{equation} \Psi_2 = \frac{1}{A_1\cos(\sqrt{\delta}\xi)+A_2\sin(\sqrt{\delta}\xi)+\mu/\delta}, \ \ \Xi_2 = A_1^2\delta+A_2^2\delta-\mu^2/\delta.\ \ \ \ \ \ \ \ \end{equation} (4.13)
    \begin{equation} \Phi_3 = \frac{A_1+\mu\xi}{A_1\xi+A_2+\mu\xi^2/2}, \ \Psi_3 = \frac{1}{A_1\xi+A_2+\mu\xi^2/2}, \ \ \Xi_3 = A_1^2-2A_2\mu.\ \ \ \end{equation} (4.14)

    Since A_1 and A_2 are arbitrary constants, one may choose arbitrarily their values. For example, if we choose A_1 = 0 , A_2\neq 0 and \mu = 0 in (4.8), we obtain some traveling wave solutions.

    Case 1.1 when \delta < 0 , we have

    \begin{equation} u_1(\xi) = a_0+\frac{b_2\delta}{A_2}\left(\frac{3}{2}\coth(\sqrt{-\delta}\xi)-\coth^3(\sqrt{-\delta}\xi)- \rm{csch}^3(\sqrt{-\delta}\xi)\right), (A_2 \gt 0), \ \ \ \end{equation} (4.15)

    where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = \frac{19b_2a\delta}{60A_2c\sqrt{-\delta}}, \ \ k = \frac{ab_2}{60c^3A_2\sqrt{-\delta}}.

    \begin{equation} u_2(\xi) = a_0-\frac{b_2\delta}{A_2}\left(\frac{3}{2}\coth(\sqrt{-\delta}\xi)-\coth^3(\sqrt{-\delta}\xi)+ \rm{csch}^3(\sqrt{-\delta}\xi)\right), (A_2 \lt 0), \ \ \ \end{equation} (4.16)

    where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = -\frac{19b_2a\delta}{60A_2c\sqrt{-\delta}}, \ \ k = -\frac{ab_2}{60c^3A_2\sqrt{-\delta}}.

    Case 1.2 when \delta > 0 , we have

    \begin{equation} u_3(\xi) = a_0+\frac{b_2\delta}{A_2}\left(\frac{3}{2}\cot(\sqrt{\delta}\xi)+\cot^3(\sqrt{\delta}\xi)+\csc^3(\sqrt{\delta}\xi)\right), (A_2 \gt 0), \ \ \ \end{equation} (4.17)

    where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = \frac{19b_2a\delta}{60A_2c\sqrt{\delta}}, \ \ k = \frac{ab_2}{60c^3A_2\sqrt{\delta}}.

    \begin{equation} u_4(\xi) = a_0-\frac{b_2\delta}{A_2}\left(\frac{3}{2}\cot(\sqrt{\delta}\xi)+\cot^3(\sqrt{\delta}\xi)-\csc^3(\sqrt{\delta}\xi)\right), (A_2 \lt 0), \ \ \ \end{equation} (4.18)

    where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = -\frac{19b_2a\delta}{60A_2c\sqrt{\delta}}, \ \ k = -\frac{ab_2}{60c^3A_2\sqrt{\delta}}.

    Again if A_2 = 0 , A_1\neq 0 and \mu = 0 in (4.8), we obtain some traveling wave solutions.

    Case 2.1 when \delta < 0 , we have

    \begin{equation} u_5(\xi) = a_0+\frac{b_2\delta \sqrt{-\delta}}{\sqrt{A_1^2\delta}}\left(\frac{3}{2}\tanh(\sqrt{-\delta}\xi)-\tanh^3(\sqrt{-\delta}\xi)\right)+\frac{b_2\delta}{A_1} \rm{sech}^3(\sqrt{-\delta}\xi), \end{equation} (4.19)

    where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = \frac{19b_2a\delta}{60c\sqrt{A_1^2\delta}}, \ \ k = \frac{ab_2}{60c^3\sqrt{A_1^2\delta}}.

    Case 2.2 when \delta > 0 , we have

    \begin{equation} u_6(\xi) = a_0-\frac{b_2\delta}{A_1}\left(\frac{3}{2}\tan(\sqrt{\delta}\xi)+\tan^3(\sqrt{\delta}\xi))-\sec^3(\sqrt{\delta}\xi)\right), (A_1 \gt 0), \end{equation} (4.20)

    where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = \frac{19b_2a\delta}{60c A_1\sqrt{\delta}}, \ \ k = \frac{ab_2}{60c^3 A_1\sqrt{\delta}}.

    \begin{equation} u_7(\xi) = a_0+\frac{b_2\delta}{A_1}\left(\frac{3}{2}\tan(\sqrt{\delta}\xi)+\tan^3(\sqrt{\delta}\xi))+\sec^3(\sqrt{\delta}\xi)\right), (A_1 \lt 0), \end{equation} (4.21)

    where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = -\frac{19b_2a\delta}{60c A_1\sqrt{\delta}}, \ \ k = -\frac{ab_2}{60c^3 A_1\sqrt{\delta}}.

