
A high spike-timing precision characterized by a small variation in interspike intervals of neurons is important for information processing in various brain functions. An experimental study on fast-spiking interneurons has shown that inhibitory autapses functioning as negative self-feedback can enhance spike-timing precision. In the present paper, bifurcation and negative self-feedback mechanisms for the enhanced spike-timing precision to stochastic modulations are obtained in two theoretical models, presenting theoretical explanations to the experimental finding. For stochastic spikes near both the saddle-node bifurcation on an invariant cycle (SNIC) and the subcritical Hopf (SubH) bifurcation with classes 1 and 2 excitabilities, respectively, enhanced spike-timing precision appears in large ranges of the conductance and the decaying rate of inhibitory autapses, closely matching the experimental observation. The inhibitory autaptic current reduces the membrane potential after a spike to a level lower than that in the absence of inhibitory autapses and the threshold to evoke the next spike, making it more difficult for stochastic modulations to affect spike timings, and thereby enhancing spike-timing precision. In addition, firing frequency near the SubH bifurcation is more robust than that near the SNIC bifurcation, resulting in a higher spike-timing precision for the SubH bifurcation. The bifurcation and negative self-feedback mechanisms for the enhanced spike-timing precision present potential measures to modulate the neuronal dynamics or the autaptic parameters to adjust the spike-timing precision.
Citation: Yanbing Jia, Huaguang Gu, Xianjun Wang, Yuye Li, Chunhuizi Zhou. Bifurcation and negative self-feedback mechanisms for enhanced spike-timing precision of inhibitory interneurons[J]. Electronic Research Archive, 2024, 32(1): 90-108. doi: 10.3934/era.2024005
[1] | Ali Al Khabyah . Mathematical aspects and topological properties of two chemical networks. AIMS Mathematics, 2023, 8(2): 4666-4681. doi: 10.3934/math.2023230 |
[2] | Zhibin Du, Ayu Ameliatul Shahilah Ahmad Jamri, Roslan Hasni, Doost Ali Mojdeh . Maximal first Zagreb index of trees with given Roman domination number. AIMS Mathematics, 2022, 7(7): 11801-11812. doi: 10.3934/math.2022658 |
[3] | Zeeshan Saleem Mufti, Ali Tabraiz, Qin Xin, Bander Almutairi, Rukhshanda Anjum . Fuzzy topological analysis of pizza graph. AIMS Mathematics, 2023, 8(6): 12841-12856. doi: 10.3934/math.2023647 |
[4] | Ali N. A. Koam, Ali Ahmad, Azeem Haider, Moin A. Ansari . Computation of eccentric topological indices of zero-divisor graphs based on their edges. AIMS Mathematics, 2022, 7(7): 11509-11518. doi: 10.3934/math.2022641 |
[5] | Muhammad Kamran Jamil, Muhammad Imran, Aisha Javed, Roslan Hasni . On the first general Zagreb eccentricity index. AIMS Mathematics, 2021, 6(1): 532-542. doi: 10.3934/math.2021032 |
[6] | Muhammad Umar Mirza, Rukhshanda Anjum, Maged Z. Youssef, Turki Alsuraiheed . A comprehensive study on fuzzy and crisp graph indices: generalized formulae, proximity and accuracy analysis. AIMS Mathematics, 2023, 8(12): 30922-30939. doi: 10.3934/math.20231582 |
[7] | Edil D. Molina, José M. Rodríguez-García, José M. Sigarreta, Sergio J. Torralbas Fitz . On the Gutman-Milovanović index and chemical applications. AIMS Mathematics, 2025, 10(2): 1998-2020. doi: 10.3934/math.2025094 |
[8] | Zhen Lin . The biharmonic index of connected graphs. AIMS Mathematics, 2022, 7(4): 6050-6065. doi: 10.3934/math.2022337 |
[9] | Chenxu Yang, Meng Ji, Kinkar Chandra Das, Yaping Mao . Extreme graphs on the Sombor indices. AIMS Mathematics, 2022, 7(10): 19126-19146. doi: 10.3934/math.20221050 |
[10] | Milica Anđelić, Tamara Koledin, Zoran Stanić . Notes on Hamiltonian threshold and chain graphs. AIMS Mathematics, 2021, 6(5): 5078-5087. doi: 10.3934/math.2021300 |
A high spike-timing precision characterized by a small variation in interspike intervals of neurons is important for information processing in various brain functions. An experimental study on fast-spiking interneurons has shown that inhibitory autapses functioning as negative self-feedback can enhance spike-timing precision. In the present paper, bifurcation and negative self-feedback mechanisms for the enhanced spike-timing precision to stochastic modulations are obtained in two theoretical models, presenting theoretical explanations to the experimental finding. For stochastic spikes near both the saddle-node bifurcation on an invariant cycle (SNIC) and the subcritical Hopf (SubH) bifurcation with classes 1 and 2 excitabilities, respectively, enhanced spike-timing precision appears in large ranges of the conductance and the decaying rate of inhibitory autapses, closely matching the experimental observation. The inhibitory autaptic current reduces the membrane potential after a spike to a level lower than that in the absence of inhibitory autapses and the threshold to evoke the next spike, making it more difficult for stochastic modulations to affect spike timings, and thereby enhancing spike-timing precision. In addition, firing frequency near the SubH bifurcation is more robust than that near the SNIC bifurcation, resulting in a higher spike-timing precision for the SubH bifurcation. The bifurcation and negative self-feedback mechanisms for the enhanced spike-timing precision present potential measures to modulate the neuronal dynamics or the autaptic parameters to adjust the spike-timing precision.
A molecular graph in chemical graph theory is the graphical representation of the structural formula of a chemical compound in which the vertices represent atoms and edges represent chemical bond between those atoms. A topological index of a molecular graph G is a real number which characterizes the topology of G. Also it is invariant under graph automorphism. Topological indices have been widely used in Quantitative Structure-Activity Relationship (QSAR) and Quantitative Structure-Property Relationship (QSPR) studies. It has application in many folds, to name a few areas, biochemistry, nanotechnology, pharmacology. Bond energy is a measure of bond strength of a chemical compound. The distance between two atoms is considered as the bond length between them. The higher the bond energy, the smaller is the bond length between those atoms. The recently introduced 2-degree based topological invariants, analogous to novel graph invariants (Zagreb indices), namely leap Zagreb indices, may be applied in studying such bond energy between atoms in a molecular graph of a chemical compound.