    If we choose A_1 = 0 , A_2\neq 0 and \mu = 0 in (4.9), we obtain some traveling wave solutions, for example

    Case 3.1 when \delta < 0 , we have

    \begin{equation} u_8(\xi) = a_0+\frac{b_2\delta}{A_2}\left(\frac{21}{22}\coth(\sqrt{-\delta}\xi)-\coth^3(\sqrt{-\delta}\xi)+ \left(\frac{5}{11}-\coth^2(\sqrt{-\delta}\xi)\right) \rm{csch}(\sqrt{-\delta}\xi)\right), (A_2 \gt 0), \ \ \ \end{equation} (4.22)

    where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = -\frac{19b_2a\delta}{660A_2c\sqrt{-\delta}}, \ \ k = \frac{ab_2}{60c^3A_2\sqrt{-\delta}}.

    \begin{equation} u_9(\xi) = a_0-\frac{b_2\delta}{A_2}\left(\frac{21}{22}\coth(\sqrt{-\delta}\xi)-\coth^3(\sqrt{-\delta}\xi)- \left(\frac{5}{11}-\coth^2(\sqrt{-\delta}\xi)\right) \rm{csch}(\sqrt{-\delta}\xi)\right), (A_2 \lt 0), \ \ \ \end{equation} (4.23)

    where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = \frac{19b_2a\delta}{660A_2c\sqrt{-\delta}}, \ \ k = -\frac{ab_2}{60c^3A_2\sqrt{-\delta}}.

    Case 3.2 when \delta > 0 , we have

    \begin{equation} u_{10}(\xi) = a_0+\frac{b_2\delta}{A_2}\left(\frac{21}{22}\cot(\sqrt{\delta}\xi)+\cot^3(\sqrt{\delta}\xi)+ \left(\frac{5}{11}+\cot^2(\sqrt{\delta}\xi)\right)\csc(\sqrt{\delta}\xi)\right), (A_2 \gt 0), \ \ \ \end{equation} (4.24)

    where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = -\frac{19b_2a\delta}{660A_2c\sqrt{\delta}}, \ \ k = \frac{ab_2}{60c^3A_2\sqrt{\delta}}.

    \begin{equation} u_{11}(\xi) = a_0-\frac{b_2\delta}{A_2}\left(\frac{21}{22}\cot(\sqrt{\delta}\xi)+\cot^3(\sqrt{\delta}\xi)- \left(\frac{5}{11}+\cot^2(\sqrt{\delta}\xi)\right)\csc(\sqrt{\delta}\xi)\right), (A_2 \lt 0), \ \ \ \end{equation} (4.25)

    where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = \frac{19b_2a\delta}{660A_2c\sqrt{\delta}}, \ \ k = -\frac{ab_2}{60c^3A_2\sqrt{\delta}}.

    Again if A_2 = 0 , A_1\neq 0 and \mu = 0 in (4.9), we obtain some traveling wave solutions.

    Case 4.1 when \delta < 0 , we have

    \begin{equation} u_{12}(\xi) = a_0+\frac{b_2\delta\sqrt{-\delta}}{\sqrt{A_1^2\delta}}\left(\frac{21}{22}\tanh(\sqrt{-\delta}\xi)-\tanh^3(\sqrt{-\delta}\xi)\right)+\frac{b_2\delta}{A_1} \left(\frac{5}{11}-\tanh^2(\sqrt{-\delta}\xi)\right) \rm{sech}(\sqrt{-\delta}\xi), \end{equation} (4.26)

    where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = -\frac{19b_2a\delta}{660c\sqrt{A_1^2\delta}}, \ \ k = \frac{ab_2}{60c^3\sqrt{A_1^2\delta}}.

    Case 4.2 when \delta > 0 , we have

    \begin{equation} u_{13}(\xi) = a_0-\frac{b_2\delta}{A_1}\left(\frac{21}{22}\tan(\sqrt{\delta}\xi)+\tan^3(\sqrt{\delta}\xi)- \left(\frac{5}{11}+\tan^2(\sqrt{\delta}\xi)\right)\sec(\sqrt{\delta}\xi)\right), (A_1 \gt 0), \ \ \ \end{equation} (4.27)

    where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = -\frac{19b_2a\delta}{660A_1c\sqrt{\delta}}, \ \ k = \frac{ab_2}{60c^3A_1\sqrt{\delta}}.

    \begin{equation} u_{14}(\xi) = a_0+\frac{b_2\delta}{A_1}\left(\frac{21}{22}\tan(\sqrt{\delta}\xi)+\tan^3(\sqrt{\delta}\xi)+ \left(\frac{5}{11}+\tan^2(\sqrt{\delta}\xi)\right)\sec(\sqrt{\delta}\xi)\right), (A_1 \lt 0), \ \ \ \end{equation} (4.28)

    where \xi = c(x-\frac{a_0a}{\alpha}t^\alpha), b = \frac{19b_2a\delta}{660A_1c\sqrt{\delta}}, \ \ k = -\frac{ab_2}{60c^3A_1\sqrt{\delta}}.

    Consider the (3+1)-dimensional time-fractional KdV-Zakharov-Kuznetsov (KdV-ZK) equation [24,25]:

    \begin{equation} \ D_{t}^{\alpha}u+auu_x+u_{xxx}+b(u_{xyy}+u_{xzz}) = 0, \end{equation} (4.29)

    where 0 < \alpha\leq 1 and a, b are arbitrary constants.

    It is well known that the Korteweg-de Vries (KdV) equation arises as an model for one-dimensional long wavelength surface waves propagating in weakly nonlinear dispersive media, as well as the evolution of weakly nonlinear ion acoustic waves in plasmas. The ZK equation is one of two well-studied canonical two-dimensional extensions of the Korteweg-de Vries equation. In recent, S. Shoo et al. [25] found some new exact traveling wave solutions of Eq. (4.29) by the simplest equation method.

    To solve (4.29), we use the wave transformations:

    \begin{equation} \ u = u(\xi), \ \ \ \xi = c(x+y+z-\frac{\upsilon t^{\alpha}}{\alpha}), \end{equation} (4.30)

    then (4.29) is reduced into a nonlinear ODE in the form

    \begin{equation} \ -c\upsilon u'(\xi)+acu(\xi)u'(\xi)+c^3(1+2b)u'''(\xi) = 0. \end{equation} (4.31)

    By reducing (4.31), we get

    \begin{equation} \ -\upsilon u'(\xi)+au(\xi)u'(\xi)+c^2(1+2b)u'''(\xi) = 0. \end{equation} (4.32)

    Further by integrating (4.32) with respect to \xi , we get

    \begin{equation} \ -\upsilon u(\xi)+\frac{a}{2}u^2(\xi)+c^2(1+2b)u''(\xi) = 0. \end{equation} (4.33)

    By balancing the highest order derivative term u'' and nonlinear term u^2 in (4.33), the value of n can be determined, which is n = 2 in this problem. Therefore, by equation (3.4), we have the following ansatz:

    \begin{equation} u(\xi) = a_0+a_1\left(\frac{\phi'}{\phi}\right)+a_2\left(\frac{\phi'}{\phi}\right)^{2}+b_0\frac{1}{\phi}+b_1\left(\frac{\phi'}{\phi}\right) \frac{1}{\phi}, \end{equation} (4.34)

    where a_0, a_1, a_2, b_0 and b_1 are constants to be determined later, and function \phi(\xi) satisfies (3.5).

    By substituting (4.34) into (4.33) and using the second order linear ODE (3.5) and (3.7), collecting all terms with the same order of \frac{1}{\phi^i} and \frac{1}{\phi^i}\frac{\phi'}{\phi} together, the left-hand side of (4.33) is converted into another polynomial in \frac{1}{\phi^i} and \frac{1}{\phi^i}\frac{\phi'}{\phi} . Equating each coefficient of this different power terms to zero yields a set of algebraic equations for a_0, a_1, a_2, b_0, b_1, \delta, \mu, a, b, c and \upsilon . Solving this system of algebraic equations, with the aid of Maple, we obtain

    \begin{equation} \ 1. a_0 = \pm\frac{b_1\delta}{\sqrt{\Xi_i}}, \ \ a_1 = 0, \ \ a_2 = \pm\frac{b_1}{\sqrt{\Xi_i}}, \ \ b_0 = \mp\frac{b_1\mu}{\sqrt{\Xi_i}}, \ \ b = -\frac{6c^2\sqrt{\Xi_i}\pm ab_1}{12c^2\sqrt{\Xi_i}}, \ \ \upsilon = \pm\frac{\delta ab_1}{6\sqrt{\Xi_i}}.\ \ \end{equation} (4.35)
    \begin{equation} \ 2. a_0 = \pm\frac{2b_1\delta}{3\sqrt{\Xi_i}}, \ \ a_1 = 0, \ \ a_2 = \pm\frac{b_1}{\sqrt{\Xi_i}}, \ \ b_0 = \mp\frac{b_1\mu}{\sqrt{\Xi_i}}, \ \ b = -\frac{6c^2\sqrt{\Xi_i}\pm ab_1}{12c^2\sqrt{\Xi_i}}, \ \ \upsilon = \mp\frac{\delta ab_1}{6\sqrt{\Xi_i}}.\ \ \end{equation} (4.36)

    Substituting (4.35) and (4.36) and the general solutions (3.6) of Eq. (3.5) into (4.34), we obtain more exact solutions of (4.29):

    \begin{equation} u_{1i}(\xi) = \pm\frac{b_1\delta}{\sqrt{\Xi_i}}\pm\frac{b_1}{\sqrt{\Xi_i}}\Phi_i^2+b_1\Psi_i(\mp\frac{\mu}{\sqrt{\Xi_i}}+\Phi_i), \end{equation} (4.37)

    where \xi = c(x+y+z\mp\frac{\delta ab_1}{6\sqrt{\Xi_i}\alpha}t^\alpha), \ \ b = -\frac{6c^2\sqrt{\Xi_i}\pm ab_1}{12c^2\sqrt{\Xi_i}} .

    \begin{equation} u_{2i}(\xi) = \pm\frac{2b_1\delta}{3\sqrt{\Xi_i}}\pm\frac{b_1}{\sqrt{\Xi_i}}\Phi_i^2+b_1\Psi_i(\mp\frac{\mu}{\sqrt{\Xi_i}}+\Phi_i), \end{equation} (4.38)

    where \xi = c(x+y+z\pm\frac{\delta ab_1}{6\sqrt{\Xi_i}\alpha}t^\alpha), \ \ b = -\frac{6c^2\sqrt{\Xi_i}\pm ab_1}{12c^2\sqrt{\Xi_i}} , in which i = 1 for \delta < 0 , i = 2 for \delta > 0 , i = 3 for \delta = 0 , and \Phi_i, \Psi_i, \Xi_i, \ (i = 1, 2, 3) see (4.10)-(4.14).