Throughout this paper, G=(V,E) represents a connected molecular graph with the vertex set V(G) and the edge set E(G). Let the number of vertices and edges of G be n and m respectively. The degree of a vertex v in G is the number of vertices adjacent to v in G and denoted by deg(v:G). The 2-degree (or the second-degree) of a vertex v in G is the number of vertices which are at distance two from v in G and denoted by d2(v:G). The Zagreb indices, namely, the first and second Zagreb indices, are the most important and oldest molecular structure descriptors. These indices have been studied extensively in the field of Mathematical Chemistry [3,4,5]. Recently, the concept of Forgotten topological index also known as F-index have attracted many researchers which results in over 100 research articles related to F-index. A.M.Naji et al. [13] have recently introduced and studied some properties of a new topological invariant called Leap Zagreb indices. They are defined as follows:
Definition 1. (ⅰ) The first leap Zagreb index LM1(G) of a graph G is equal to the sum of squares of the second degrees of the vertices, LM1(G)=∑u∈V(G)d2(u)2.
(ⅱ) The second leap Zagreb index LM2(G) of a graph G is equal to the sum of the products of the second degrees of pairs of adjacent vertices, LM2(G)=∑uv∈E(G)d2(u)d2(v).
(ⅲ) The third leap Zagreb index LM3(G) of a graph G is equal to the sum of the products of the degree with the second degree of every vertex in G, LM3(G)=∑u∈V(G)deg(u)d2(u)
Subsequently, Z. Shao et al. [18] generalized the results of Naji et al.[13] for trees and unicyclic graphs and determined upper and lower bounds on leap Zagreb indices and characterized extremal graphs. Basavanagoud et al.[2] computed exact values for first and second leap hyper Zagreb indices of some nano structures. V. R. Kulli [7,8,9] introduced and studied various leap indices. Shiladhar et al.[17] computed leap Zagreb indices of wind mill graphs. Most recently, Naji et al.[14] have studied some properties of leap graphs.
Azari et al.[1] found formulae for first and second Zagreb indices of bridge and chain graphs. Nilanjan De [15,16] computed F-index and hyper Zagreb index of bridge and chain graphs. Jerline et al. [6] obtained exact values for harmonic index of bridge and chain graphs. E. Litta et al. [10] worked on modified Zagreb indices of bridge graphs. Mohanad Ali et al. [11] computed F-leap index of some special classes of bridge and chain graphs. Zhang et al.[12] worked on Edge-Version Atom-Bond Connectivity and Geometric Arithmetic Indices of generalized bridge molecular graphs. Motivated by their results, we compute exact values for the first and third leap Zagreb indices of bridges and chain graphs. Also we discuss some applications related to these indices in the last section of this paper. First, we recall the definitions of bridge and chain graphs from [1] as follows:
Definition 2. Let {Gi}di=1 be a set of finite pairwise disjoint graphs with distinct vertices vi∈V(Gi). The bridge graph B1=B1(G1,G2,…,Gd;v1,v2,v3,…,vd) of {Gi}di=1 with respect to the vertices {vi}di=1 as shown in Figure 1, is the graph obtained from the graphs G1,G2,…,Gd by connecting the vertices vi and vi+1 by an edge for all i=1,2,…,d−1.
Definition 3. The bridge graph B2=B2(G1,G2,…,Gd;v1,w1,v2,w2,…,vd,wd) of {Gi}di=1 with respect to the vertices {vi,wi}di=1 as shown in Figure 2, is the graph obtained from the graphs G1,G2,G3,…,Gd by connecting the vertices wi and vi+1 by an edge for all i=1,2,…,d−1.
Definition 4. The chain graph C=C(G1,G2,…,Gd;v1,w1,v2,w2,…,vd,wd) of {Gi}di=1 with respect to the vertices {vi,wi}di=1 as shown in Figure 3, is the graph obtained from the graphs G1,G2,…,Gd by identifying the vertices wi and vi+1 for all i=1,2,…,d−1.
The following lemma gives the 2-degree of any arbitrary vertex in the bridge graph B1.
Lemma 5. Let G1,G2,⋯,Gd be d≥5 connected graphs. Then the 2-degree of any arbitrary vertex u in the bridge graph B1 formed by these graphs is as follows:
d2(u:B1)={ν1+μ2+1,ifu=v1νd+μd−1+1,ifu=vdν2+μ1+μ3+1,ifu=v2νd−1+μd+μd−2+1,ifu=vd−1νi+μi−1+μi+1+2,,ifu=vi,3≤i≤d−2d2(u:G1)+1,ifu∈NG1(v1)d2(u:Gd)+1,ifu∈NGd(vd)d2(u:Gi)+2,ifu∈NGi(vi),2≤i≤d−1d2(u:Gi),ifu∈V(Gi)∖NGi[vi],1≤i≤d, | (2.1) |
where νi=d2(vi:Gi) and μi=deg(vi:Gi),1≤i≤d.
Next, we compute the first leap Zagreb index of the type-Ⅰ bridge graph B1.
Let Si=∑u∈NGi(vi)d2(u:Gi), 1≤i≤d.
Theorem 6. LM1(B1)=d∑i=1LM1(Gi)+d−1∑i=2[(μi−1+μi+1+1)2+2νi(μi−1+μi+1+1)+4Si+8μi]+2d−2∑i=3νi+2(S1+Sd)+(μ1+μd−2μ3−2μd−2)+(μ2+1)(μ2+2ν1+1)+(μd−1+1)(μd−1+2νd+1)+3d−12.
Proof. By virtue of Lemma 5
LM1(B1)=∑u∈V(B1)d2(u:B1)2=(ν1+μ2+1)2+(νd+μd−1+1)2+(ν2+μ1+μ3+1)2+(νd−1+μd+μd−2+1)2+d−2∑i=3(νi+μi−1+μi+1+2)2+∑u∈NG1(v1)(d2(u:G1)+1)2+∑u∈NGd(vd)(d2(u:Gd)+1)2+d−1∑i=2∑u∈NGi(vi)(d2(u:Gi)+2)2+d∑i=1∑u∈V(Gi)∖NGi[vi]d2(u:Gi)2 |
=ν21+(μ2+1)2+2ν1(μ2+1)+ν2d+(μd−1+1)2+2νd(μd−1+1)+ν22+(μ1+μ3+1)2+2ν2(μ1+μ3+1)+ν2d−1+(μd+μd−2+1)2+2νd−1(μd+μd−2+1)+d−2∑i=3[(νi+1)2+2(νi+1)(μi−1+μi+1+1)+(μi−1+μi+1+1)2]+∑u∈NG1(v1)[d2(u:G1)2+2d2(u:G1)]+μ1+∑u∈NGd(vd)[d2(u:Gd)2+2d2(u:Gd)]+μd+d−1∑i=2∑u∈NGi(vi)[d2(u:Gi)2+4d2(u:Gi)]+4d−1∑i=2μi+d∑i=1∑u∈V(Gi)∖NGi[vi]d2(u:Gi)2 |
=d∑i=1LM1(Gi)+d−1∑i=2[(μi−1+μi+1+1)2+2νi(μi−1+μi+1+1)+4Si+8μi]+2d−2∑i=3νi+2(S1+Sd)+(μ1+μd−2μ2−2μ3−2μd−2−2μd−1)+(μ2+1)(μ2+2ν1+1)+(μd−1+1)(μd−1+2νd+1)+3d−12. |
Thus the result follows.
Corollary 7. If G1=G2=⋯=Gd=G in a bridge graph B1, then LM1(B1)=dLM1(G)+(4d−6)μ2+(4d−8)ν+(12d−26)μ+(4d−4)(νμ+S)+4d−12, where S=∑u∈NG(v)d2(u:G).
Lemma 8. [1] The degree of an arbitrary vertex u of the bridge graph B1,d≥5 is given by:
deg(u:B1)={μ1+1,ifu=v1μd+1,ifu=vdμi+2,ifu=vi,2≤i≤d−1deg(u:Gi),ifu∈V(Gi)∖{vi},1≤i≤d, | (2.2) |
where μi=deg(vi:Gi),1≤i≤d.
Next, we compute the third leap Zagreb index of the type-Ⅰ bridge graph B1 Let us denote si=∑u∈NGi(vi)deg(u:Gi), 1≤i≤d.
Theorem 9. LM3(B1)=d∑i=1LM3(Gi)+(s1+sd)+2d−1∑i=2si+d∑i=1(2νi+6μi)+2d∑i=2(μi−1μi)−2(μ2+μd−1)−(ν1+νd)−3(μ1+μd)+4d−10.
Proof. By virtue of Lemma 5 and 8
LM3(B1)=∑u∈v(B1)d2(u)deg(u)=(ν1+μ2+1)(μ1+1)+(ν2+μ1+μ3+1)(μ2+2)+(νd+μd−1+1)(μd+1)+(νd−1+μd+μd−2+1)(μd−1+2)+d−2∑i=3(νi+μi−1+μi+1+2)(μi+2)+∑u∈NG1(v1)(d2(u:G1)+1)(deg(u:G1))+∑u∈NGd(vd)(d2(u:Gd)+1)(deg(u:Gd))+d−1∑i=2∑u∈NGi(vi)(d2(u:Gi)+2)(deg(u:Gi))+d∑i=1∑u∈V(Gi)∖NGi[vi](d2(u:Gi))(deg(u:Gi)) |
=(ν1μ1+ν1+μ2μ1+μ2+μ1+1)+(ν2μ2+2ν2+μ1μ2+2μ1+μ3μ2+2μ3+μ2+2)+(νdμd+νd+μd−1μd+μd−1+μd+1)+(νd−1μd−1+2νd−1+μdμd−1+2μd+μd−2μd−1+2μd−2+μd−1+2)+d−2∑i=3(νiμi+2νi+μi−1μi+2μi−1+μi+1μi+2μi+1+2μi+4)+∑u∈NG1(v1)(d2(u:G1)deg(u:G1)+deg(u:G1))+∑u∈NGd(vd)(d2(u:Gd)deg(u:Gd)+deg(u:Gd))+d−1∑i=2∑u∈NGi(vi)(d2(u:Gi)deg(u:Gi)+2deg(u:Gi))+d∑i=1∑u∈V(Gi)∖NGi[vi]d2(u:Gi)deg(u:Gi) |
Thus the result follows.
Corollary 10. If G1=G2=⋯=Gd=G in a bridge graph B1, then LM3(B1)=dLM3(G)+2(d−1)(s+ν+μ2)+2μ(3d−5)+4d−10, where s=∑u∈NG(v)deg(u:G).
For any two nonempty sets A and B, AΔB denotes the symmetric difference of A and B and defined as AΔB=(A∖B)∪(B∖A)=(A∪B)∖(A∩B). First, we obtain the 2-degree of any arbitrary vertex in the type-Ⅱ bridge graph B2 as follows:
Lemma 11. Let G1,G2,⋯,Gd be d≥5 triangle free connected graphs. Then 2-degree of any arbitrary vertex u in the bridge graph B2 formed by these graphs is as follows:
d2(u:B2)={d2(u:G1),ifu∈V(G1)∖NG1[w1]d2(u:G1)+1,ifu∈NG1(w1)d2(u:Gi),ifu∈V(Gi)∖{NGi[vi]∪NGi[wi]},2≤i≤d−1d2(u:Gd),ifu∈V(Gd)∖NGd[vd]d2(u:Gd)+1,ifu∈NGd(vd)d2(u:Gi)+1,ifu∈(NGi(vi)ΔNGi(wi)),2≤i≤d−1d2(u:Gi)+2,ifu∈NGi(vi)∩NGi(wi),2≤i≤d−1δi+μi+1,ifu=wi,1≤i≤d−1νi+λi−1,ifu=vi,2≤i≤d. | (2.3) |
where νi=d2(vi:Gi),μi=deg(vi:Gi);2≤i≤d,δi=d2(wi:Gi),λi=deg(wi:Gi);1≤i≤d−1.
Next, we compute the first leap Zagreb index of type-Ⅱ bridge graph B2.
Let us denote S′1=∑u∈NG1(w1)d2(u:G1) and Sd=∑u∈NGd(vd)d2(u:Gd)
Theorem 12. LM1(B2)=d∑i=1LM1(Gi)+2(S′1+Sd)+(λ1+μd)+d−1∑i=2∑u∈NGi(vi)ΔNGi(wi)[2d2(u:Gi)+1]+4d−1∑i=2∑u∈NGi(vi)∩NGi(wi)[d2(u:Gi)+1]+d−1∑i=1(μ2i+1+2δiμi+1)+d∑i=2(λ2i−1+2νiλi−1).