    Here A_1 and A_2 are arbitrary constants. Therefore, one can freely select their values. If we choose A_1 = 0 , A_2\neq 0 , \mu = 0 and \delta > 0 in (4.37), we obtain some traveling wave solutions.

    \begin{equation} u_1(\xi) = \frac{b_1\sqrt{\delta}}{A_2}\left(\csc^2(\sqrt{\delta}\xi)+\cot(\sqrt{\delta}\xi)\csc(\sqrt{\delta}\xi)\right), (A_2 \gt 0), \ \end{equation} (4.39)

    where \xi = c(x+y+z-\frac{\delta ab_1}{6A_2\alpha\sqrt{\delta}}t^\alpha), b = -\frac{6c^2A_2\sqrt{\delta}+ ab_1}{12c^2A_2\sqrt{\delta}}.

    \begin{equation} u_2(\xi) = -\frac{b_1\sqrt{\delta}}{A_2}\left(\csc^2(\sqrt{\delta}\xi)-\cot(\sqrt{\delta}\xi)\csc(\sqrt{\delta}\xi)\right), (A_2 \lt 0), \ \end{equation} (4.40)

    where \xi = c(x+y+z+\frac{\delta ab_1}{6A_2\alpha\sqrt{\delta}}t^\alpha), b = \frac{-6c^2A_2\sqrt{\delta}+ ab_1}{12c^2A_2\sqrt{\delta}}.

    If we choose A_1 = 0 , A_2\neq 0 , \mu = 0 and \delta < 0 in (4.38), we obtain some other traveling wave solutions.

    \begin{equation} u_3(\xi) = -\frac{b_1\sqrt{-\delta}}{A_2}\left(\frac{2}{3}-\coth^2(\sqrt{-\delta}\xi)-\coth(\sqrt{-\delta}\xi) \rm{csch}(\sqrt{-\delta}\xi)\right), (A_2 \gt 0), \ \end{equation} (4.41)

    where \xi = c(x+y+z+\frac{\delta ab_1}{6A_2\alpha\sqrt{-\delta}}t^\alpha), b = -\frac{6c^2A_2\sqrt{-\delta}+ ab_1}{12c^2A_2\sqrt{-\delta}}.

    \begin{equation} u_4(\xi) = \frac{b_1\sqrt{-\delta}}{A_2}\left(\frac{2}{3}-\coth^2(\sqrt{-\delta}\xi)+\coth(\sqrt{-\delta}\xi) \rm{csch}(\sqrt{-\delta}\xi)\right), (A_2 \lt 0), \ \end{equation} (4.42)

    where \xi = c(x+y+z-\frac{\delta ab_1}{6A_2\alpha\sqrt{-\delta}}t^\alpha), b = \frac{-6c^2A_2\sqrt{-\delta}+ ab_1}{12c^2A_2\sqrt{-\delta}}.

    If we choose A_1 = 0 , A_2\neq 0 , \mu = 0 and \delta > 0 in (4.38), we obtain some traveling wave solutions.

    \begin{equation} u_5(\xi) = \frac{b_1\sqrt{\delta}}{A_2}\left(\frac{2}{3}+\cot^2(\sqrt{\delta}\xi)+\cot(\sqrt{\delta}\xi)\csc(\sqrt{\delta}\xi)\right), (A_2 \gt 0), \ \end{equation} (4.43)

    where \xi = c(x+y+z+\frac{\delta ab_1}{6A_2\alpha\sqrt{\delta}}t^\alpha), b = -\frac{6c^2A_2\sqrt{\delta}+ ab_1}{12c^2A_2\sqrt{\delta}}.

    \begin{equation} u_6(\xi) = -\frac{b_1\sqrt{\delta}}{A_2}\left(\frac{2}{3}+\cot^2(\sqrt{\delta}\xi)-\cot(\sqrt{\delta}\xi)\csc(\sqrt{\delta}\xi)\right), (A_2 \gt 0), \ \end{equation} (4.44)

    where \xi = c(x+y+z-\frac{\delta ab_1}{6A_2\alpha\sqrt{\delta}}t^\alpha), b = \frac{-6c^2A_2\sqrt{\delta}+ ab_1}{12c^2A_2\sqrt{\delta}}.

    Similarly, we can write down the other families of exact solutions of Eq. (4.29) which are omitted for convenience.

    Consider the time-fractional Sharma-Tasso-Olver (FSTO) equation [26,27]:

    \begin{equation} \ D_{t}^{\alpha}u+3au_x^2+3au^2u_{x}+3auu_{xx}+au_{xxx} = 0, \end{equation} (4.45)

    where a is an arbitrary constant and 0 < \alpha\leq 1 . The function u(x, t) is assumed to be a causal function of time. i.e. vanishing for t < 0 . The general response expression contains a parameter describing the order of the fractional derivative that can be varied to obtain various responses. In the case of \alpha = 1 , Eq. (4.45) reduces to the classical nonlinear STO equation. L. Song [26] found a rational approximation solution of Eq. (4.45) by the variational iteration method, the Adomian decomposition method and the homotopy perturbation method.

    To solve (4.45), we use the wave transformations:

    \begin{equation} \ u = u(\xi), \ \ \ \xi = c(x-\frac{\upsilon t^{\alpha}}{\alpha}), \end{equation} (4.46)

    then (4.45) is reduced into a nonlinear ODE in the form

    \begin{equation} \ -c\upsilon u'(\xi)+3ac^2u'^2(\xi)+3acu^2(\xi)u'(\xi)+3ac^2u(\xi)u''(\xi)+ac^3u'''(\xi) = 0. \end{equation} (4.47)

    By reducing (4.47), we get

    \begin{equation} \ -\upsilon u'(\xi)+3acu'^2(\xi)+3au^2(\xi)u'(\xi)+3acu(\xi)u''(\xi)+ac^2u'''(\xi) = 0. \end{equation} (4.48)

    Further by integrating (4.48) with respect to \xi , we get

    \begin{equation} \ -\upsilon u(\xi)+3acu(\xi)u'(\xi)+au^3(\xi)+ac^2u''(\xi) = 0. \end{equation} (4.49)

    By balancing the highest order derivative term u'' and nonlinear term u^3 in (4.49), the value of n can be determined, which is n = 1 in this problem. Therefore, by Eq. (3.4), we have the following ansatz:

    \begin{equation} u(\xi) = a_0+a_1\left(\frac{\phi'}{\phi}\right)+b_0\frac{1}{\phi}, \end{equation} (4.50)

    where a_0, a_1 and b_0 are constants to be determined later, and function \phi(\xi) satisfies (3.5).