Proof.
LM1(B2)=∑u∈V(B2)d2(u:B2)2=∑u∈V(G1)∖NG1[w1]d2(u:G1)2+d−1∑i=2 ∑u∈V(Gi)∖{NGi[vi]∪NGi[wi]}d2(u:Gi)2+∑u∈V(Gd)∖NGd[vd]d2(u:Gd)2+∑u∈NG1(w1)(d2(u:G1)+1)2+d−1∑i=2∑u∈NGi(vi)ΔNGi(wi)(d2(u:Gi)+1)2+∑u∈NGd(vd)(d2(u:Gd)+1)2+d−1∑i=2∑u∈NGi(vi)∩NGi(wi)(d2(u:Gi)+2)2+d−1∑i=1(δi+μi+1)2+d∑i=2(νi+λi−1)2 |
=LM1(G1)−δ21−∑u∈NG1(w1)d2(u:G1)2+d−1∑i=2[∑u∈V(Gi)d2(u:Gi)2−∑u∈N(vi)∪N(wi)d2(u:Gi)2−ν2i−δ2i]+LM1(Gd)−ν2d−∑u∈NGd(vd)d2(u:Gd)2+∑u∈NG1(w1)d2(u:G1)2+2∑u∈NG1(w1)d2(u:G1)+λ1+d−1∑i=2[∑u∈NGi(vi)ΔNGi(wi)[d2(u:Gi)2+2d2(u:Gi)+1]]+∑u∈NGd(vd)[d2(u:Gd)2+2d2(u:Gd)+1]+d−1∑i=2[∑u∈NGi(vi)∩NGi(wi)[d2(u:Gi)2+4d2(u:Gi)+4]]+d−1∑i=1[δ2i+2δiμi+1+μ2i+1]+d∑i=2[ν2i+2νiλi−1+λ2i−1] |
Thus,
LM1(B2)=d∑i=1LM1(Gi)+2(S′1+Sd)+(λ1+μd)+d−1∑i=2∑u∈NGi(vi)ΔNGi(wi)[2d2(u:Gi)+1]+4d−1∑i=2∑u∈NGi(vi)∩NGi(wi)[d2(u:Gi)+1]+d−1∑i=1(μ2i+1+2δiμi+1)+d∑i=2(λ2i−1+2νiλi−1). |
Corollary 13. If G1=G2=⋯,Gd=G, in a bridge graph B2, then LM1(B2)=dLM1(G)+λ+μ+2(S+S′)+(d−2)∑u∈NG(v)ΔNG(w)(2d2(u:G)+1)+4(d−2)∑u∈NG(v)∩NG(w)(d2(u:G)+1)+(d−1)[μ2+λ2]+2(d−1)[δμ+νλ], where S=∑u∈NG(w)d2(u:G) and S′=∑u∈NG(v)d2(u:G).
In what follows next, we compute the third leap Zagreb index of B2.
Lemma 14. The degree of an arbitrary vertex u of the bridge graph B2, d≥5 is given by:
deg(u:B2)={deg(u:G1),ifu∈V(G1)∖{w1}deg(u:Gd),ifu∈V(Gd)∖{vd}deg(u:Gi),ifu∈V(Gi)∖{vi,wi},2≤i≤d−1λi+1,ifu=wi,1≤i≤d−1μi+1,ifu=vi,2≤i≤d. | (2.4) |
where μi=deg(vi:Gi);2≤i≤d,λi=deg(wi:Gi);1≤i≤d−1.
Theorem 15. LM3(B2)=d∑i=1LM3(Gi)+∑u∈NG1(w1)deg(u:G1)+∑u∈NGd(vd)deg(u:Gd)+d−1∑i=2∑u∈NGi(wi)∖NGi(vi)deg(u:Gi)+d−1∑i=2∑u∈NGi(vi)∖NGi(wi)deg(u:Gi)+d−1∑i=2∑u∈NGi(vi)∩NGi(wi)2deg(u:Gi)+d−1∑i=12μi+1λi+d−1∑i=1μi+1+d∑i=2λi−1+d∑i=1(δi+νi)−ν1−δd.
Proof. By virtue of Lemma 2.7 and 2.10
LM3(B2)=∑u∈V(B2)d2(u)deg(u)=∑u∈V(G1)∖NG1[w1]d2(u:G1)deg(u:G1)+d−1∑i=2∑u∈V(Gi)∖{NGi[vi]∪NGi[wi]}d2(u:Gi)deg(u:Gi)+∑u∈V(Gd)∖NGd[vd]d2(u:Gd)deg(u:Gd)+∑u∈NG1(w1)(d2(u:G1)+1)(deg(u:G1))+d−1∑i=2∑u∈NGi(wi)∖NGi(vi)(d2(u:Gi)+1)(deg(u:Gi))+d−1∑i=2∑u∈NGi(vi)∖NGi(wi)(d2(u:Gi)+1)(deg(u:Gi))+∑u∈NGd(vd)(d2(u:Gd)+1)(deg(u:Gd))+d−1∑i=2∑u∈NGi(vi)∩NGi(wi)(d2(u:Gi)+2)(deg(u:Gi))+d−1∑i=1(δi+μi+1)(λi+1)+d∑i=2(νi+λi−1)(μi+1) |
Thus the result follows.
Corollary 16. If G1=G2=⋯=Gd=G in a bridge graph B2, then LM3(B2)=dLM3(G)+∑u∈NG(w)deg(u:G)+∑u∈NG(v)deg(u:G)+(d−2)(∑u∈NG(w)∖NG(v)deg(u:G)+∑u∈NG(v)∖NG(w)deg(u:G)+∑u∈NG(v)∩NG(w)2deg(u:G))+(d−1)(2μλ+μ+λ)+d(δ+ν)−(ν+δ).
In the following lemma, we obtain the 2-degree of any vertex in the chain graph C.
Lemma 17. Let G1,G2,⋯,Gd, d≥5 be C3-free connected graphs and let C=C(G1,G2,⋯,Gd;w1,v2,w2,v3,⋯,wd−1,vd) be the chain graph formed using these graphs. Then the 2-degree of any vertex u in C is given as follows:
d2(u:C)={d2(u:G1),ifu∈V(G1)∖NG1[w1]d2(u:G1)+μ2,ifu∈NG1(w1)d2(u:Gd),ifu∈V(Gd)∖NGd[vd]d2(u:Gd)+λd−1,ifu∈NGd(vd)d2(u:Gi),ifu∈V(Gi)∖{NGi[wi]∪NGi[vi]},2≤i≤d−1d2(u:Gi)+μi+1,ifu∈NGi(wi)∖NGi(vi),2≤i≤d−1d2(u:Gi)+λi−1,ifu∈NGi(vi)∖NGi(wi),2≤i≤d−1d2(u:Gi)+λi−1+μi+1,ifu∈NGi(vi)∩NGi(wi),2≤i≤d−1δi+νi+1,ifu=wi=vi+1,1≤i≤d−1, | (2.5) |
where νi=d2(vi:Gi),μi=deg(vi:Gi),λi=deg(wi:Gi) and δi=d2(wi:Gi) for all 1≤i≤d.
Now, we compute the first leap Zagreb index of the chain graph C by applying Lemma 17.
Theorem 18. For the chain graph C,
LM1(C)=d∑i=1LM1(Gi)+∑u∈NG1(w1)[2μ2d2(u:G1)+μ22]+∑u∈NGd(vd)[2λd−1d2(u:Gd)+λ2d−1]+d−1∑i=2 ∑u∈NGi(wi)∖NGi(vi)[2μi+1d2(u:Gi)+μ2i+1]+d−1∑i=2 ∑u∈NGi(vi)∖NGi(wi)[2λi−1d2(u:Gi)+λ2i−1]+2d−1∑i=2 ∑u∈NGi(vi)∩NGi(wi)[λi−1d2(u:Gi)+μi+1d2(u:Gi)+λi−1μi+1]+d−1∑i=2 ∑u∈NGi(vi)∩NGi(wi)(λ2i−1+μ2i+1)+2d−1∑i=1δiνi+1. |
Proof. By Lemma 17, we have
LM1(C)=∑u∈V(C)d2(u:C)2=∑u∈V(G1)∖NG1[w1]d2(u:G1)2+∑u∈NG1(w1)[d2(u:G1)+μ2]2+∑u∈V(Gd)∖NGd[vd]d2(u:Gd)2+∑u∈NGd(vd)[d2(u:Gd)+λd−1]2+d−1∑i=2 ∑u∈V(Gi)∖{NGi[vi]∪NGi[wi]}d2(u:Gi)2+d−1∑i=2 ∑u∈NGi(wi)∖NGi(vi)[d2(u:Gi)+μi+1]2+d−1∑i=2 ∑u∈NGi(vi)∖NGi(wi)[d2(u:Gi)+λi−1]2+d−1∑i=2 ∑u∈NGi(vi)∩NGi(wi)[d2(u:Gi)+λi−1+μi+1]2+d−1∑i=1[δi+νi+1]2 |
=LM1(G1)−∑u∈NG1(w1)[d2(u:G1)2]−δ21+∑u∈NG1(w1)[d2(u:G1)2+2d2(u:G1)μ2+μ22]+LM1(Gd)−∑u∈NGd(vd)d2(u:Gd)2−ν2d+∑u∈NGd(vd)[d2(u:Gd)2+2λd−1d2(u:Gd)+λ2d−1]+d−1∑i=2∑u∈V(Gi)d2(u:Gi)2−d−1∑i=2 ∑u∈NGi[vi]∪NGi[wi]d2(u:Gi)2+d−1∑i=2 ∑u∈NGi(wi)∖NGi(vi)[d2(u:Gi)2+2μi+1d2(u:Gi)+μ2i+1]+d−1∑i=2 ∑u∈NGi(vi)∖NGi(wi)[d2(u:Gi)2+2λi−1d2(u:Gi)+λ2i−1]+d−1∑i=2∑u∈NGi(vi)∩NGi(wi)[d2(u:Gi)2+2λi−1d2(u:Gi)+2μi+1d2(u:Gi)+2λi−1μi+1+λ2i−1+μ2i+1]+d−1∑i=1[δ2i+ν2i+1]+2d−1∑i=1δiνi+1 |
=d∑i=1LM1(Gi)+∑u∈NG1(w1)[2μ2d2(u:G1)+μ22]+∑u∈NGd(vd)[2λd−1d2(u:Gd)+λ2d−1]+d−1∑i=2 ∑u∈NGi(wi)∖NGi(vi)[2μi+1d2(u:Gi)+μ2i+1]+d−1∑i=2 ∑u∈NGi(vi)∖NGi(wi)[2λi−1d2(u:Gi)+λ2i−1]+2d−1∑i=2 ∑u∈NGi(vi)∩NGi(wi)[λi−1d2(u:Gi)+μi+1d2(u:Gi)+λi−1μi+1]+d−1∑i=2 ∑u∈NGi(vi)∩NGi(wi)(λ2i−1+μ2i+1)+2d−1∑i=1δiνi+1. |
Corollary 19. In a chain graph C, if G1=G2=⋯=Gd=G, then LM1(C)=dLM1(G)+∑u∈NG(w)[2μd2(u:G)+μ2]+∑u∈NG(v)[2λd2(u:G)+λ2]+(d−2)∑u∈NG(w)∖NG(v)[2μd2(u:G)+μ2]+(d−2)∑u∈NG(v)∖NG(w)[2λd2(u:G)+λ2]+2(d−2)∑u∈NG(v)∩NG(w)[λd2(u:G)+μd2(u:G)+λμ]+(d−2)∑u∈NG(v)∩NG(w)(λ2+μ2)+2(d−1)δν.
Lemma 20. Let G1,G2,⋯,Gd, d≥5 be C3-free connected graphs and let C=C(G1,G2,⋯,Gd;w1,v2,w2,v3,⋯,wd−1,vd) be the chain graph formed using these graphs. Then the degree of any vertex u in C is given as follows:
deg(u:C)={deg(u:G1),ifu∈V(G1)∖{w1}deg(u:Gd),ifu∈V(Gd)∖{vd}deg(u:Gi),ifu∈V(Gi)∖{vi,wi},2≤i≤d−1λi+μi+1,ifu=wi=vi+1,1≤i≤d−1, | (2.6) |
where μi=deg(vi:Gi),λi=deg(wi:Gi) for all 1≤i≤d
Finally, we compute the third leap Zagreb index of the chain graph C by applying Lemma 17 and 2.16.