    By substituting (4.50) into (4.49) and using the second order linear ODE (3.5) and (3.7), collecting all terms with the same order of \frac{1}{\phi^i} and \frac{1}{\phi^i}\frac{\phi'}{\phi} together, the left-hand side of (4.49) is converted into another polynomial in \frac{1}{\phi^i} and \frac{1}{\phi^i}\frac{\phi'}{\phi} . Equating each coefficient of this different power terms to zero yields a set of algebraic equations for a_0, a_1, b_0, \delta, \mu, a, c and \upsilon . Solving this system of algebraic equations, with the aid of Maple, we obtain

    \begin{equation} \ 1. a_0 = 0, \ \ a_1 = c, \ \ b_0 = \pm\sqrt{\Xi_i}c, \ \ \upsilon = -ac^2\delta.\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \end{equation} (4.51)
    \begin{equation} \ 2. a_0 = 0, \ \ a_1 = \pm\frac{b_0}{\sqrt{\Xi_i}}, \ \ c = \pm\frac{2b_0}{\sqrt{\Xi_i}}, \ \ \upsilon = -\frac{b_0^2a\delta}{\Xi_i}.\ \ \ \ \ \ \ \ \ \ \ \ \end{equation} (4.52)
    \begin{equation} \ 3. a_0 = \pm\sqrt{-\frac{\delta}{\Xi_i}}b_0, \ \ a_1 = \frac{b_0}{\sqrt{\Xi_i}}, \ \ c = \frac{2b_0}{\sqrt{\Xi_i}}, \ \ \upsilon = -\frac{4b_0^2a\delta}{\Xi_i}.\ \ \ \end{equation} (4.53)
    \begin{equation} \ 4. a_0 = \pm\sqrt{-\frac{\delta}{\Xi_i}}b_0, \ \ a_1 = -\frac{b_0}{\sqrt{\Xi_i}}, \ \ c = -\frac{2b_0}{\sqrt{\Xi_i}}, \ \ \upsilon = -\frac{4b_0^2a\delta}{\Xi_i}. \end{equation} (4.54)

    Substituting (4.51)-(4.54) and the general solutions (3.6) of Eq. (3.5) into (4.50), we obtain more exact solutions of (4.45):

    \begin{equation} u_{1i}(\xi) = c\Phi_i\pm\sqrt{\Xi_i}c\Psi_i, \end{equation} (4.55)

    where \xi = c(x+\frac{ac^2\delta t^\alpha}{\alpha}).

    \begin{equation} u_{2i}(\xi) = \pm\frac{b_0}{\sqrt{\Xi_i}}\Phi_i+b_0\Psi_i, \end{equation} (4.56)

    where \xi = \pm\frac{2b_0}{\sqrt{\Xi_i}}(x+\frac{b_0^2a\delta t^\alpha}{\Xi_i\alpha}).

    \begin{equation} u_{3i}(\xi) = \pm\sqrt{-\frac{\delta}{\Xi_i}}b_0+\frac{b_0}{\sqrt{\Xi_i}}\Phi_i+b_0\Psi_i, \end{equation} (4.57)

    where \xi = \frac{2b_0}{\sqrt{\Xi_i}}(x+\frac{4b_0^2a\delta t^\alpha}{\Xi_i\alpha}).

    \begin{equation} u_{4i}(\xi) = \pm\sqrt{-\frac{\delta}{\Xi_i}}b_0-\frac{b_0}{\sqrt{\Xi_i}}\Phi_i+b_0\Psi_i, \end{equation} (4.58)

    where \xi = -\frac{2b_0}{\sqrt{\Xi_i}}(x+\frac{4b_0^2a\delta t^\alpha}{\Xi_i\alpha}), in which i = 1 for \delta < 0 , i = 2 for \delta > 0 , i = 3 for \delta = 0 , and \Phi_i, \Psi_i, \Xi_i, \ (i = 1, 2, 3) see (4.10)-(4.14).

    Here A_1 and A_2 are arbitrary constants. Therefore, one can freely select their values. If we choose A_1 = 0 , A_2\neq 0 , \mu = 0 and \delta < 0 in (4.55), we the traveling wave solution:

    \begin{equation} u_1(\xi) = c\sqrt{-\delta}\left(\coth(\sqrt{-\delta}\xi)\pm \rm{csch}(\sqrt{-\delta}\xi)\right).\ \end{equation} (4.59)

    If we choose A_1 = 0 , A_2\neq 0 , \mu = 0 and \delta > 0 in (4.55), we obtain the traveling wave solution:

    \begin{equation} u_2(\xi) = c\sqrt{\delta}\left(\cot(\sqrt{\delta}\xi)\pm\csc(\sqrt{\delta}\xi)\right).\ \end{equation} (4.60)

    If we choose A_2 = 0 , A_1\neq 0 , \mu = 0 and \delta > 0 in (4.55), we obtain the traveling wave solution:

    \begin{equation} u_3(\xi) = -c\sqrt{\delta}\left(\tan(\sqrt{\delta}\xi)\pm\sec(\sqrt{\delta}\xi)\right).\ \end{equation} (4.61)

    where \xi = c(x+\frac{ac^2\delta}{\alpha}t^\alpha).

    Similarly, we can write down the other families of exact solutions of Eq. (4.45) which are omitted for convenience.

    In this section, some typical wave figures are given as follows (Figure 1-3):

    Figure 1.  (a) 2D figure of solution u_{11}(\xi) in (4.8) with A_1 = 1, \mu = 1, \delta = -1, A_2 = 1, c = 0.5, a_0 = 2, a = 1, b_2 = 1 , (b) 2D figure of solution u_{12}(\xi) in (4.8) with A_1 = 1, \mu = 1, \delta = 1, A_2 = 1, c = 0.5, a_0 = 2, a = 1, b_2 = 1 .
    Figure 2.  (a) 2D figure of solution u_{11}(\xi) in (4.37) with A_1 = 1, \mu = 2, \delta = -1, A_2 = 1, c = 1, a = 1, b_1 = 1, y = 1, z = 1 , (b) 2D figure of solution u_{12}(\xi) in (4.37) with A_1 = 1, \mu = 1, \delta = 1, A_2 = 1, c = 1, a = 1, b_1 = 1, y = 1, z = 1 .
    Figure 3.  (a) 2D figure of solution u_{11}(\xi) in (4.55) with A_1 = 1, \mu = 2, \delta = -1, A_2 = 1, c = 1, a = 1 , (b) 2D figure of solution u_{12}(\xi) in (4.55) with A_1 = 1, \mu = 1, \delta = 1, A_2 = 1, c = 1, a = 1 .

    The basic idea of the two variable (\phi'/\phi, 1/\phi) -expansion method is to research the new exact traveling wave solutions of the mentioned Eqs. (4.1), (4.29) and Eq. (4.45). The Eqs. (4.1), (4.29) and (4.29) have been studied using various techniques, among them, Authors obtained some new solutions, but the researches considered the Jumaries modified Riemann-Liouville derivative sense for their solution techniques. Nonetheless, the existing analytical solutions reported in [23,24,27] are not correct because the utilized definitions of fractional derivative have some shortcomings that could not be overlooked [21]. Chen et al. [25] found some new solutions of Eq. (4.29) expressed by tanh, coth, tan and cot form. In our case, first time we considered the conformable fractional derivative sense and two variable (\phi'/\phi, 1/\phi) -expansion method for the Eqs. (4.1), (4.29) and (4.45), we found some new solutions expressed by tanh, coth, sech, csch, tan, cot, sec and csc form. To our knowledge, the solutions obtained have not been reported in former literature. So, all the solutions are new in this article.

    In this study, the two variable (\phi'/\phi, 1/\phi) -expansion method with the help of conformable wave transformation has been applied to find out exact traveling wave solutions of time-fractional differential equations. We have obtained some new and further general solitary wave solutions to three nonlinear time fractional differential equation, namely, time-fractional K-S equation, (3+1)-dimensional KdV-ZK equation and FSTO equation in terms of hyperbolic, trigonometric and rational function solution involving parameters. These solutions have important physical implications, for example, these solutions forces are convenient to characterize the hydromagnetic waves in cold plasma, acoustic waves in inharmonic crystals and acoustic-gravity waves incompressible fluids. The obtained results show that the two variable (\phi'/\phi, 1/\phi) -expansion method is direct, consistent, reliable, very much attractive and an effective powerful mathematical tool for obtaining the exact solutions of other time fractional differential equations, and it can be generalized to nonlinear space-time fractional differential equations and space fractional differential equations. Finally, our results in this article have been checked using the Maple by putting them back into the original equation.

    The authors would like to express their deepest appreciation to the reviewers for their valuable suggestions and comments to improve the article.

    This work was supported by the Middle-Aged Academic Backbone of Honghe University (No. 2014GG0105; No.2015GG0207), Scientific Research Foundation of Yunnan Education Department (No. 2018JS479) Yunnan Applied Basic Research Project(No.2018FH001013; 2018FH001014) and the Natural Science Foundation of Education Committee of Yunnan Province (No. 2019J0558).

    The authors declare no conflict of interest.