Theorem 21. LM3(C)=d∑i=1LM3(Gi)+∑u∈NG1(w1)μ2deg(u:G1)+∑u∈NGd(vd)λd−1deg(u:Gd)+d−1∑i=2∑u∈NGi(wi)∖NGi(vi)μi+1deg(u:Gi)+d−1∑i=2∑u∈NGi(vi)∖NGi(wi)λi−1deg(u:Gi)+d−1∑i=2∑u∈NGi(vi)∩NGi(wi)(λi−1deg(u:Gi)+μi+1deg(u:Gi))+d−1∑i=1(δiμi+1+νi+1λi).
Proof. By virtue of Lemma 17 and 20
LM3(C)=∑u∈V(C)d2(u)deg(u)=∑u∈V(G1)∖NG1[w1]d2(u:G1)deg(u:G1)+∑u∈NG1(w1)(d2(u:G1)+μ2)deg(u:G1)+∑u∈V(Gd)∖NGd[vd]d2(u:Gd)deg(u:Gd)+∑u∈NGd(vd)(d2(u:Gd)+λd−1)deg(u:Gd)+d−1∑i=2∑u∈V(Gi)∖{NGi[wi]∪NGi[vi]}d2(u:Gi)deg(u:Gi)+d−1∑i=2∑u∈NGi(wi)∖NGi(vi)(d2(u:Gi)+μi+1)deg(u:Gi)+d−1∑i=2∑u∈NGi(vi)∖NGi(wi)(d2(u:Gi)+λi−1)deg(u:Gi)+d−1∑i=2∑u∈NGi(vi)∩NGi(wi)(d2(u:Gi)+λi−1+μi+1)deg(u:Gi)+d−1∑i=1(δi+νi+1)(λi+μi+1). |
Thus the result follows.
Corollary 22. In a chain graph C, if G1=G2=⋯=Gd=G, then LM3(C)=dLM3(G)+∑u∈NG(w)μdeg(u:G)+∑u∈NG(v)λdeg(u:G)+(d−2)(∑u∈NG(w)∖NG(v)μdeg(u:G)+∑u∈NG(v)∖NG(w)λdeg(u:G)+∑u∈NG(v)∩NG(w)(λ+μ)deg(u:G))+(d−1)(δμ+νλ).
In this section, we determine the first and third leap Zagreb indices of some molecular graph structures. Two vertices v and w of a hexagon H (C6) (please refer Figure 4) are said to be in
(ⅰ) ortho-position, if they are adjacent in H
(ⅱ) meta-position, if they are distance two in H
(ⅲ) para-position, if they are distance three in H.
We connect h≥5 ortho-hexagons to form a polyphenyl chain denoted by Oh as follows:
One can observe that the Polyphenyl chain Oh shown in Figure 5 is a B1 type bridge graph. Therefore, from Corollary 7, we get
LM1(Oh)=hLM1(G)+(4h−6)μ2+(4h−8)ν+(12h−26)μ+(4h−4)[νμ+∑u∈NG(v)d2(u:G)]+4h−12=24h+(4h−6)(4)+(4h−8)(2)+(12h−26)(2)+(4h−4)(4)+(4h−4)(4)+4h−12=108h−136. |
Similarly,
From Corollary 10, we get
LM3(Oh)=24h+(2h−2)(2)+(2h−2)(2)+2(2)(3h−5)+2(h−1)(2+4)+4h−10=60h−50 |
The polyphenyl chain Mh is formed by connecting h≥5 meta-hexagons as shown in Figure 6.
The polyphenyl chain Ph is formed by connecting h≥5 para-hexagons as shown in the following Figure 7.
It is clear that the Polyphenyl chains Mh and Ph are type-Ⅱ bridge graphs B2.
Using Corollary 2.9, we get
LM1(Mh)=hLM1(G)+λ+μ+2∑u∈NG(w)d2(u:G)+(h−2)[∑u∈NG(w)∖NG(v)(2d2(u:G)+1)]+(h−2)∑u∈NG(v)∖NG(w)(2d2(u:G)+1)+4(h−2)∑u∈NG(v)∩NG(w)(d2(u:G)+1)+2∑u∈NG(v)d2(u:G)+(h−1)μ2+2(h−1)δμ+2(h−1)νλ+(h−1)λ2=24h+4+2(4)+(h−2)[2(2)+1]+(h−2)[2(2)+1]+4(h−2)(2+1)+2(4)+(h−1)(4)+4(h−1)(4)+(h−1)(4) |
Thus LM1(Mh)=70h−48.
Similarly, by Corollary 13, we have
LM1(Ph)=24h+4+2(4)+(h−2)[2(4)+2]+(h−2)(8+2)+4(h−2)(0)+2(4)+(h−1)(4)+8(h−1)+8(h−1)+(h−1)(4) |
Therefore, LM1(Ph)=68h−44.
Using Corollary 2.12, we get
LM3(Mh)=24h+8+(h−2)8+(h−1)12+h(4)−4=48h−24 |
LM3(Ph)=24h+8+(h−2)8+(h−1)12+4h−4=48h−24. |
Next, we shall see an application related to the chain graph C. The spiro-chain SPC4(d,3) is a chain graph formed using d≥5 copies of the cycle C4.
Here the number 3 in the construction denotes the position of the vertices v and w in the spiro-chain (refer Figure 8).
The spiro-chain SPC6(d,4) is a chain graph formed using d≥5 copies of the cycle C6 or hexagon where the vertices v and w are connected in the 4th position (refer Figure 9).
By applying Corollary 19, we get
LM1(SPC4(d,3))=dLM1(G)+∑u∈NG(w)[2μd2(u:G)+μ2]+∑u∈NG(v)[2λd2(u:G)+λ2]+(d−2)∑u∈NG(w)∖NG(v)[2μd2(u:G)+μ2]+(d−2)∑u∈NG(v)∖NG(w)[2λd2(u:G)+λ2]+2(d−2)∑u∈NG(v)∩NG(w)[λd2(u:G)+μd2(u:G)+λμ]+(d−2)∑u∈NG(v)∩NG(w)(λ2+μ2)+2(d−1)δν=54d−66. |
Similarly, from Corollary 19, we have LM1(SPC6(d,4))=80d−56.
By applying Corollary 22, we get
LM3(SPC4(d,3))=8d+2(2+2)+2(2+2)+(d−2)(16)+(d−1)(4)=28d−20 |
Similarly, from Corollary 22, we have LM3(SPC6(d,4))=48d−24.
We have computed exact values of one of the recent topological invariants namely first and third leap Zagreb indices for bridge and chain graphs. It is worth mentioning that computing second leap Zagreb index of bridges and chain graphs has not yet addressed and interested researchers may work on it. Also these indices need to be explored for several other interesting graph structures arising from mathematical chemistry and other branches of science.
The authors wish to thank the referees for their careful reading of the manuscript and valuable suggestions. This work was supported in part by the National Key Technologies R & D Program of China under Grant 2017YFB0802300, 2018YFB0904205, in part by the Key Laboratory of Pattern Recognition and Intelligent Information Processing, Institutions of Higher Education of Sichuan Province under Grant MSSB-2020-12.
The authors declare that no competing interests exist.
[1] |
K. W. Latimer, J. L. Yates, M. L. R. Meister, A. C. Huk, J. W. Pillow, Single-trial spike trains in parietal cortex reveal discrete steps during decision-making, Science, 349 (2015), 184–187. https://doi.org/10.1126/science.aaa4056 doi: 10.1126/science.aaa4056
![]() |
[2] |
A. A. Faisal, L. P. J. Selen, D. M. Wolpert, Noise in the nervous system, Nat. Rev. Neurosci., 9 (2008), 292–303. https://doi.org/10.1038/nrn2258 doi: 10.1038/nrn2258
![]() |
[3] |
P. Tiesinga, J. Fellous, T. J. Sejnowski, Regulation of spike timing in visual cortical circuits, Nat. Rev. Neurosci., 9 (2008), 97–107. https://doi.org/10.1038/nrn2315 doi: 10.1038/nrn2315
![]() |
[4] |
A. Bacci, J. R. Huguenard, Enhancement of spike-timing precision by autaptic transmission in neocortical inhibitory interneurons, Neuron, 49 (2006), 119–130. https://doi.org/10.1016/j.neuron.2005.12.014 doi: 10.1016/j.neuron.2005.12.014
![]() |
[5] |
H. Sun, H. Zhang, A. Ross, T. T. Wang, A. Al-Chami, S. H. Wu, Developmentally regulated rebound depolarization enhances spike timing precision in auditory midbrain neurons, Front. Cell. Neurosci., 14 (2020). https://doi.org/10.3389/fncel.2020.00236 doi: 10.3389/fncel.2020.00236
![]() |
[6] |
Z. Yang, Q. Tan, D. Cheng, L. Zhang, J. Zhang, E. Gu, The changes of intrinsic excitability of pyramidal neurons in anterior cingulate cortex in neuropathic pain, Front. Cell. Neurosci., 12 (2018). https://doi.org/10.3389/Fncel.2018.00436 doi: 10.3389/Fncel.2018.00436
![]() |
[7] |
N. Hajos, J. Palhalmi, E. O. Mann, B. Nemeth, O. Paulsen, T. F. Freund, Spike timing of distinct types of GABAergic interneuron during hippocampal gamma oscillations in vitro, J. Neurosci., 24 (2004), 9127–9137. https://doi.org/10.1523/Jneurosci.2113-04.2004 doi: 10.1523/Jneurosci.2113-04.2004
![]() |
[8] |
P. Antonoudiou, Y. L. Tan, G. Kontou, A. L. Upton, E. O. Mann, Parvalbumin and somatostatin interneurons contribute to the generation of hippocampal gamma oscillations, J. Neurosci., 40 (2020), 7668–7687. https://doi.org/10.1523/Jneurosci.0261-20.2020 doi: 10.1523/Jneurosci.0261-20.2020
![]() |
[9] |
P. J. Kammermeier, Endogenous momer proteins regulate metabotropic glutamate receptor signaling in neurons, J. Neurosci., 28 (2008), 8560–8567. https://doi.org/10.1523/Jneurosci.1830-08.2008 doi: 10.1523/Jneurosci.1830-08.2008
![]() |
[10] |
V. Szegedi, M. Paizs, J. Baka, P. Barzo, G. Molnar, G. Tamas, et al., Robust perisomatic GABAergic self-innervation inhibits basket cells in the human and mouse supragranular neocortex, Elife, 9 (2020), 51691. https://doi.org/10.7554/eLife.51691 doi: 10.7554/eLife.51691
![]() |
[11] |
R. A. Tikidji-Hamburyan, J. J. Martinez, J. A. White, C. C. Canavier, Resonant interneurons can increase robustness of gamma oscillations, J. Neurosci., 35 (2015), 15682–15695. https://doi.org/10.1523/Jneurosci.2601-15.2015 doi: 10.1523/Jneurosci.2601-15.2015
![]() |
[12] |
J. Ma, X. Song, W. Jin, C. Wang, Autapse-induced synchronization in a coupled neuronal network, Chaos, Solitons Fractals, 80 (2015), 31–38. https://doi.org/10.1016/j.chaos.2015.02.005 doi: 10.1016/j.chaos.2015.02.005
![]() |
[13] |
E. Yilmaz, M. Ozer, V. Baysal, M. Perc, Autapse-induced multiple coherence resonance in single neurons and neuronal networks, Sci. Rep., 6 (2016), 30914. https://doi.org/10.1038/Srep30914 doi: 10.1038/Srep30914
![]() |
[14] |
D. Guo, S. Wu, M. Chen, M. Perc, Y. Zhang, J. Ma, et al., Regulation of irregular neuronal firing by autaptic transmission, Sci. Rep., 6 (2016), 26096. https://doi.org/10.1038/Srep26096 doi: 10.1038/Srep26096
![]() |
[15] |
X. Yang, Y. Yu, Z. Sun, Autapse-induced multiple stochastic resonances in a modular neuronal network, Chaos, 27 (2017), 083117. https://doi.org/10.1063/1.4999100 doi: 10.1063/1.4999100
![]() |
[16] |
C. Yao, Z. He, T. Nakano, Y. Qian, J. Shuai, Inhibitory-autapse-enhanced signal transmission in neural networks, Nonlinear Dyn., 97 (2019), 1425–1437. https://doi.org/10.1007/s11071-019-05060-z doi: 10.1007/s11071-019-05060-z
![]() |
[17] |
L. Li, Z. G. Zhao, Inhibitory autapse with time delay induces mixed-mode oscillations related to unstable dynamical behaviors near subcritical Hopf bifurcation, Electron. Res. Arch., 30 (2022), 1898–1917. https://doi.org/10.3934/era.2022096 doi: 10.3934/era.2022096
![]() |
[18] |
Z. Zhao, L. Li, H. Gu, Y. Gao, Different dynamics of repetitive neural spiking induced by inhibitory and excitatory autapses near subcritical Hopf bifurcation, Nonlinear Dyn., 99 (2020), 1129–1154. https://doi.org/10.1007/s11071-019-05342-6 doi: 10.1007/s11071-019-05342-6
![]() |
[19] |
C. Qi, Y. Li, H. Gu, Y. Yang, Nonlinear mechanism for the enhanced bursting activities induced by fast inhibitory autapse and reduced activities by fast excitatory autapse, Cogn. Neurodyn., 17 (2023), 1093–1113. https://doi.org/10.1007/s11571-022-09872-5 doi: 10.1007/s11571-022-09872-5
![]() |
[20] |
X. Ding, H. Gu, Y. Li, Y. Jia, Paradoxical roles of inhibitory autapse and excitatory synapse in formation of counterintuitive anticipated synchronization, Chin. Phys. B., 32 (2023), 088701. https://doi.org/10.1088/1674-1056/Acc450 doi: 10.1088/1674-1056/Acc450
![]() |
[21] |
Y. Jia, H. Gu, Y. Li, X. Ding, Inhibitory autapses enhance coherence resonance of a neuronal network, Commun. Nonlinear Sci. Numer. Simul., 95 (2021), 105643. https://doi.org/10.1016/J.Cnsns.2020.105643 doi: 10.1016/J.Cnsns.2020.105643
![]() |
[22] |
Y. Jia, H. Gu, Y. Li, Influence of inhibitory autapses on synchronization of inhibitory network gamma oscillations, Cogn. Neurodyn., 17 (2023), 1131–1152. https://doi.org/10.1007/s11571-022-09856-5 doi: 10.1007/s11571-022-09856-5
![]() |
[23] |
E. M. Izhikevich, Neural excitability, spiking and bursting, Int. J. Bifurcation Chaos, 10 (2000), 1171–1266. https://doi.org/10.1142/S0218127400000840 doi: 10.1142/S0218127400000840
![]() |
[24] |
J. Mikiel-Hunter, V. Kotak, J. Rinzel, High-frequency resonance in the gerbil medial superior olive, Plos Comput. Biol., 12 (2016), 1005166. https://doi.org/10.1371/journal.pcbi.1005166 doi: 10.1371/journal.pcbi.1005166
![]() |
[25] |
X. Ding, H. Gu, B. Jia, Y. Li, Anticipated synchronization of electrical activity induced by inhibitory autapse in coupled Morris-Lecar neuron model, Acta. Phys. Sin., 70 (2021), 218701. https://doi.org/10.7498/Aps.70.20210912 doi: 10.7498/Aps.70.20210912
![]() |
[26] |
B. Jia, H. Gu, Identifying type I excitability using dynamics of stochastic neural firing patterns, Cogn. Neurodyn., 6 (2012), 485–497. https://doi.org/10.1007/s11571-012-9209-x doi: 10.1007/s11571-012-9209-x
![]() |
[27] |
B. Jia, H. Gu, Dynamics and physiological roles of stochastic firing patterns near bifurcation points, Int. J. Bifurcation Chaos, 27 (2017), 1750113. https://doi.org/10.1142/S0218127417501139 doi: 10.1142/S0218127417501139
![]() |
[28] |
X. Wang, Neurophysiological and computational principles of cortical rhythms in cognition, Physiol. Rev., 90 (2010), 1195–1268. https://doi.org/10.1152/physrev.00035.2008 doi: 10.1152/physrev.00035.2008
![]() |
[29] | C. Borgers, An Introduction to Modeling Neuronal Dynamics, Springer, Cham, 2017. https://doi.org/10.1007/978-3-319-51171-9 |
[30] |
X. Wang, G. Buzsaki, Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model, J. Neurosci., 17 (1996), 6402–6413. https://doi.org/10.1523/jneurosci.16-20-06402.1996 doi: 10.1523/jneurosci.16-20-06402.1996
![]() |
[31] | B. Ermentrout, Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students, SIAM, Philadelphia, 2002. https://doi.org/10.1137/1.9780898718195 |
[32] |
C. Deleuze, G. S. Bhumbra, A. Pazienti, J. Lourenco, C. Mailhes, A. Aguirre, et al., Strong preference for autaptic self-connectivity of neocortical PV interneurons facilitates their tuning to gamma-oscillations, PLoS Biol., 17 (2019), 3000419. https://doi.org/10.1371/journal.pbio.3000419 doi: 10.1371/journal.pbio.3000419
![]() |
[33] |
A. Bacci, J. R. Huguenard, D. A. Prince, Functional autaptic neurotransmission in fast-spiking interneurons: A novel form of feedback inhibition in the neocortex, J. Neurosci., 23 (2003), 859–866. https://doi.org/10.1523/jneurosci.23-03-00859.2003 doi: 10.1523/jneurosci.23-03-00859.2003
![]() |
1. | Xiujun Zhang, Zhiqiang Zhang, Natarajan Chidambaram, Subhasri Jaganathan, Narasimhan Devadoss, Vignesh Ravi, On degree and distance-based topological indices of certain interconnection networks, 2022, 137, 2190-5444, 10.1140/epjp/s13360-022-03010-0 | |
2. | Kinkar Chandra Das, Sourav Mondal, Zahid Raza, On Zagreb connection indices, 2022, 137, 2190-5444, 10.1140/epjp/s13360-022-03437-5 | |
3. | Sourav Mondal, Kinkar Chandra Das, Zagreb connection indices in structure property modelling, 2023, 69, 1598-5865, 3005, 10.1007/s12190-023-01869-5 | |
4. | Deepa Balasubramaniyan, Natarajan Chidambaram, Vignesh Ravi, Muhammad Kamran Siddiqui, QSPR analysis of anti‐asthmatic drugs using some new distance‐based topological indices: A comparative study, 2024, 124, 0020-7608, 10.1002/qua.27372 | |
5. | Yaşar NACAROĞLU, ON LEAP ZAGREB INDICES OF A SPECIAL GRAPH OBTAINED BY SEMIGROUPS, 2023, 6, 2618-5660, 16, 10.33773/jum.1333260 |