    [1] Garner SM, Li X, Huang MH (2017) Introduction to flexible glass substrates, In: Garner SM, Flexible Glass: Enabling Thin, Lightweight, and Flexible Electronics, Hoboken: John Wiley & Sons, 3–33. https://doi.org/10.1002/9781118946404
    [2] Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18: 293–297. https://doi.org/10.1115/1.4010337 doi: 10.1115/1.4010337
    [3] Ritter JE (1995) Predicting lifetimes of materials and material structures. Dent Mater 11: 142–146. https://doi.org/10.1016/0109-5641(95)80050-6 doi: 10.1016/0109-5641(95)80050-6
    [4] Griffith AA (1921) The phenomena of rupture and flow in solids. Philos T Roy Soc A 221: 163–198. https://doi.org/10.1098/rsta.1921.0006 doi: 10.1098/rsta.1921.0006
    [5] Varner J (2003) Festigkeit und Bruchmechanik von Glas, In: Weißmann S, Varner J, Nattermann K, et al. Festigkeit von GlasGrundlagen und Messverfahren, 2 Eds., Offenbach: Hüttentechnische Vereinigung der Deutschen Glasindustrie.
    [6] Lorenz G, Naumann F, Westphalen J, et al. (2016) Correlation of PVD deposition parameters with electrical and mechanical properties of coated thin-glass compounds. 6th Electronic System-Integration Technology Conference (13–15 September), Grenoble, IEEE, 1–6. https://doi.org/10.1109/ESTC.2016.7764740
    [7] Glaesemann GS (2017) The mechanical reliability of thin, flexible glass, In: Garner SM, Flexible Glass: Enabling Thin, Lightweight, and Flexible Electronics, Hoboken: John Wiley & Sons, 35–62. https://doi.org/10.1002/9781118946404
    [8] Jotz M (2022) Kantenfestigkeitsoptimierte (Weiter-) Entwicklung eines Verfahrens zum Trennen von ultradünnem Glas, Ilmenau: Universitätsverlag Ilmenau. https://doi.org/10.22032/dbt.53125
    [9] Vineet K (2022) Transparent conductive films market. Available from: https://www.alliedmarketresearch.com/transparent-conductive-films-market.
    [10] Glöß D, Frach P, Gottfried C, et al. (2008) Multifunctional high-reflective and antireflective layer systems with easy-to-clean properties. Thin Solid Films 516: 4487–4489. https://doi.org/10.1016/j.tsf.2007.05.097 doi: 10.1016/j.tsf.2007.05.097
    [11] Khan S, Wu H, Huai X, et al. (2018) Mechanically robust antireflective coatings. Nano Res 11: 1699–1713. https://doi.org/10.1007/s12274-017-1787-9 doi: 10.1007/s12274-017-1787-9
    [12] German Institute for Standardization (2022) Load controlled fatigue testing—Execution and evaluation of cyclic tests at constant load amplitudes on metallic specimens and components. DIN 50100: 2022-12.
    [13] German Institute for Standardization (1990) Flexural fatigue testing of plastics using flat specimens. DIN 53442: 1990-09.
    [14] International Organization for Standardization (2003) Fibre-reinforced plastics—Determination of fatigue properties under cyclic loading conditions. ISO 13003: 2003.
    [15] Evans AG (1974) Slow crack growth in brittle materials under dynamic loading conditions. Int J Fracture 10: 251–259. https://doi.org/10.1007/BF00113930 doi: 10.1007/BF00113930
    [16] Masuda M, Soma T, Matsui M (1990) Cyclic fatigue behavior of Si3N4 ceramics. J Eur Ceram Soc 6: 253–258. https://doi.org/10.1016/0955-2219(90)90052-H doi: 10.1016/0955-2219(90)90052-H
    [17] Grenet L (1899) Recherches sur la résistance mécanique du verre: Mechanical strength of glass. Bulliten de la Societé d'Encouragement pour l'Industrie Nationale 5: 838–848. Available from: https://cnum.cnam.fr/pgi/redir.php?onglet = a & ident = BSPI.
    [18] Gurney C, Pearson S (1948) Fatigue of mineral glass under static and cyclic loading. Philos T Roy Soc A 192: 537–544. https://doi.org/10.1098/rspa.1948.0025 doi: 10.1098/rspa.1948.0025
    [19] Lü BT (1997) Fatigue strength prediction of soda-lime glass. Theor Appl Fract Mec 27: 107–114. https://doi.org/10.1016/S0167-8442(97)00012-8 doi: 10.1016/S0167-8442(97)00012-8
    [20] Sglavo VM, Gadotti MT, Michelet T (1997) Cyclic loading behaviour of soda-lime silicate glass using indentation cracks. Fatigue Fract Eng M 20: 1225–1234. https://doi.org/10.1111/j.1460-2695.1997.tb00326.x doi: 10.1111/j.1460-2695.1997.tb00326.x
    [21] Hilcken J (2015) Cyclic Fatigue of Annealed and Tempered Soda-Lime Glass, Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-662-48353-4
    [22] Meyland MJ, Nielsen JH, Kocer C (2021) Tensile behaviour of soda-lime-silica glass and the significance of load duration—A literature review. J Build Eng 44: 102966. https://doi.org/10.1016/j.jobe.2021.102966 doi: 10.1016/j.jobe.2021.102966
    [23] Michalske TA, Freiman SW (1982) A molecular interpretation of stress corrosion in silica. Nature 295: 511–512. https://doi.org/10.1038/295511a0 doi: 10.1038/295511a0
    [24] Wiederhorn SM (1967) Influence of water vapor on crack propagation in soda-lime glass. J Am Ceram Soc 50: 407–414. https://doi.org/10.1111/j.1151-2916.1967.tb15145.x doi: 10.1111/j.1151-2916.1967.tb15145.x
    [25] Neugebauer J (2016) Determination of bending tensile strength of thin glass. Challenging Glass 5 Conference, 419–428. https://doi.org/10.7480/cgc.5.2267 doi: 10.7480/cgc.5.2267
    [26] Heiß-Choquet M, Jotz M, Nattermann K, et al. (2014) Verfahren und Vorrichtung zur Bestimmung der Bruchfestigkeit der Ränder dünner Bahnen sprödbrüchigen Materials. German Patent DE 10 2014 110 855 B4.
    [27] Heiß-Choquet M, Jotz M, Nattermann K, et al. (2014)Verfahren und Vorrichtung zur Bestimmung der Kantenfestigkeit von scheibenförmigen Elementen aus sprödbrüchigem Material. German Patent DE 10 2014 110 856 B4.
    [28] Matthewson MJ, Kurkjian CR, Gulati ST (1986) Strength measurement of optical fibers by bending. J Am Ceram Soc 69: 815–821. https://doi.org/10.1111/j.1151-2916.1986.tb07366.x
    [29] Gulati ST, Westbrook J, Carley S, et al. (2011) Two point bending of thin glass substrate. SID Int Symp Dig Tech Pap 42: 652–654. https://doi.org/10.1889/1.3621406 doi: 10.1889/1.3621406
    [30] Zaccaria M, Peters T, Ebert J, et al. (2022) The clamp bender: A new testing equipment for thin glass. Glass Struct Eng 7: 173–186. https://doi.org/10.1007/s40940-022-00188-8 doi: 10.1007/s40940-022-00188-8
    [31] Langgemach W, Rädlein E (2024) A new method—Evaluation of the influence of coatings on the strength and fatigue strength of flexible glass. J Electron Mater (In press).
    [32] Schott AG (2022) AF32 eco: The alkali free answer to high technical demands, fact sheet. Available from: https://www.schott.com/de-de/products/af-32-eco-p1000308/downloads.
    [33] Schott AG (2023) D263T eco: The gold standard in imaging & sensing, fact sheet. Available from: https://www.schott.com/en-gb/products/d-263-P1000318/downloads.
    [34] Nippon Electric Glass Co., Ltd. (2024) Ultra-thin glass G-Leaf, fact sheet. Available from: https://www.neg.co.jp/en/assets/file/product/dp/en-g-leaf.pdf.
    [35] Corning Inc. (2019) The future is flexible: Corning willow glass, fact sheet. Available from: https://www.corning.com/media/worldwide/Innovation/documents/WillowGlass/Corning%20Willow%20Glass%20Fact%20Sheets_August2019.pdf.
    [36] Juneja N, Tutsch L, Feldmann F, et al. (2019) Effect of hydrogen addition on bulk properties of sputtered indium tin oxide thin films. AIP Conf Proc 2147: 040008. https://doi.org/10.1063/1.5123835 doi: 10.1063/1.5123835
    [37] Stoney GG (1909) The tension of metallic films deposited by electrolysis. Proc R Soc Lond A 82: 172–175. https://doi.org/10.1098/rspa.1909.0021 doi: 10.1098/rspa.1909.0021
    [38] Yuasa System Co., Ltd. (2023) Tension-free U-shape folding test. Available from: https://www.yuasa-system.jp/pdf/DLDMLH-FS_DLD-FS_en.pdf.
    [39] Danzer R, Lube T, Supancic P, et al (2008) Fracture of ceramics. Adv Eng Mater 10: 275–298. https://doi.org/10.1002/adem.200700347 doi: 10.1002/adem.200700347
    [40] Mortazavian S, Fatemi A (2014) Notch effects on fatigue behavior of thermoplastics. Adv Mat Res 891–892: 1403–1409. https://doi.org/10.4028/www.scientific.net/AMR.891-892.1403 doi: 10.4028/www.scientific.net/AMR.891-892.1403
    [41] Prabhakaran R, Nair EMS, Sinha PK (1978) Notch sensitivity of polymers. J Appl Polym Sci 22: 3011–3020. https://doi.org/10.1002/app.1978.070221026 doi: 10.1002/app.1978.070221026
    [42] Murakami Y (2002) Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions, 2 Eds., Cambridge, Massachusetts: Academic Press. https://doi.org/10.1016/C2016-0-05272-5
    [43] Neerinck DG, Vink TJ (1996) Depth profiling of thin ITO films by grazing incidence X-ray diffraction. Thin Solid Films 278: 12–17. https://doi.org/10.1016/0040-6090(95)08117-8 doi: 10.1016/0040-6090(95)08117-8
    [44] Mittelstedt C, Becker W (2004) Interlaminar stress concentrations in layered structures: Part Ⅰ—A selective literature survey on the free-edge effect since 1967. J Compos Mater 38: 1037–1062. https://doi.org/10.1177/0021998304040566 doi: 10.1177/0021998304040566
  • This article has been cited by:

    1. Aniqa Aniqa, Jamshad Ahmad, Soliton solution of fractional Sharma-Tasso-Olever equation via an efficient (G′/G)-expansion method, 2022, 13, 20904479, 101528, 10.1016/j.asej.2021.06.014
    2. Hongkua Lin, Explicit Exact Solutions of Space-time Fractional Drinfel’d-Sokolov-Wilson Equations, 2021, 2068, 1742-6588, 012005, 10.1088/1742-6596/2068/1/012005
    3. Sevil Çulha Ünal, Ayşegül Daşcıoğlu, Exact solutions of time fractional Korteweg–de Vries–Zakharov–Kuznetsov equation, 2021, 44, 0170-4214, 9557, 10.1002/mma.7379
    4. Shumaila Naz, Qazi Mahmood Ul-Hassan, Jamshad ahmad, Aniqa Zulfiqar, Dynamics of new optical solutions for nonlinear equations via a novel analytical technique, 2022, 54, 0306-8919, 10.1007/s11082-022-03793-7
    5. Mst Munny Khatun, M Ali Akbar, Zarina K Fayazova, Onur Alp İlhan, Various wave solutions to the nonlinear fractional Korteweg-de Vries Zakharov-Kuznetsov equation by a new approach to the two-variable expansion scheme, 2024, 99, 0031-8949, 035218, 10.1088/1402-4896/ad23ba
    6. Ramima Akter, Shuvo Sarker, Anish Adhikary, M. Ali Akbar, Pinakee Dey, M.S. Osman, Dynamics of geometric shape solutions for space-time fractional modified equal width equation with beta derivative, 2024, 11, 26668181, 100841, 10.1016/j.padiff.2024.100841
    7. Yating Hao, Ben Gao, Exact solutions to the (3 + 1)-dimensional time-fractional KdV–Zakharov–Kuznetsov equation and modified KdV equation with variable coefficients, 2024, 98, 0973-7111, 10.1007/s12043-023-02693-z
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1596) PDF downloads(128) Cited by(2)

Figures and Tables

Figures(16)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog