
One of the most important areas in today's world is meeting the energy needs of various resources provided by nature. The advantages of renewable energy sources for many application sectors have attracted a lot of attention. The majority of grid-based enterprises use solar photovoltaic (PV) systems to collect sunlight as a reliable energy source. Due to solar PV's simple accessibility and efficient panel design, it is widely used in a variety of application scenarios. By employing the Maximum Power Point Tracking (MPPT) technique, the PV modules can typically operate at their best rate and draw the most power possible from the solar system. Some hybrid control mechanisms are utilized in solar PV systems in traditional works, which has limitations on the problems of increased time consumption, decreased efficiency, and increased THD. Thus, a new Mine Blast Optimization Algorithm (MBOA) based MPPT controlling model is developed to maximize the electrical energy produced by the PV panels under a different climatic situations. Also, an interleaved Luo DC-DC converter is used to significantly improve the output voltage of a PV system with a lower switching frequency. A sophisticated converter and regulating models are being created to effectively meet the energy demand of grid systems. The voltage source inverter is used to lower the level of harmonics and ensure the grid systems' power quality. Various performance indicators are applied to assess the simulation and comparative results of the proposed MBOA-MPPT controlling technique integrated with an interleaved Luo converter.
Citation: I.E.S. Naidu, S. Srikanth, A. Siva sarapakara Rao, Adabala Venkatanarayana. A novel mine blast optimization algorithm (MBOA) based MPPT controlling for grid-PV systems[J]. AIMS Electronics and Electrical Engineering, 2023, 7(2): 135-155. doi: 10.3934/electreng.2023008
[1] | Justin W. L. Wan . Multigrid method for pricing European options under the CGMY process. AIMS Mathematics, 2019, 4(6): 1745-1767. doi: 10.3934/math.2019.6.1745 |
[2] | Shixian Ren, Yu Zhang, Ziqiang Wang . An efficient spectral-Galerkin method for a new Steklov eigenvalue problem in inverse scattering. AIMS Mathematics, 2022, 7(5): 7528-7551. doi: 10.3934/math.2022423 |
[3] | Song Lunji . A High-Order Symmetric Interior Penalty Discontinuous Galerkin Scheme to Simulate Vortex Dominated Incompressible Fluid Flow. AIMS Mathematics, 2016, 1(1): 43-63. doi: 10.3934/Math.2016.1.43 |
[4] | Yones Esmaeelzade Aghdam, Hamid Mesgarani, Zeinab Asadi, Van Thinh Nguyen . Investigation and analysis of the numerical approach to solve the multi-term time-fractional advection-diffusion model. AIMS Mathematics, 2023, 8(12): 29474-29489. doi: 10.3934/math.20231509 |
[5] | Shuangbing Guo, Xiliang Lu, Zhiyue Zhang . Finite element method for an eigenvalue optimization problem of the Schrödinger operator. AIMS Mathematics, 2022, 7(4): 5049-5071. doi: 10.3934/math.2022281 |
[6] | Lingling Sun, Hai Bi, Yidu Yang . A posteriori error estimates of mixed discontinuous Galerkin method for a class of Stokes eigenvalue problems. AIMS Mathematics, 2023, 8(9): 21270-21297. doi: 10.3934/math.20231084 |
[7] | Cagnur Corekli . The SIPG method of Dirichlet boundary optimal control problems with weakly imposed boundary conditions. AIMS Mathematics, 2022, 7(4): 6711-6742. doi: 10.3934/math.2022375 |
[8] | Yanhua Gu . High-order numerical method for the fractional Korteweg-de Vries equation using the discontinuous Galerkin method. AIMS Mathematics, 2025, 10(1): 1367-1383. doi: 10.3934/math.2025063 |
[9] | Zuliang Lu, Xiankui Wu, Fei Huang, Fei Cai, Chunjuan Hou, Yin Yang . Convergence and quasi-optimality based on an adaptive finite element method for the bilinear optimal control problem. AIMS Mathematics, 2021, 6(9): 9510-9535. doi: 10.3934/math.2021553 |
[10] | Lanyin Sun, Kunkun Pang . Numerical solution of unsteady elastic equations with C-Bézier basis functions. AIMS Mathematics, 2024, 9(1): 702-722. doi: 10.3934/math.2024036 |
One of the most important areas in today's world is meeting the energy needs of various resources provided by nature. The advantages of renewable energy sources for many application sectors have attracted a lot of attention. The majority of grid-based enterprises use solar photovoltaic (PV) systems to collect sunlight as a reliable energy source. Due to solar PV's simple accessibility and efficient panel design, it is widely used in a variety of application scenarios. By employing the Maximum Power Point Tracking (MPPT) technique, the PV modules can typically operate at their best rate and draw the most power possible from the solar system. Some hybrid control mechanisms are utilized in solar PV systems in traditional works, which has limitations on the problems of increased time consumption, decreased efficiency, and increased THD. Thus, a new Mine Blast Optimization Algorithm (MBOA) based MPPT controlling model is developed to maximize the electrical energy produced by the PV panels under a different climatic situations. Also, an interleaved Luo DC-DC converter is used to significantly improve the output voltage of a PV system with a lower switching frequency. A sophisticated converter and regulating models are being created to effectively meet the energy demand of grid systems. The voltage source inverter is used to lower the level of harmonics and ensure the grid systems' power quality. Various performance indicators are applied to assess the simulation and comparative results of the proposed MBOA-MPPT controlling technique integrated with an interleaved Luo converter.
The Steklov spectrum coincides with that of the Dirichlet-to-Neumann map for the Laplacian (see, e.g., [1]), and the Steklov eigenvalue problem for the Laplace operator has been well-studied in the mathematical community. In linear elasticity, the study of the Dirichlet-to-Neumann map is important in elastostatic problems, and has attracted the attention of scholars (see, e.g., [2,3,4]). In 2021, Domˊinguez [5] first introduced the Steklov-Lamé eigenvalue problem in which the spectral parameter appears on a Robin boundary condition. [5] investigated the existence of the countable spectrum of this problem and studied the conforming finite element methods for the Steklov Lamé problem. Later, Li and Bi [6] proposed a discontinuous finite element method for this problem and gave the a priori error estimates.
As we know, for numerical solutions of the problems in linear planar elasticity, standard conforming finite elements may suffer a deterioration in performance as the Lamˊe constant λ→∞, that is locking phenomenon (see [7,8]). To overcome the locking phenomenon, several numerical approaches have been developed including the p-version method [9], the PEERS method [10], the mixed method [11], the Galerkin least squares method [12], the nonconforming triangular elements [13,14] and the discontinuous finite element method [15,16,17], and so on.
On the other hand, based on standard finite element methods, people design many efficient discretization schemes/algorithms to get approximations with high accuracy or to reduce the computation costs. The finite element multigrid discretizations is one of such design approaches. This method benefits from the two-grid discretization scheme which was first proposed by Xu and Zhou [18,19]. The basic idea of the two-grid discretizations is to transform solving an eigenvalue problem on a fine grid into solving the eigenvalue problem on a coarse grid and solving a series of algebraic equations on the fine grid. This kind of method can save calculation time while keeping the accuracy of approximations, or improving the accuracy under the same degrees of freedom. So far, two-grid and multigrid finite element discretization schemes have been successfully applied to solving eigenvalue problems, such as elliptic eigenvalue problem [20], Steklov eigenvalue problem [21,22,23,24], biharmonic eigenvalue problem [25], semilinear elliptic eigenvalue problem [26], quantum eigenvalue problem [27], Stokes eigenvalue problem [28,29], Maxwell eigenvalue problem [30], 2m-order elliptic eigenvalue problem [31], etc.
At present, there is not much numerical research report on the Steklov-Lamé eigenproblem. In view of the characteristics of discontinuous finite element method (DGFEM) and multigrid discretizations and based on the work in [6,32], for the Steklov-Lamé eigenvalue problem we will design and analyze a multigrid discretization scheme of DGFEM based on the shifted-inverse iteration. The rest of this paper is organized as follows. In Section 2, the discontinuous finite element approximation of the Steklov-Lamé eigenvalue problem and its a prior error estimates are given. In Section 3, a multigrid discretization scheme of DGFEM based on the shifted-inverse iteration is established, and the error estimates of the proposed scheme is presented. Finally, in Section 4, an adaptive multigrid algorithm is provided coupled with some numerical experiment results. The numerical results show that our method is efficient and locking-free.
Before the discussion, let us specify some notations. Scalars are denoted by general letters, vectors are denoted by bold letters and tensors in bold Greek letters. For tensors σ,τ∈Rn×n, the double dot product notation σ:τ=tr(τTσ) where tr(⋅) denotes the trace of a tensor (sum of the main diagonal). This inner product induces the Frobenius norm for tensors which is denoted as ‖⋅‖. Let Hs(Ω) and Hs(∂Ω) be the usual Sobolev space with order s of scalar fields on Ω and ∂Ω, respectively, whereas for tensor fields we use the symbols Hs(Ω) and Hs(∂Ω) and each element in Hs belongs to Hs. The norm in Hs(Ω) and Hs(∂Ω) are denoted by ‖⋅‖s and ‖⋅‖s,∂Ω, respectively, and the same symbols are also used for the norms in Hs(Ω) and Hs(∂Ω) when there is no ambiguity. H0(∂Ω)=L2(∂Ω). Throughout this paper, we use the letter C, with or without subscript, to denote a generic positive constant independent of the mesh size h and the Lamé parameters, which may not be the same at each occurrence. We use the symbol a≲b to mean that a≤Cb.
Suppose that an isotropic and linearly elastic material occupies the region Ω in Rn (n=2or3) where Ω is a bounded convex polygonal with Lipschitz continuous boundary ∂Ω. Consider the following Steklov-Lamé eigenvalue problem: Find non-zero displacement vector u and the frequencies ω∈R satisfying
{−divσ(u)=0in Ω,σ(u)n=ωpuon ∂Ω, | (2.1) |
where n is the unit outward normal to ∂Ω, σ(u) is the Cauchy stress tensor defined as
σ(u)=2μϵ(u)+λtr(ϵ(u))I, |
where I∈Rn×n is the identity matrix, ϵ(u) is the strain tensor given by
ϵ(u)=12(∇u+(∇u)T), |
∇u is the displacement gradient tensor, and λ∈R and μ>0 are the Lamé parameters satisfying 0<μ1<μ<μ2 and 0<λ<∞.
Suppose that the density of material p∈L∞(∂Ω) has positive lower bound on ∂Ω.
Denote
RM(Ω):={v∈H1(Ω)|v(x)=a+Bx,a∈Rn,B∈Rn×n,BT=−B,x∈Ω}. |
It is obvious that 0 is an eigenvalue of (2.1) with the associated eigenfunction u∈RM(Ω) (see [5]). To find non-zero eigenvalues of (2.1), we adopt the following weak formulation: Seek (κ,u)∈R×H1(Ω) such that
a(u,v)=κb(u,v), ∀v∈H1(Ω), | (2.2) |
where κ=ω+1,
a(u,v):=∫Ωσ(u):ϵ(v)dx+∫∂Ωpu⋅vds=2μ∫Ωϵ(u):ϵ(v)dx+λ∫Ω(divu)(divv)dx+∫∂Ωpu⋅vds, ∀u,v∈H1(Ω),b(u,v):=∫∂Ωpu⋅vds, ∀u,v∈H1(Ω). |
Reference[5] proved that a(⋅,⋅) is a continuous and H1-coercive bilinear form in H1(Ω), b(⋅,⋅) is bounded.
Without losing generality, we assume that p≡1 in the rest of this paper. Denote ‖v‖b=b(v,v)12, then it is clear that ‖⋅‖b=‖⋅‖0,∂Ω.
Let Th={K} be a shape-regular partition of Ω, and h=max{hK:K∈Th} is the diameter of Th where hK is the diameter of element K. When n=2, K is a triangle and a tetrahedron when n=3. Let e∈∂K be an edge/face of element K with diameter he, and let Γh=Γih∪Γbh where Γih denotes the interior edges/faces set and Γbh denotes the set of edges/faces lying on the boundary ∂Ω. In the following, when there is no confusion we always use n to represent the unit outward normal on the boundary of Ω or element K.
Define the broken Sobolev space:
Hs(Th)={v∈[L2(Ω)]n:v∣K∈[Hs(K)]n,∀K∈Th}. |
For any v∈Hs(Th), define the jump [[v]] and the average {v} on e as follows:
[[v]]={v+−v−,e∈Γih,v+ ,e∈Γbh,{v}={v++v−2,e∈Γih,v+ , e∈Γbh, |
where v+=v|K+,v−=v|K−, e∈∂K+∩∂K−.
Define the DGFEM space:
Sh={v∈[L2(Ω)]n:v∣K∈[Pk(K)]n,∀K∈Th}, |
where Pk(K) is the space of polynomials defined on K with degree less than or equal to k≥1.
The DGFEM discretization for the problem (2.2) is to find (κh,uh)∈R×Sh,uh≠0,κh=ωh+1, such that
ah(uh,vh)=κhbh(uh,vh), ∀vh∈Sh, | (2.3) |
where
ah(uh,vh)=2μ(∑K∈Th∫Kϵ(uh):ϵ(vh)dx−∑e∈Γih∫e{ϵ(uh)n}⋅[[vh]]ds−∑e∈Γih∫e{ϵ(vh)n}⋅[[uh]]ds+∑e∈Γihγμhe∫e[[uh]]⋅[[vh]]ds)+λ(∑K∈Th∫K(divuh)(divvh)dx−∑e∈Γih∫e{divuh}[[vh⋅n]]ds−∑e∈Γih∫e{divvh}[[uh⋅n]]ds+∑e∈Γihγλhe∫e[[uh⋅n]][[vh⋅n]]ds)+∑e∈Γbh∫euh⋅vhds,bh(uh,vh)=∑e∈Γbh∫euh⋅vhds, |
and the penalty constants γμ,γλ are independent of the shape of K and h. The determination of γμ and γλ is to ensure that (2.4) is valid. It is easy to see that the discretization (2.3) is symmetric which is called symmetric internal penalty method (SIPG) in DGFEM.
Define the DG norm:
‖uh‖2G=2μ∑K∈Th‖ϵ(uh)‖20,K+2μ∑e∈Γihγμh−1e‖[[uh]]‖20,e+λ∑K∈Th‖divuh‖20,K+λ∑e∈Γihγλh−1e‖[[uh⋅n]]‖20,e+∑e∈Γbh‖uh‖20,e, |
and the energy-like norm:
‖uh‖2h=‖uh‖2G+2μ∑e∈Γihhe‖{ϵ(uh)n}‖20,e+λ∑e∈Γihhe‖{divuh}‖20,e. |
From Lemma 4 in [33] we know that there exist constants Cμ and Cλ, independent of h,he,μ and λ, such that
‖h1/2eϵ(v)n‖20,e≤Cμ‖ϵ(v)‖20,K,‖h1/2edivv‖20,e≤Cλ‖divv‖20,K. |
Then, for 0<β<1, when γμ≥Cμ/(1−β)2, γλ≥Cλ/(1−β)2, the bilinear form ah(⋅,⋅) is coercive on Sh (see Lemma 2.2 in [6]):
β‖vh‖2G≤ah(vh,vh),∀vh∈Sh. | (2.4) |
Using Cauchy-Schwartz inequality, it is easy to prove that the bilinear form ah(⋅,⋅) is continuous:
|ah(u,v)|≤M‖u‖h‖v‖h,∀u,v∈H1+s(Th),s>12. |
In order to derive the convergence and the error estimates of DG approximations by using Babu˘ska-Osborn spectral approximation theory, we consider the following source problem associated with the eigenvalue problem (2.2): find w∈H1(Ω) such that
a(w,v)=b(f,v), ∀v∈H1(Ω). | (2.5) |
The DG approximation of (2.5) is to find wh∈Sh such that
ah(wh,vh)=bh(f,vh), ∀vh∈Sh. | (2.6) |
Since a(⋅,⋅) and ah(⋅,⋅) are continuous and coercive on H1(Ω) and Sh, respectively, b(⋅,⋅) and bh(⋅,⋅) are bounded, from Lax-Milgram Theorem we know that (2.5) and (2.6) admit the unique solution w and wh, respectively.
The following regularity estimates of the solution of (2.5) has been discussed in Lemma 3.1 of [6].
(1) Let w be the solution of (2.5). If f∈Hr−12(∂Ω), then w∈Hr+1(Ω) and
‖w‖r+1+λ‖divw‖r≤CR‖f‖r−12,∂Ω, |
where r=1 when Ω is a convex polygonal, and r can be large enough when ∂Ω is sufficiently smooth;
(2) If f∈H−12(∂Ω), then w∈H1(Ω) and
‖w‖1+λ‖divw‖0≤CR‖f‖−12,∂Ω; |
(3) If f∈L2(∂Ω), then w∈H1+12(Ω) and
‖w‖1+12+λ‖divw‖12≤CR‖f‖0,∂Ω, | (2.7) |
where the constant CR is independent of μ and λ.
For any given f∈L2(∂Ω), from (2.7) we have w∈H1+r(Ω),r<12 and r can be arbitrarily close to 12, and
‖w‖1+r+λ‖divw‖r≤CR‖f‖0,∂Ω. | (2.8) |
Let w and wh be the solution of (2.5) and (2.6), respectively, then the SIPG approximation (2.6) of (2.5) is consistent (see Lemma 3.3 in [6]):
ah(w−wh,vh)=0, ∀vh∈Sh. | (2.9) |
For the source problem (2.5), let f∈L2(∂Ω), define the solution operator A: L2(∂Ω)→H1(Ω) by
a(Af,v)=b(f,v), ∀v∈H1(Ω), |
and define the operator T: L2(∂Ω)→L2(∂Ω):
Tf=(Af)′, |
where ′ denotes the restriction on ∂Ω. Then, (2.2) has the following equivalent operator form:
Au=1κu. |
Similarly, from (2.6) we can define the discrete solution operator Ah: L2(∂Ω)→Sh by
ah(Ahf,v)=bh(f,v), ∀v∈Sh, |
and the operator Th:L2(∂Ω)→δSh⊂L2(∂Ω) satisfying
Thf=(Ahf)′, |
where δSh is the restriction of Sh on ∂Ω. Then (2.3) has the following equivalent operator form:
Ahuh=1κhuh. |
Denote ρ=1κ,ρh=1κh. In this paper, κ, κh and ρ, ρh are all called eigenvalues.
From the definition of Ah and (2.4), noticing that ‖⋅‖h and ‖⋅‖G are equivalent on Sh, we can deduce that
‖Ahf‖2h≲ah(Ahf,Ahf)=bh(f,Ahf)≲‖f‖0,∂Ω‖Ahf‖0,∂Ω≲‖f‖0,∂Ω‖Ahf‖h, |
thus,
‖Ahf‖h⩽C‖f‖0,∂Ω≤C‖f‖h. | (2.10) |
Reference [6] gave the a priori error estimates of DG approximation of (2.5).
Theorem 2.1. For any given f∈L2(∂Ω), let w∈H1+r(Ω)(0<r<12) be the solution of (2.5), and let wh be the solution of (2.6). Assume that the regularity estimate (2.8) is valid, then there hold
‖w−wh‖G≲hr‖f‖0,∂Ω,‖w−wh‖0,∂Ω≲h2r‖f‖0,∂Ω; |
Further, when w∈H1+s(Ω)(12<s≤k), there hold
‖w−wh‖h≲hr(√2μ‖w‖1+r+√λ‖divw‖r),‖w−wh‖0,∂Ω≲hr+s(√2μ‖w‖1+s+√λ‖divw‖s). |
Proof. See Theorems 3.6–3.8 in [6].
Suppose that κ is the jth eigenvalue of (2.2) with algebraic multiplicity q, i.e., κ=κj=κj+1=⋅⋅⋅=κj+q−1. [5] proved that ‖T−Th‖0,∂Ω→0 when h→0, therefore, q eigenvalues κj,h,κj+1,h,⋯,κj+q−1,h of (2.3) will converge to κ. Let M(κ) be the space of eigenfunctions of (2.2) associated with eigenvalue κ, and Mh(κ) be the direct sum of the generalized eigenspace of (2.3) associated with κh that converge to κ, M(ρ)=M(κ) and Mh(ρ)=Mh(κ). From [34] we have the following error estimates.
Theorem 2.2. Assume that the regularity estimate (2.8) is valid, and let M(κ)⊂H1+s(Ω)(12<s),t=min{k,s}, then there holds
|κ−κh|≲h2t; | (2.11) |
Let uh∈Mh(κ) be an eigenfunction of (2.3), then there exists u∈M(κ) such that
‖u−uh‖0,∂Ω≲hr+t, | (2.12) |
‖u−uh‖h≲ht; | (2.13) |
Let u∈M(κ) be an eigenfunction of (2.2), then there exists uh∈Mh(κ) such that
‖u−uh‖h≲ht. | (2.14) |
Proof. See Theorem 3.10 in [6] for the proofs of (2.11)–(2.13). By similar arguments we can get (2.14).
Let {Thi}l0 be a family of regular meshes of Ω, hi−1≫hi, and let Shi be the DG space defined on Thi. Denote TH=Th0,SH=Sh0. Now, for the eigenvalue problem (2.3) we give the following multigrid discretization scheme of DGFEM based on the shifted inverse iteration.
Scheme 3.1. Given the iteration times l .
Step 1: Solve (2.3) on SH: Find (κH,uH)∈R×SH, such that ‖uH‖0,∂Ω=1 and
aH(uH,v)=κHbH(uH,v), ∀v∈SH. |
Step 2: uh0⇐uH,κh0⇐κH, i⇐1.
Step 3: Solve a linear system on Shi: Find u′∈Shi such that
ahi(u′,v)−κhi−1bhi(u′,v)=bhi(uhi−1,v), ∀v∈Shi. |
Set uhi=u′‖u′‖0,∂Ω.
Step 4: Compute the Rayleigh quotient
κhi=ahi(uhi,uhi)bhi(uhi,uhi). |
Step 5: If i=l, then output (κhl,uhl), stop; else, i⇐i+1 and return to Step 3.
Next we will conduct the error analysis on Scheme 3.1.
From (2.9) we define the projection operator Ph:H1(Ω)+Sh→Sh⊂L2(∂Ω) satifying
ah(u−Phu,vh)=0,∀vh∈Sh. | (3.1) |
Then, from (2.9) and (3.1) together with Af=w,Ahf=wh, we can prove easily that Ah=PhA.
We first give the following lemmas to prepare for the error analysis.
Lemma 3.1. Let (κ,u) be an eigenpair of (2.2), then for any v∈Sh and ‖v‖b≠0, the Rayleigh quotient R(v)=ah(v,v)‖v‖2b satisfies
R(v)−κ=ah(v−u,v−u)‖v‖2b−κ‖v−u‖2b‖v‖2b. | (3.2) |
Proof. From (2.9) we have
ah(u,v)=b(κu,v)=bh(κu,v),∀v∈Sh, |
thus,
ah(v−u,v−u)−κb(v−u,v−u)=ah(v,v)−2ah(u,v)+ah(u,u)−κb(v,v)+2κb(u,v)−κb(u,u)=ah(v,v)−2b(κu,v)+a(u,u)−κb(v,v)+2κb(u,v)−κb(u,u)=ah(v,v)−κb(v,v), |
dividing both sides by ‖v‖2b we obtain (3.2).
Lemma 3.2. For any non-zero elements u,v in any normed linear space (V,‖⋅‖), it is valid that
‖u‖u‖−v‖v‖‖≤2‖u−v‖‖u‖ , ‖u‖u‖−v‖v‖‖≤2‖u−v‖‖v‖ . |
Proof. See Lemma 3.1 in [20].
Denote d=dimSh, dist(u,Sh)=infv∈Sh‖u−v‖h. Referring to Lemma 4.1 in [20] we prove the following result which plays an important role in our analysis.
Lemma 3.3. Let (ρ0,w0) be an approximation of the jth eigenpair (ρ,u) of (2.2) where ρ0 is not an eigenvalue of Ah, w0∈Sh,‖w0‖0,∂Ω=1. And let u0=Ahw0‖Ahw0‖0,∂Ω. Suppose that
(C1)infv∈Mh(ρ)‖w0−v‖0,∂Ω≤12;
(C2)|ρ0−ρ|≤ϑ4,|ρm,h−ρm|≤ϑ4,m=j−1,j,j+q(m≠0), where ϑ=minm≠j|ρm−ρ| is the separate constant of the eigenvalue ρ;
(C3)u′∈Sh and uh∈Sh satisfy
(ρ0−Ah)u′=u0,uh=u′‖u′‖0,∂Ω. | (3.3) |
Then
dist(uh,Mh(ρ))≤Cϑmaxj≤m≤j+q−1|ρ0−ρm,h|dist(w0,Mh(ρ)). |
Proof. Let {um,h}dm=1 be eigenfunctions of Ah satisfying b(um,h,ui,h)=δm,i. Then
u0=d∑m=1b(u0,um,h)um,h. |
Since ρ0 is not an eigenvalue of Ah, from (3.3) we can get
(ρ0−ρj,h)u′=(ρ0−ρj,h)(ρ0−Ah)−1u0=d∑m=1ρ0−ρj,hρ0−ρm,hb(u0,um,h)um,h. | (3.4) |
Using triangle inequality and the condition (C2) we derive
|ρ0−ρj,h|≤|ρ0−ρ|+|ρ−ρj,h|≤ϑ4+ϑ4=ϑ2,|ρ0−ρm,h|≥|ρ−ρm|−|ρ0−ρ|−|ρm−ρm,h|≥ϑ−ϑ4−ϑ4=ϑ2, |
where m=j−1,j+q(m≠0). Hence, we have
|ρ0−ρm,h|≥ϑ2m≠j,j+1,⋯,j+q−1. | (3.5) |
Because the operator Th is selfadjoint with respect to b(⋅,⋅), in fact, for ∀f∈L2(∂Ω), from the symmetry of ah(⋅,⋅) and b(⋅,⋅) and b(⋅,⋅)=bh(⋅,⋅) we have b(Thf,vh)=b(vh,Thf)=bh(vh,Thf)=ah(Thvh,Thf)= ah(Thf,Thvh)=bh(f,Thvh)=b(f,Thvh) and Ahuh=ρhuh, then, for m=1,2,⋯,d, there holds
b(Thw0,um,h)um,h=b(w0,Thum,h)um,h=b(w0,ρm,hum,h)um,h=b(w0,um,h)ρm,hum,h=b(w0,um,h)Ahum,h. | (3.6) |
Noticing that {um,h}j+q−1m=j is a standard orthogonal basis of Mh(ρ) with respect to the L2(∂Ω) inner product b(⋅,⋅), from u0=Ahw0‖Ahw0‖0,∂Ω, (3.4), (3.6), (2.10) and (3.5) we deduce
‖(ρ0−ρj,h)u′−j+q−1∑m=jρ0−ρj,hρ0−ρm,hb(u0,um,h)um,h‖h=‖∑m≠j,j+1,⋯,j+q−1ρ0−ρj,hρ0−ρm,hb(u0,um,h)um,h‖h=1‖Ahw0‖0,∂Ω‖∑m≠j,j+1,⋯,j+q−1ρ0−ρj,hρ0−ρm,hb(Ahw0,um,h)um,h‖h=1‖Ahw0‖0,∂Ω‖∑m≠j,j+1,⋯,j+q−1ρ0−ρj,hρ0−ρm,hb(Thw0,um,h)um,h‖h=1‖Ahw0‖0,∂Ω‖∑m≠j,j+1,⋯,j+q−1ρ0−ρj,hρ0−ρm,hb(w0,um,h)Ahum,h‖h=1‖Ahw0‖0,∂Ω‖Ah(∑m≠j,j+1,⋯,j+q−1ρ0−ρj,hρ0−ρm,hb(w0,um,h)um,h)‖h≤C‖Ahw0‖0,∂Ω‖∑m≠j,j+1,⋯,j+q−1ρ0−ρj,hρ0−ρm,hb(w0,um,h)um,h‖0,∂Ω≤2Cϑ‖Ahw0‖0,∂Ω|ρ0−ρj,h|(∑m≠j,j+1,⋯,j+q−1b2(w0,um,h))12≤2Cϑ‖Ahw0‖0,∂Ω|ρ0−ρj,h|‖w0−j+q−1∑m=jb(w0,um,h)um,h‖0,∂Ω=2Cϑ‖Ahw0‖0,∂Ω|ρ0−ρj,h|infv∈Mh(ρ)‖w0−v‖0,∂Ω≤2Cϑ‖Ahw0‖0,∂Ω|ρ0−ρj,h|dist(w0,Mh(ρ)). | (3.7) |
Taking the norm on both sides of (3.4), and noting that u0=Ahw0‖Ahw0‖0,∂Ω, the condition (C1) and (3.6), we get
‖(ρ0−ρj,h)u′‖0,∂Ω=1‖Ahw0‖0,∂Ω‖d∑m=1ρ0−ρj,hρ0−ρm,hb(Ahw0,um,h)um,h‖0,∂Ω=1‖Ahw0‖0,∂Ω‖d∑m=1ρ0−ρj,hρ0−ρm,hb(Thw0,um,h)um,h‖0,∂Ω=1‖Ahw0‖0,∂Ω(d∑m=1(ρ0−ρj,hρ0−ρm,hb2(w0,ρm,hum,h)))12≥C‖Ahw0‖0,∂Ωminj≤m≤j+q−1|ρ0−ρj,hρ0−ρm,h|(j+q−1∑m=jb2(w0,um,h))12=C‖Ahw0‖0,∂Ωminj≤m≤j+q−1|ρ0−ρj,hρ0−ρm,h|‖w0−(w0−j+q−1∑m=jb(w0,um,h)um,h)‖0,∂Ω≥C2‖Ahw0‖0,∂Ωminj≤m≤j+q−1|ρ0−ρj,hρ0−ρm,h|. | (3.8) |
From (3.7) and (3.8) we derive
dist(uh,Mh(ρ))=dist(sign(ρ0−ρj,h)uh,Mh(ρ))≤‖sign(ρ0−ρj,h)uh−1‖(ρ0−ρj,h)u′‖0,∂Ωj+q−1∑m=jρ0−ρj,hρ0−ρm,hb(u0,um,h)um,h‖h=‖(ρ0−ρj,h)u′‖(ρ0−ρj,h)u′‖0,∂Ω−1‖(ρ0−ρj,h)u′‖0,∂Ωj+q−1∑m=jρ0−ρj,hρ0−ρm,hb(u0,um,h)um,h‖h≤2C‖Ahw0‖0,∂Ωmaxj≤m≤j+q−1|ρ0−ρm,hρ0−ρj,h|‖(ρ0−ρj,h)u′−j+q−1∑m=jρ0−ρj,hρ0−ρm,hb(u0,um,h)um,h‖h≤Cϑmaxj≤m≤j+q−1|ρ0−ρm,h|dist(w0,Mh(ρ)). |
The proof is completed.
Now we can analyze the error of multigrid discretization scheme 3.1 by using Theorem 2.2 and Lemma 3.3. We first consider the case of l=1. Denote H=h0,h=h1.
Theorem 3.1. Suppose that M(κj)⊂H1+s(Ω)(s≥r), and t=min{k,s}. Let (κhj,uhj) be an approximate eigenpair obtained by Scheme 3.1 (l=1) and H is sufficiently small, then there exists uj∈M(κj) such that
‖uhj−uj‖h≤C(H3t+ht), | (3.9) |
‖uhj−uj‖0,∂Ω≤C(H3t+hr+t), | (3.10) |
|κhj−κj|≤C(H3t+ht)2. | (3.11) |
Proof. We will use Lemma 3.3 to complete the proof. Take ρ0=1κH,w0=uH and u0=AhuH‖AhuH‖0,∂Ω. From (2.13) we know that there exists ˉu∈M(κj) such that
‖uH−ˉu‖h≤CHt. |
From the triangle inequality and (2.14) we have
dist(uH,Mh(κj))≤‖uH−ˉu‖H+dist(ˉu,Mh(κj))≤C(Ht+ht)≤CHt, | (3.12) |
thus,
infv∈Mh(κj)‖uH−v‖0,∂Ω≤CHt, |
when H is small enough, the condition (C1) in Lemma 3.3 is valid.
From (2.11) we get
|ρ0−ρj|=|κH−κj||κHκj|≤CH2t≤ϑ4;|ρm−ρm,h|=|κm,h−κm||κm,hκm|≤Ch2t≤ϑ4,m=j−1,j,…,j+q,m≠0, |
i.e., the condition (C2) in Lemma 3.3 holds.
From the definition of Ah we know that Step 3 in Scheme 3.1 is equivalent to the following:
ah(u′,v)−κHah(Ahu′,v)=ah(AhuH,v)∀v∈Sh, |
and uhj=u′‖u′‖0,∂Ω, i.e.,
(κ−1H−Ah)u′=κ−1HAhuH,uhj=u′‖u′‖0,∂Ω. |
Note that κ−1HAhuH and u0 differ by only one constant, thus, Step 3 in Scheme 3.1 is equivalent to
(κ−1H−Ah)u′=u0,uhj=u′‖u′‖0,∂Ω. |
So far, all conditions of Lemma 3.3 are valid.
Since Mh(κj) is a q-dimensional space, there must exist u∗∈Mh(κj) such that
‖uhj−u∗‖h=dist(uhj,Mh(κj)). |
For m=j,j+1,…,j+q−1, according to (2.11) we have
∣ρ0−ρm,h∣=|1κH−1κm,h|≤|κH−κm,h||κHκm,h|≤C(|κH−κj|+|κj−κm,h|)≤CH2t. | (3.13) |
Therefore, from Lemma 3.3, (3.12) and (3.13) we get
‖uhj−u∗‖h=dist(uhj,Mh(κj))≤Cϑmaxj≤m≤j+q−1|ρ0−ρm,h|dist(uH,Mh(κj))≤CH3t. | (3.14) |
From (2.13) we know that there exists uj∈M(κj), such that ‖u∗−uj‖h=dist(u∗,M(κj)), and
‖u∗−uj‖h≤Cht, |
then
‖uhj−uj‖h≤‖uhj−u∗‖h+‖u∗−uj‖h≤C(H3t+ht), |
that is (3.9).
Next, we will prove (3.10). From (2.12) we have
‖u∗−uj‖0,∂Ω≤Chr+t, |
which together with (3.14) yields
‖uhj−uj‖0,∂Ω≤‖uhj−u∗‖0,∂Ω+‖u∗−uj‖0,∂Ω≤C(H3t+hr+t). |
Finally, we use Lemma 3.1 to derive (3.11). From Step 4 of Scheme 3.1, Lemma 3.1, (3.9) and (3.10) we deduce that
|κhj−κj|=|ah(uhj−uj,uhj−uj)‖uhj‖2b−κjb(uhj−uj,uhj−uj)‖uhj‖2b|≤C(‖uhj−uj‖2h+|κj|‖uhj−uj‖20,∂Ω)≤C(H3t+ht)2. |
The proof is completed.
Remark 3.1. Using Theorem 3.1 and referring to Theorem 4.2 in [32], we can give the error estimates of Scheme 3.1. To ensure that the error is independent of the number of iterations in the multigrid refinement, we also need the following conditions.
Condition 3.1. For any given ε∈(0,1), there exists ti∈(1,2−ε](i=1,2,⋯), such that hi=O(htii−1), and hi→0(i→∞).
Condition 3.1 is easy to be satisfied. For instance, for smooth eigenfunctions, using uniform meshes and linear elements and taking ε=0.1,h0=√28,h1=√232,h2=√2128,⋯, then ti=log(hi)log(hi−1)=log(hi−1−log(4)log(hi−1), thus, t1≈1.80,t2≈1.44,t3≈1.31,⋯, and ti↘1 when i→∞.
Theorem 3.2. Suppose that Condition 3.1 holds and M(κj)⊂H1+s(Ω)(s≥r), and t=min{k,s}. Let (κhlj,uhlj) be an approximate eigenpair obtained by Scheme 3.1, then, when h0=H is small enough, there exists uj∈M(κj) such that
‖uhlj−uj‖h≤Chtl, | (3.15) |
‖uhlj−uj‖0,∂Ω≤Chr+tl, | (3.16) |
|κhlj−κj|≤Ch2tl,l≥1. | (3.17) |
In this section, we will report some numerical experiments to show the efficiency of the DG-multigrid method (Scheme 3.1) for solving the Steklov-Lamé eigenproblem. We conduct the numerical experiments on the MATLAB 2022a on a ThinkBook 14p Gen 2 PC with 16G memory, and our program makes use of the package of iFEM [35]. The test domains are set to be the unit square ΩS=(0,1)2 and the L-shaped domain ΩL=(−1,1)2∖[0,1)2.
Example 4.1. We use Scheme 3.1 to compute the approximation for the 1st eigenvalue κ1 of the problem (2.2). We adopt piecewise polynomial of degree 1 (P1 element) to compute on uniform isosceles right triangulations. We produce the initial coarse grid TH=Th0 and refine the coarse grid in a uniform way (each triangle is divided into four congruent triangles) repeatedly to obtain fine grids Thi,i=1,2,...,l. By using the basis functions of SH, the eigenvalue problem on the initial coarse grid in Step 1 of Scheme 3.1 can be rewritten as a generalized matrix eigenvalue problem
KHˉu1,H=κ1,HMHˉu1,H, | (4.1) |
where the elements of array ˉu1,H are the coordinates of u1,H under the basis functions in SH. Similarly, by using the basis functions of Shi, the algebraic system in Step 3 of Scheme 3.1 can be rewritten as
(Khi−κhi−11Mhi)ˆu=Mhiˆuhi−11 | (4.2) |
and ˉuhi1=ˆu√ˆuTMhiˆu where ˆuhi−11 is actually the projection of the solution ˉuhi−11 obtained on the previous grid Thi−1 in Thi. For example, if Th0 contains NT=2 elements with the associated solution ˉuh01=ˉu1,H, denote ˉuh01=[uh01,uh02]T with uh01=[a11,a21,a12,a22,a13,a23], uh02=[b11,b21,b12,b22,b13,b23] and aιj,bιj(j=1,2,3) being the coordinates of the basis function {1,x,y} on the element ι in Th0, and encrypt Th0 once (each triangle is divided into four congruent triangles) to get Th1 which contains 4NT=8 elements, then the projection of ˉuh01 in Th1 is as follows:
ˆuh01=Q1ˉuh01, |
where Q1 is the projection (restriction) operator:
Q1=[Q1100Q12],Q11=Q12=[I4NT000I4NT000I4NT],I4NT=[INTINTINTINT],INT=I2=[1001]. |
If bisecting encryption is used, that is, each triangle is divided into two triangles, then just replace I4NT with I2NT=[INTINT]. We use the command "eigs" of MATLAB to solve the discrete algebraic eigenvalue problem (4.1), and use the command "∖" in MATLAB to solve the linear system (4.2). Further, there has no difficulty with solving the system (4.2) (see Lecture 27.4 in [36]).
For comparison, we also use the multigrid method of conforming finite elements by adopting P1 element to compute. The error curves are depicted in Figure 1 where the reference value are taken as the most accurate approximations that we can compute. From Figure 1, we can see that as the Lamé parameter λ increases, the DG-multigrid method is robust compared with the multigrid method of conforming finite elements, which is a major advantage of using DG method to solve elastic problems.
Example 4.2. Adaptive computation.
Adaptive algorithm based on the a posterior error estimation is an efficient and important numerical approach for solving partial differential equations. Referring to [37], we combine the multigrid scheme 3.1 and the a posteriori error indicator to establish the adaptive multigrid algorithm. Referring to the a posterior error indicator (25) for the linear elastic source problem in [37], we formally give the following local error indicator for the underlying eigenvalue problem:
ζ2K(κh,uh)=h2K‖divσ(uh)‖2L2(K)+hK(‖Σn(uh)−n⋅σ(uh)‖2L2(∂K∖∂Ω)+‖Σn(uh)−n⋅σ(uh)‖2L2(∂K∩∂Ω))+h−1K‖[[uh]]‖2L2(∂K∖∂Ω), |
where
Σn(uh):={n⋅{σ(uh)}−γμh−1e[[uh]]−h−1eγλn(n⋅[[uh]]),on∂K∖∂Ω,(κh−1)uh,on∂K∩∂Ω. |
Define the global error indicator:
ζΩ=(∑K∈Thζ2K(κh,uh))12. |
Based on the above error indicators and Scheme 3.1, we design the following adaptive multigrid algorithm bases on the shifted inverse iteration.
Algorithm 4.1. Choose parameter 0<α<1.
Step 1: Pick any initial mesh Th0.
Step 2: Solve (2.3) on Th0 for discrete solution (κj,h0,uj,h0).
Step 3: Let l=1. uh1j⇐uj,h0,κh1j⇐κj,h0.
Step 4: Compute the local indicator ζK(κhlj,uhlj).
Step 5: Construct ˆThl⊂ Thl by Mark Strategy and parameter α.
Step 6: Refine Thl to get a new mesh Thl+1 by procedure REFINE.
Step 7: Find ˜u∈Shl+1 such that
ahl+1(˜u,ψ)−κhljbhl+1(˜u,ψ)=bhl+1(uhlj,ψ), ∀ψ∈Shl+1. |
Denote uhl+1j=˜u‖˜u‖0,∂Ω and compute the Rayleigh quotient
κhl+1j=ahl+1(uhl+1j,uhl+1j)bhl+1(uhl+1j,uhl+1j). |
Step 8: Let l=l+1 and go to Step 4.
Mark Strategy
Given parameter 0<α<1.
Step 1: Construct a minimal subset ˆThl of Thl by selecting some elements in Thl such that
∑K∈ˆThlζ2K(κhlj,uhlj)≥α∑K∈Thlζ2K(κhlj,uhlj). |
Step 2: Mark all elements in ˆThl.
Mark Strategy was first proposed in [38], and the procedure REFINE is some iterative or recursive bisection (see, e.g., [39,40]) of elements with the minimal refinement condition that marked elements are bisected at least once.
In addition, to investigate the efficiency of Algorithm 4.1, referring to the standard popular adaptive algorithm [41] we give the following Algorithm 4.2 for comparison.
Algorithm 4.2. Choose parameter 0<α<1.
Step 1: Pick any initial mesh Th0.
Step 2: Solve (2.3) on Th0 for discrete solution (κj,h1,uj,h1).
Step 3: Let l=1.
Step 4: Compute the local indicators ζK(κj,hl,uj,hl).
Step 5: Construct ˆThl⊂ Thl by Mark Strategy and parameter α.
Step 6: Refine Thl to get a new mesh Thl+1 by procedure REFINE.
Step 7: Solve (2.3) on Thl+1 for discrete solution (κj,hl+1,uj,hl+1).
Step 8: Let l=l+1 and go to Step 4.
We use the adaptive DG-multigrid method (Algorithm 4.1) with polynomials of degree 1 (P1 element) and degree 2 (P2 element) to compute, and take α=0.5. For convenience of reading, we specify the following notations in our tables and figures.
− Nj,l: the degrees of freedom at the lth iteration;
− κhlj: the jth eigenvalue obtained by Algorithm 4.1 at the l th iteration;
− κj,hl: the jth eigenvalue obtained by Algorithm 4.2 at the l th iteration;
− CPUj,l(s): the CPU time(s) from the first iteration beginning to the calculate results of the lth iteration appearing by using Algorithm 4.1/4.2;
− ej: the error of the jth approximate eigenvalue by Algorithm 4.1;
− ζj: the error indicator of the jth approximate eigenvalue by Algorithm 4.1.
We first give a numerical experiment comparison between using DGFEM to solve directly on fine meshes and using the adaptive DG-multigrid method (Algorithm 4.1) for the 1st nonzero eigenvalue of (2.3). The error curves are shown in Figures 2 and 3. An observation of the left and right subgraphs in Figures 2 and 3 tells us that the regularity of the eigenfunction in ΩL is lower than that in ΩS, which is consistent with the general conclusion of the regularity of solutions to PDEs. From Figure 2 we can see that the error curves of adaptive DG-multigrid method are all parallel to the line with slope −1 but the error curves of directly computing by DGFEM do not parallel, which indicates that the approximate eigenvalues obtained by the adaptive DG-multigrid method achieve the optimal convergence order. The same conclusion can be seen from Figure 3.
Now we use Algorithms 4.1 and 4.2 with P1 and P2 elements to compute the first 7 non-zero eigenvalues of (2.3) in ΩS and ΩL, respectively. When using P1 element, the parameters μ=1,λ=1,γμ=γλ=10 and the diameter of initial mesh is taken as √216. Limited to space, we list the 1st, the 3rd, the 4th and the 6th approximate eigenvalue in Tables 1 and 2. We also depict the error curves of approximate eigenvalues by Algorithm 4.1 and the curve of error indicators in Figure 4, where the reference values are taken as the most accurate approximations that we can compute. In addition, for the 1st non-zero eigenvalue of (2.3), we investigate the influence of Lamé parameter by taking λ=1,10,100,1000,10000, and the corresponding error curves are shown in Figure 5. When using P2 element, the parameters μ=λ=1,γμ=γλ=40 and the diameter of initial mesh is taken as √28. In Tables 3 and 4 we list the 1st, the 3rd, the 4th and the 6th approximate eigenvalue. We also plot the error curves of approximate eigenvalues by Algorithm 4.1 and the curve of error indicators in Figure 6. For the 1st non-zero eigenvalue of (2.3), we investigate the influence of Lamé parameter by taking λ=1,10,100,1000,10000, and the corresponding error curves are shown in Figure 7.
j | l | Nj,l | κhlj | CPUj,l(s) | l | Nj,l | κj,hl | CPUj,l(s) |
1 | 1 | 3600 | 2.5834151705 | 0.05433 | 1 | 3600 | 2.5834151539 | 0.06679 |
1 | 8 | 26328 | 2.5365029347 | 1.62136 | 8 | 26328 | 2.5365029348 | 2.52953 |
1 | 21 | 1208232 | 2.5310939833 | 249.69061 | 21 | 1208232 | 2.5310939827 | 391.04103 |
1 | 22 | 1570164 | 2.5310583228 | 485.28739 | 22 | 1570164 | 2.5310583228 | 651.02095 |
1 | 23 | 2050932 | 2.5310346038 | 817.8231911 | 23 | 2050932 | 2.531034604 | 1167.502765 |
3 | 1 | 3324 | 2.7404121518 | 0.02745 | 1 | 3324 | 2.7414582353 | 0.07244 |
3 | 11 | 30156 | 2.6778807957 | 1.75582 | 16 | 43908 | 2.6778901580 | 7.73674 |
3 | 20 | 428676 | 2.6740736381 | 57.92155 | 31 | 605400 | 2.6740696701 | 244.04938 |
3 | 23 | 1026540 | 2.6739097335 | 212.85588 | 34 | 1025280 | 2.6739660124 | 488.60793 |
3 | 24 | 1349388 | 2.6738786576 | 395.09095 | 35 | 1219860 | 2.6739372698 | 624.67912 |
4 | 1 | 3888 | 3.7164345114 | 0.05795 | 1 | 3888 | 3.7164345114 | 0.10192 |
4 | 9 | 44460 | 3.7115741607 | 3.84681 | 9 | 44460 | 3.7115741607 | 5.61523 |
4 | 22 | 1762944 | 3.7111432638 | 194.69801 | 22 | 1762944 | 3.7111432638 | 341.67732 |
4 | 23 | 2344044 | 3.7111398968 | 269.71127 | 23 | 2344044 | 3.7111398969 | 470.55583 |
4 | 24 | 3028620 | 3.7111378848 | 385.01813 | 24 | 3028620 | 3.7111378848 | 654.91996 |
6 | 1 | 3792 | 5.2873876626 | 0.06042 | 1 | 3792 | 5.2873876273 | 0.09334 |
6 | 5 | 11784 | 5.2632333578 | 0.70311 | 5 | 11784 | 5.2632333578 | 1.11777 |
6 | 20 | 942528 | 5.2537917257 | 198.46971 | 20 | 942528 | 5.2537917253 | 306.96848 |
6 | 21 | 1259328 | 5.2537597122 | 334.17056 | 21 | 1259328 | 5.2537597120 | 452.24058 |
6 | 22 | 1636512 | 5.2537348070 | 605.55218 | 22 | 1636512 | 5.2537348072 | 796.76924 |
j | l | Nj,l | κhlj | CPUj,l(s) | l | Nj,l | κj,hl | CPUj,l(s) |
1 | 1 | 9252 | 1.1578406889 | 0.08684 | 1 | 9252 | 1.1578406889 | 0.21686 |
1 | 4 | 9960 | 1.1568717901 | 0.51428 | 4 | 9960 | 1.1568717901 | 1.05144 |
1 | 22 | 854196 | 1.1551704849 | 83.61915 | 22 | 854520 | 1.1551704801 | 143.97265 |
1 | 23 | 1125306 | 1.1551665423 | 116.92568 | 23 | 1125690 | 1.1551665389 | 193.87293 |
1 | 24 | 1469730 | 1.1551634294 | 330.33730 | 24 | 1470228 | 1.1551634258 | 431.50241 |
3 | 1 | 9852 | 2.0253499592 | 0.10770 | 1 | 9852 | 2.0253499590 | 0.24006 |
3 | 3 | 13236 | 2.0200276681 | 0.62807 | 3 | 13236 | 2.0200276680 | 1.21075 |
3 | 18 | 1072320 | 2.0137654513 | 221.81309 | 18 | 1072320 | 2.0137654513 | 344.53795 |
3 | 19 | 1431672 | 2.0137487824 | 351.63554 | 19 | 1431672 | 2.0137487822 | 590.05031 |
3 | 20 | 1924536 | 2.0137351315 | 711.94221 | 20 | 1924536 | 2.0137351315 | 1029.63061 |
4 | 1 | 9540 | 2.1396949065 | 0.10559 | 1 | 9540 | 2.1396949061 | 0.23500 |
4 | 4 | 13446 | 2.1322409848 | 0.70466 | 4 | 13446 | 2.1322409847 | 1.33492 |
4 | 19 | 823536 | 2.1258417612 | 147.60184 | 19 | 823536 | 2.1258417612 | 260.40436 |
4 | 20 | 1085094 | 2.1258166076 | 225.83332 | 20 | 1085094 | 2.1258166075 | 386.16427 |
4 | 21 | 1437324 | 2.1257991175 | 324.24898 | 21 | 1437324 | 2.1257991172 | 566.48046 |
6 | 1 | 9828 | 2.7939491213 | 0.15553 | 1 | 9828 | 2.7939490858 | 0.31958 |
6 | 3 | 12894 | 2.7668920157 | 0.78224 | 3 | 12894 | 2.7668920151 | 1.00058 |
6 | 18 | 965010 | 2.7367899041 | 163.71460 | 18 | 965010 | 2.7367899035 | 335.07813 |
6 | 19 | 1292184 | 2.7367099740 | 271.08934 | 19 | 1292184 | 2.7367099727 | 503.74878 |
6 | 20 | 1729368 | 2.7366439994 | 494.77192 | 20 | 1729368 | 2.7366439984 | 797.84910 |
j | l | Nj,l | κhlj | CPUj,l(s) | l | Nj,l | κj,hl | CPUj,l(s) |
1 | 1 | 1632 | 2.5399573563 | 0.20754 | 1 | 1632 | 2.5399573531 | 0.33385 |
1 | 5 | 3600 | 2.5321126514 | 0.80285 | 5 | 3600 | 2.5321126514 | 1.16189 |
1 | 24 | 760152 | 2.5309641786 | 211.46084 | 24 | 760152 | 2.5309641786 | 239.26807 |
1 | 25 | 1003368 | 2.5309641677 | 278.22507 | 25 | 1003368 | 2.5309641677 | 320.01464 |
1 | 26 | 1339404 | 2.5309641607 | 378.58015 | 26 | 1339404 | 2.5309641607 | 439.05795 |
3 | 1 | 1584 | 2.6862908794 | 0.12511 | 1 | 1584 | 2.6862921826 | 0.40313 |
3 | 18 | 43920 | 2.6737990072 | 8.60574 | 24 | 46896 | 2.6737995054 | 17.94984 |
3 | 30 | 813360 | 2.6737894142 | 210.84097 | 42 | 823224 | 2.6737894180 | 409.26749 |
3 | 31 | 1021272 | 2.6737894039 | 275.45868 | 44 | 1129272 | 2.6737894027 | 587.31383 |
3 | 32 | 1276776 | 2.6737893962 | 363.84821 | 45 | 1328904 | 2.6737893981 | 708.17810 |
4 | 1 | 1824 | 3.7114311740 | 0.13369 | 1 | 1824 | 3.7114311740 | 0.21961 |
4 | 5 | 6360 | 3.7111583273 | 0.89324 | 5 | 6360 | 3.7111583273 | 1.89695 |
4 | 22 | 754512 | 3.7111313470 | 178.28979 | 22 | 754512 | 3.7111313471 | 250.31766 |
4 | 23 | 939408 | 3.7111313465 | 244.08245 | 23 | 939408 | 3.7111313466 | 341.16368 |
4 | 24 | 1218768 | 3.7111313461 | 339.61412 | 24 | 1218768 | 3.7111313462 | 460.76539 |
6 | 2 | 1920 | 5.2557235447 | 0.49529 | 2 | 1920 | 5.2557235444 | 0.59788 |
6 | 8 | 8904 | 5.2537750836 | 1.87161 | 8 | 8904 | 5.2537750836 | 2.28091 |
6 | 24 | 838920 | 5.2536682063 | 197.38184 | 24 | 838920 | 5.2536682064 | 267.40500 |
6 | 25 | 1119096 | 5.2536682008 | 270.08041 | 25 | 1119096 | 5.2536682009 | 376.06184 |
6 | 26 | 1456968 | 5.2536681969 | 380.87500 | 26 | 1456968 | 5.2536681971 | 520.85769 |
j | l | Nj,l | κhlj | CPUj,l(s) | l | Nj,l | κj,hl | CPUj,l(s) |
1 | 1 | 4656 | 1.1562458918 | 0.38986 | 1 | 4656 | 1.1562458918 | 0.55317 |
1 | 25 | 66996 | 1.1551541513 | 18.31403 | 25 | 66996 | 1.1551541513 | 22.07079 |
1 | 38 | 774480 | 1.1551532609 | 260.06329 | 38 | 774480 | 1.1551532609 | 325.52552 |
1 | 39 | 923052 | 1.1551532590 | 320.61556 | 39 | 923052 | 1.1551532591 | 400.40419 |
1 | 40 | 1099044 | 1.1551532576 | 398.76151 | 40 | 1099044 | 1.1551532576 | 496.73607 |
3 | 1 | 4680 | 2.0159225406 | 0.46936 | 1 | 4680 | 2.0159225405 | 0.57221 |
3 | 9 | 19224 | 2.0137381688 | 4.00481 | 9 | 19224 | 2.0137381688 | 5.20982 |
3 | 23 | 976428 | 2.0136927626 | 233.96942 | 23 | 976428 | 2.0136927626 | 313.17266 |
3 | 24 | 1280052 | 2.0136927550 | 324.92148 | 24 | 1280052 | 2.0136927550 | 421.48383 |
3 | 25 | 1679592 | 2.0136927505 | 458.31975 | 25 | 1679592 | 2.0136927505 | 578.37647 |
4 | 10 | 11316 | 2.1259084959 | 3.98294 | 10 | 11316 | 2.1259084959 | 4.01302 |
4 | 21 | 105648 | 2.1257416544 | 27.89323 | 21 | 105648 | 2.1257416544 | 37.43586 |
4 | 32 | 822120 | 2.1257391878 | 297.07841 | 32 | 822120 | 2.1257391878 | 368.95873 |
4 | 33 | 980688 | 2.1257391755 | 362.49125 | 33 | 980688 | 2.1257391755 | 456.94719 |
4 | 34 | 1181328 | 2.1257391658 | 446.73985 | 34 | 1181328 | 2.1257391658 | 572.04947 |
6 | 1 | 4680 | 2.7468959498 | 0.40303 | 1 | 4680 | 2.7468959503 | 0.61874 |
6 | 3 | 5232 | 2.7405213916 | 0.92105 | 3 | 5232 | 2.7405213907 | 1.21365 |
6 | 23 | 1000704 | 2.7364519542 | 234.72412 | 23 | 1000704 | 2.7364519542 | 334.60146 |
6 | 24 | 1312716 | 2.7364519227 | 327.39089 | 24 | 1312716 | 2.7364519227 | 448.35877 |
6 | 25 | 1726080 | 2.7364519037 | 468.01995 | 25 | 1726080 | 2.7364519038 | 608.05296 |
It can be seen from Tables 1–4 that to get the same accurate approximate eigenvalues, Algorithm 4.1 uses less time or less degrees of freedom than Algorithm 4.2. In Figure 4, the error curves e1,e3,e4 and e6 are all parallel to the line with slope −1, and in Figure 6 the error curves e1,e3,e4 and e6 are parallel to the line with slope −2, which indicate that the approximate eigenvalues obtained by Algorithm 4.1 achieve the optimal convergence order. Meanwhile, in Figure 5, the error curves e1,e3,e4 and e6 are almost parallel to the curve of ζ1,ζ3,ζ4 and ζ6 respectively, and in Figure 7, the curves of e1,e3,e4 and e6 are parallel to ζ1,ζ3,ζ4 and ζ6, which indicate that the error indicators are reliable and efficient. Figures 5 and 7 then show that Algorithm 4.1 is robust in both ΩS and ΩL.
In this paper, we discussed a multigrid discretization scheme of DGFEM based on the shifted-inverse iteration. Theoretical analysis and numerical results all showed that this method can efficiently solve the Steklov-Lamé eigenproblem as we expected. Generally, the time of solving a linear algebraic system is much less than that of solving an eigenvalue problem. Further, we observe from Tables 1–4 that although the CPU time of the adaptive DG-multigrid method is less than that of the standard adaptive DGFEM, the advantage is not obvious. We think that this may be because we use "∖" to solve linear algebraic systems. We notice that in recent research, the multigrid method has been combined with other methods to form many efficient algorithms and applied to many problems, as combined with the DG method in this paper. For example, the multigrid-homotopy method to diffusion equation [42], the multigrid method for the semilinear interface problem based on the modified two-grid method [43], the multigrid method for nonlinear eigenvalue problems based on Newton iteration [44], etc. It is of interest for us to explore more applications of multigrid methods and more efficient solvers for solving linear algebraic equations in multigrid methods.
This work was supported by the National Natural Science Foundation of China (No. 12261024) and Science and Technology Planning Project of Guizhou Province (Guizhou Kehe fundamental research-ZK[2022] No.324).
This work does not have any conflicts of interest.
[1] |
Kumar SP, Agyekum EB, Kumar A, Velkin VI (2023) Performance evaluation with low-cost aluminum reflectors and phase change material integrated to solar PV modules using natural air convection: An experimental investigation. Energy 266: 126415. https://doi.org/10.1016/j.energy.2022.126415 doi: 10.1016/j.energy.2022.126415
![]() |
[2] |
Praveenkumar S, Agyekum EB, Kumar A, Velkin VI (2023) Thermo-enviro-economic analysis of solar photovoltaic/thermal system incorporated with u-shaped grid copper pipe, thermal electric generators and nanofluids: An experimental investigation. J Energy Storage 60: 106611. https://doi.org/10.1016/j.est.2023.106611 doi: 10.1016/j.est.2023.106611
![]() |
[3] | Essa ME-SM, Hussian OS, Hassan MM (2021) Intelligent Fractional Control Design of MPPT for a Standalone PV System Based on Optimization Technique. 2021 17th International Computer Engineering Conference (ICENCO), 107‒111. IEEE. https://doi.org/10.1109/ICENCO49852.2021.9698966 |
[4] |
Subramanian A, Jayaparvathy R (2021) Performance comparison of modified elephant herding optimization tuned MPPT for PV based solar energy systems. Circuit World 48: 309‒321. https://doi.org/10.1108/CW-11-2020-0316 doi: 10.1108/CW-11-2020-0316
![]() |
[5] |
Subramanian A, Raman J (2021) Grasshopper optimization algorithm tuned maximum power point tracking for solar photovoltaic systems. J Amb Intel Hum Comp 12: 8637‒8645. https://doi.org/10.1007/s12652-020-02593-9 doi: 10.1007/s12652-020-02593-9
![]() |
[6] |
Kihal A, Krim F, Laib A, Talbi B, Afghoul H (2019) An improved MPPT scheme employing adaptive integral derivative sliding mode control for photovoltaic systems under fast irradiation changes. ISA T 87: 297‒306. https://doi.org/10.1016/j.isatra.2018.11.020 doi: 10.1016/j.isatra.2018.11.020
![]() |
[7] |
Mirza AF, Mansoor M, Ling Q, Yin B, Javed MY (2020) A Salp-Swarm Optimization based MPPT technique for harvesting maximum energy from PV systems under partial shading conditions. Energ Convers Manage 209: 112625. https://doi.org/10.1016/j.enconman.2020.112625 doi: 10.1016/j.enconman.2020.112625
![]() |
[8] |
Mirza AF, Mansoor M, Ling Q, Khan MI, Aldossary OM (2020) Advanced variable step size incremental conductance MPPT for a standalone PV system utilizing a GA-tuned PID controller. Energies 13: 1‒25. https://doi.org/10.3390/en13164153 doi: 10.3390/en13164153
![]() |
[9] |
Karrag A, Messalti S (2019) PSO‐based SMC variable step size P & O MPPT controller for PV systems under fast changing atmospheric conditions. Int J Numer Model El 32: e2603. https://doi.org/10.1002/jnm.2603 doi: 10.1002/jnm.2603
![]() |
[10] |
Mahesh PV, Meyyappan S, Alla RKR (2022) A new multivariate linear regression MPPT algorithm for solar PV system with boost converter. ECTI Transactions on Electrical Engineering, Electronics, and Communications 20: 269‒281. https://doi.org/10.37936/ecti-eec.2022202.246909 doi: 10.37936/ecti-eec.2022202.246909
![]() |
[11] |
Ebrahim M, Osama A, Kotb KM, Bendary F (2019) Whale inspired algorithm based MPPT controllers for grid-connected solar photovoltaic system. Energy Procedia 162: 77‒86. https://doi.org/10.1016/j.egypro.2019.04.009 doi: 10.1016/j.egypro.2019.04.009
![]() |
[12] |
Aly M, Rezk H (2022) An improved fuzzy logic control-based MPPT method to enhance the performance of PEM fuel cell system. Neural Computing and Applications 34: 4555‒4566. https://doi.org/10.1007/s00521-021-06611-5 doi: 10.1007/s00521-021-06611-5
![]() |
[13] |
Chauhan U, Singh V, Kumar B, Rani A (2020) An improved MVO assisted global MPPT algorithm for partially shaded PV system. J Intell Fuzzy Syst 38: 6715‒6726. https://doi.org/10.3233/JIFS-179749 doi: 10.3233/JIFS-179749
![]() |
[14] |
Gupta AK, Pachauri RK, Maity T, Chauhan YK, Mahela OP, Khan B, et al. (2021) Effect of various incremental conductance MPPT methods on the charging of battery load feed by solar panel. IEEE Access 9: 90977‒90988. https://doi.org/10.1109/ACCESS.2021.3091502 doi: 10.1109/ACCESS.2021.3091502
![]() |
[15] |
Wasim MS, Amjad M, Habib S, Abbasi MA, Bhatti AR, Muyeen S (2022) A critical review and performance comparisons of swarm-based optimization algorithms in maximum power point tracking of photovoltaic systems under partial shading conditions. Energy Reports 8: 4871‒4898. https://doi.org/10.1016/j.egyr.2022.03.175 doi: 10.1016/j.egyr.2022.03.175
![]() |
[16] |
Dagal I, Akın B, Akboy E (2022) MPPT mechanism based on novel hybrid particle swarm optimization and salp swarm optimization algorithm for battery charging through simulink. Scientific reports 12: 1‒17. https://doi.org/10.1038/s41598-022-06609-6 doi: 10.1038/s41598-021-99269-x
![]() |
[17] |
González-Castaño C, Restrepo C, Kouro S, Rodriguez J (2021) MPPT algorithm based on artificial bee colony for PV system. IEEE Access 9: 43121‒43133. https://doi.org/10.1109/ACCESS.2021.3066281 doi: 10.1109/ACCESS.2021.3066281
![]() |
[18] |
Yap KY, Sarimuthu CR, Lim JM-Y (2020) Artificial intelligence based MPPT techniques for solar power system: A review. J Mod Power Syst Cle 8: 1043‒1059. https://doi.org/10.35833/MPCE.2020.000159 doi: 10.35833/MPCE.2020.000159
![]() |
[19] |
Mirza AF, Mansoor M, Ling Q (2020) A novel MPPT technique based on Henry gas solubility optimization. Energ Convers Manage 225: 113409. https://doi.org/10.1016/j.enconman.2020.113409 doi: 10.1016/j.enconman.2020.113409
![]() |
[20] |
Khan FU, Gulzar MM, Sibtain D, Usman HM, Hayat A (2020) Variable step size fractional incremental conductance for MPPT under changing atmospheric conditions. Int J Numer Model El 33: e2765. https://doi.org/10.1002/jnm.2765 doi: 10.1002/jnm.2765
![]() |
[21] |
Ali AIM, Mohamed HRA (2022) Improved P & O MPPT algorithm with efficient open-circuit voltage estimation for two-stage grid-integrated PV system under realistic solar radiation. Int J Elec Power 137: 107805. https://doi.org/10.1016/j.ijepes.2021.107805 doi: 10.1016/j.ijepes.2021.107805
![]() |
[22] | Bahari MI, Tarassodi P, Naeini YM, Khalilabad AK, Shirazi P (2016) Modeling and simulation of hill climbing MPPT algorithm for photovoltaic application. 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), 1041‒1044. https://doi.org/10.1109/SPEEDAM.2016.7525990 |
[23] | Hamouda N, Babes B, Kahla S, Boutaghane A, Beddar A, Aissa O (2020) ANFIS controller design using PSO algorithm for MPPT of solar PV system powered brushless DC motor based wire feeder unit. 2020 International Conference on Electrical Engineering (ICEE), 1‒6. https://doi.org/10.1109/ICEE49691.2020.9249869 |
[24] |
Laxman B, Annamraju A, Srikanth NV (2021) A grey wolf optimized fuzzy logic based MPPT for shaded solar photovoltaic systems in microgrids. Int J Hydrogen Energy 46: 10653‒10665. https://doi.org/10.1016/j.ijhydene.2020.12.158 doi: 10.1016/j.ijhydene.2020.12.158
![]() |
[25] |
Mohammed SS, Devaraj D, Ahamed TI (2021) GA-optimized fuzzy-based MPPT technique for abruptly varying environmental conditions. Journal of The Institution of Engineers (India): Series B 102: 497‒508. https://doi.org/10.1007/s40031-021-00552-2 doi: 10.1007/s40031-021-00552-2
![]() |
[26] | Divyasharon R, Banu RN, Devaraj D (2019) Artificial neural network based MPPT with CUK converter topology for PV systems under varying climatic conditions. 2019 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), 1‒6. https://doi.org/10.1109/INCOS45849.2019.8951321 |
[27] |
VanDeventer W, Jamei E, Thirunavukkarasu GS, Seyedmahmoudian M, Soon TK, Horan B, et al. (2019) Short-term PV power forecasting using hybrid GASVM technique. Renew Energy 140: 367‒379. https://doi.org/10.1016/j.renene.2019.02.087 doi: 10.1016/j.renene.2019.02.087
![]() |
[28] |
Sobri S, Koohi-Kamali S, Rahim NA (2018) Solar photovoltaic generation forecasting methods: A review. Energ Convers Manage 156: 459‒497. https://doi.org/10.1016/j.enconman.2017.11.019 doi: 10.1016/j.enconman.2017.11.019
![]() |
[29] |
Chang JF, Dong N, Ip WH, Yung KL (2019) An ensemble learning model based on Bayesian model combination for solar energy prediction. J Renew Sustain Ener 11: 043702. https://doi.org/10.1063/1.5094534 doi: 10.1063/1.5094534
![]() |
[30] |
Siwakoti YP, Blaabjerg F (2017) Common-ground-type transformerless inverters for single-phase solar photovoltaic systems. IEEE T Ind Electron 65: 2100‒2111. https://doi.org/10.1109/TIE.2017.2740821 doi: 10.1109/TIE.2017.2740821
![]() |
[31] | Beena V, Jayaraju M, Davis S (2018) Active and reactive power control of single phase transformerless grid connected inverter for distributed generation system. Int J Appl Eng Res 13: 150‒157. |
[32] |
Yadeo D, Chaturvedi P, Suryawanshi HM, Atkar D, Saketi SK (2021) Transistor clamped dual active bridge DC‐DC converter to reduce voltage and current stress in low voltage distribution network. Int T Electr Energy 31: e12665. https://doi.org/10.1002/2050-7038.12665 doi: 10.1002/2050-7038.12665
![]() |
[33] |
Lakshmi M, Hemamalini S (2019) Coordinated control of MPPT and voltage regulation using single-stage high gain DC–DC converter in a grid-connected PV system. Electr Pow Syst Res 169: 65‒73. https://doi.org/10.1016/j.epsr.2018.12.011 doi: 10.1016/j.epsr.2018.12.011
![]() |
[34] |
Prasad V, Jayasree P, Sruthy V (2018) Active power sharing and reactive power compensation in a grid-tied photovoltaic system. Materials Today: Proceedings 5: 1537‒1544. https://doi.org/10.1016/j.matpr.2017.11.243 doi: 10.1016/j.matpr.2017.11.243
![]() |
[35] |
Somalinga SS, Santha K (2021) Modified high-efficiency bidirectional DC–DC converter topology. J Power Electron 21: 257‒268. https://doi.org/10.1007/s43236-020-00160-1 doi: 10.1007/s43236-020-00160-1
![]() |
[36] |
Rahmani B, Li W, Liu G (2015) An Advanced Universal Power Quality Conditioning System and MPPT method for grid integration of photovoltaic systems. Int J Elec Power 69: 76‒84. https://doi.org/10.1016/j.ijepes.2014.12.031 doi: 10.1016/j.ijepes.2014.12.031
![]() |
[37] |
Yang B, Yu T, Shu H, Zhu D, An N, Sang Y, et al. (2018) Perturbation observer based fractional-order sliding-mode controller for MPPT of grid-connected PV inverters: Design and real-time implementation. Control Eng Pract 79: 105‒125. https://doi.org/10.1016/j.conengprac.2018.07.007 doi: 10.1016/j.conengprac.2018.07.007
![]() |
[38] |
Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2012) Mine blast algorithm for optimization of truss structures with discrete variables. Comput Struct 102: 49‒63. https://doi.org/10.1016/j.compstruc.2012.03.013 doi: 10.1016/j.compstruc.2012.03.013
![]() |
[39] |
Yıldız BS (2020) The mine blast algorithm for the structural optimization of electrical vehicle components. Mater Test 62: 497‒502. https://doi.org/10.3139/120.111511 doi: 10.3139/120.111511
![]() |
[40] |
Jothimani G, Palanichamy Y, Natarajan SK, Rameshkumar T (2021) Single‐phase front‐end modified interleaved Luo power factor correction converter for on‐board electric vehicle charger. Int J Circ Theor App 49: 2655‒2669. https://doi.org/10.1002/cta.3017 doi: 10.1002/cta.3017
![]() |
[41] |
Singh B, Kushwaha R (2021) Power factor preregulation in interleaved Luo converter-fed electric vehicle battery charger. IEEE T Ind Appl 57: 2870‒2882. https://doi.org/10.1109/TIA.2021.3061964 doi: 10.1109/TIA.2021.3061964
![]() |
[42] |
Chauhan U, Rani A, Kumar B, Singh V (2019) A multi verse optimization based MPPT controller for drift avoidance in solar system. J Intell Fuzzy Syst 36: 2175‒2184. https://doi.org/10.3233/JIFS-169929 doi: 10.3233/JIFS-169929
![]() |
1. | Noura Alhouiti, Fatemah Mofarreh, Fatemah Abdullah Alghamdi, Akram Ali, Piscoran-Ioan Laurian, Geometric topology of CR-warped products in six-dimensional sphere, 2024, 9, 2473-6988, 25114, 10.3934/math.20241224 |
j | l | Nj,l | κhlj | CPUj,l(s) | l | Nj,l | κj,hl | CPUj,l(s) |
1 | 1 | 3600 | 2.5834151705 | 0.05433 | 1 | 3600 | 2.5834151539 | 0.06679 |
1 | 8 | 26328 | 2.5365029347 | 1.62136 | 8 | 26328 | 2.5365029348 | 2.52953 |
1 | 21 | 1208232 | 2.5310939833 | 249.69061 | 21 | 1208232 | 2.5310939827 | 391.04103 |
1 | 22 | 1570164 | 2.5310583228 | 485.28739 | 22 | 1570164 | 2.5310583228 | 651.02095 |
1 | 23 | 2050932 | 2.5310346038 | 817.8231911 | 23 | 2050932 | 2.531034604 | 1167.502765 |
3 | 1 | 3324 | 2.7404121518 | 0.02745 | 1 | 3324 | 2.7414582353 | 0.07244 |
3 | 11 | 30156 | 2.6778807957 | 1.75582 | 16 | 43908 | 2.6778901580 | 7.73674 |
3 | 20 | 428676 | 2.6740736381 | 57.92155 | 31 | 605400 | 2.6740696701 | 244.04938 |
3 | 23 | 1026540 | 2.6739097335 | 212.85588 | 34 | 1025280 | 2.6739660124 | 488.60793 |
3 | 24 | 1349388 | 2.6738786576 | 395.09095 | 35 | 1219860 | 2.6739372698 | 624.67912 |
4 | 1 | 3888 | 3.7164345114 | 0.05795 | 1 | 3888 | 3.7164345114 | 0.10192 |
4 | 9 | 44460 | 3.7115741607 | 3.84681 | 9 | 44460 | 3.7115741607 | 5.61523 |
4 | 22 | 1762944 | 3.7111432638 | 194.69801 | 22 | 1762944 | 3.7111432638 | 341.67732 |
4 | 23 | 2344044 | 3.7111398968 | 269.71127 | 23 | 2344044 | 3.7111398969 | 470.55583 |
4 | 24 | 3028620 | 3.7111378848 | 385.01813 | 24 | 3028620 | 3.7111378848 | 654.91996 |
6 | 1 | 3792 | 5.2873876626 | 0.06042 | 1 | 3792 | 5.2873876273 | 0.09334 |
6 | 5 | 11784 | 5.2632333578 | 0.70311 | 5 | 11784 | 5.2632333578 | 1.11777 |
6 | 20 | 942528 | 5.2537917257 | 198.46971 | 20 | 942528 | 5.2537917253 | 306.96848 |
6 | 21 | 1259328 | 5.2537597122 | 334.17056 | 21 | 1259328 | 5.2537597120 | 452.24058 |
6 | 22 | 1636512 | 5.2537348070 | 605.55218 | 22 | 1636512 | 5.2537348072 | 796.76924 |
j | l | Nj,l | κhlj | CPUj,l(s) | l | Nj,l | κj,hl | CPUj,l(s) |
1 | 1 | 9252 | 1.1578406889 | 0.08684 | 1 | 9252 | 1.1578406889 | 0.21686 |
1 | 4 | 9960 | 1.1568717901 | 0.51428 | 4 | 9960 | 1.1568717901 | 1.05144 |
1 | 22 | 854196 | 1.1551704849 | 83.61915 | 22 | 854520 | 1.1551704801 | 143.97265 |
1 | 23 | 1125306 | 1.1551665423 | 116.92568 | 23 | 1125690 | 1.1551665389 | 193.87293 |
1 | 24 | 1469730 | 1.1551634294 | 330.33730 | 24 | 1470228 | 1.1551634258 | 431.50241 |
3 | 1 | 9852 | 2.0253499592 | 0.10770 | 1 | 9852 | 2.0253499590 | 0.24006 |
3 | 3 | 13236 | 2.0200276681 | 0.62807 | 3 | 13236 | 2.0200276680 | 1.21075 |
3 | 18 | 1072320 | 2.0137654513 | 221.81309 | 18 | 1072320 | 2.0137654513 | 344.53795 |
3 | 19 | 1431672 | 2.0137487824 | 351.63554 | 19 | 1431672 | 2.0137487822 | 590.05031 |
3 | 20 | 1924536 | 2.0137351315 | 711.94221 | 20 | 1924536 | 2.0137351315 | 1029.63061 |
4 | 1 | 9540 | 2.1396949065 | 0.10559 | 1 | 9540 | 2.1396949061 | 0.23500 |
4 | 4 | 13446 | 2.1322409848 | 0.70466 | 4 | 13446 | 2.1322409847 | 1.33492 |
4 | 19 | 823536 | 2.1258417612 | 147.60184 | 19 | 823536 | 2.1258417612 | 260.40436 |
4 | 20 | 1085094 | 2.1258166076 | 225.83332 | 20 | 1085094 | 2.1258166075 | 386.16427 |
4 | 21 | 1437324 | 2.1257991175 | 324.24898 | 21 | 1437324 | 2.1257991172 | 566.48046 |
6 | 1 | 9828 | 2.7939491213 | 0.15553 | 1 | 9828 | 2.7939490858 | 0.31958 |
6 | 3 | 12894 | 2.7668920157 | 0.78224 | 3 | 12894 | 2.7668920151 | 1.00058 |
6 | 18 | 965010 | 2.7367899041 | 163.71460 | 18 | 965010 | 2.7367899035 | 335.07813 |
6 | 19 | 1292184 | 2.7367099740 | 271.08934 | 19 | 1292184 | 2.7367099727 | 503.74878 |
6 | 20 | 1729368 | 2.7366439994 | 494.77192 | 20 | 1729368 | 2.7366439984 | 797.84910 |
j | l | Nj,l | κhlj | CPUj,l(s) | l | Nj,l | κj,hl | CPUj,l(s) |
1 | 1 | 1632 | 2.5399573563 | 0.20754 | 1 | 1632 | 2.5399573531 | 0.33385 |
1 | 5 | 3600 | 2.5321126514 | 0.80285 | 5 | 3600 | 2.5321126514 | 1.16189 |
1 | 24 | 760152 | 2.5309641786 | 211.46084 | 24 | 760152 | 2.5309641786 | 239.26807 |
1 | 25 | 1003368 | 2.5309641677 | 278.22507 | 25 | 1003368 | 2.5309641677 | 320.01464 |
1 | 26 | 1339404 | 2.5309641607 | 378.58015 | 26 | 1339404 | 2.5309641607 | 439.05795 |
3 | 1 | 1584 | 2.6862908794 | 0.12511 | 1 | 1584 | 2.6862921826 | 0.40313 |
3 | 18 | 43920 | 2.6737990072 | 8.60574 | 24 | 46896 | 2.6737995054 | 17.94984 |
3 | 30 | 813360 | 2.6737894142 | 210.84097 | 42 | 823224 | 2.6737894180 | 409.26749 |
3 | 31 | 1021272 | 2.6737894039 | 275.45868 | 44 | 1129272 | 2.6737894027 | 587.31383 |
3 | 32 | 1276776 | 2.6737893962 | 363.84821 | 45 | 1328904 | 2.6737893981 | 708.17810 |
4 | 1 | 1824 | 3.7114311740 | 0.13369 | 1 | 1824 | 3.7114311740 | 0.21961 |
4 | 5 | 6360 | 3.7111583273 | 0.89324 | 5 | 6360 | 3.7111583273 | 1.89695 |
4 | 22 | 754512 | 3.7111313470 | 178.28979 | 22 | 754512 | 3.7111313471 | 250.31766 |
4 | 23 | 939408 | 3.7111313465 | 244.08245 | 23 | 939408 | 3.7111313466 | 341.16368 |
4 | 24 | 1218768 | 3.7111313461 | 339.61412 | 24 | 1218768 | 3.7111313462 | 460.76539 |
6 | 2 | 1920 | 5.2557235447 | 0.49529 | 2 | 1920 | 5.2557235444 | 0.59788 |
6 | 8 | 8904 | 5.2537750836 | 1.87161 | 8 | 8904 | 5.2537750836 | 2.28091 |
6 | 24 | 838920 | 5.2536682063 | 197.38184 | 24 | 838920 | 5.2536682064 | 267.40500 |
6 | 25 | 1119096 | 5.2536682008 | 270.08041 | 25 | 1119096 | 5.2536682009 | 376.06184 |
6 | 26 | 1456968 | 5.2536681969 | 380.87500 | 26 | 1456968 | 5.2536681971 | 520.85769 |
j | l | Nj,l | κhlj | CPUj,l(s) | l | Nj,l | κj,hl | CPUj,l(s) |
1 | 1 | 4656 | 1.1562458918 | 0.38986 | 1 | 4656 | 1.1562458918 | 0.55317 |
1 | 25 | 66996 | 1.1551541513 | 18.31403 | 25 | 66996 | 1.1551541513 | 22.07079 |
1 | 38 | 774480 | 1.1551532609 | 260.06329 | 38 | 774480 | 1.1551532609 | 325.52552 |
1 | 39 | 923052 | 1.1551532590 | 320.61556 | 39 | 923052 | 1.1551532591 | 400.40419 |
1 | 40 | 1099044 | 1.1551532576 | 398.76151 | 40 | 1099044 | 1.1551532576 | 496.73607 |
3 | 1 | 4680 | 2.0159225406 | 0.46936 | 1 | 4680 | 2.0159225405 | 0.57221 |
3 | 9 | 19224 | 2.0137381688 | 4.00481 | 9 | 19224 | 2.0137381688 | 5.20982 |
3 | 23 | 976428 | 2.0136927626 | 233.96942 | 23 | 976428 | 2.0136927626 | 313.17266 |
3 | 24 | 1280052 | 2.0136927550 | 324.92148 | 24 | 1280052 | 2.0136927550 | 421.48383 |
3 | 25 | 1679592 | 2.0136927505 | 458.31975 | 25 | 1679592 | 2.0136927505 | 578.37647 |
4 | 10 | 11316 | 2.1259084959 | 3.98294 | 10 | 11316 | 2.1259084959 | 4.01302 |
4 | 21 | 105648 | 2.1257416544 | 27.89323 | 21 | 105648 | 2.1257416544 | 37.43586 |
4 | 32 | 822120 | 2.1257391878 | 297.07841 | 32 | 822120 | 2.1257391878 | 368.95873 |
4 | 33 | 980688 | 2.1257391755 | 362.49125 | 33 | 980688 | 2.1257391755 | 456.94719 |
4 | 34 | 1181328 | 2.1257391658 | 446.73985 | 34 | 1181328 | 2.1257391658 | 572.04947 |
6 | 1 | 4680 | 2.7468959498 | 0.40303 | 1 | 4680 | 2.7468959503 | 0.61874 |
6 | 3 | 5232 | 2.7405213916 | 0.92105 | 3 | 5232 | 2.7405213907 | 1.21365 |
6 | 23 | 1000704 | 2.7364519542 | 234.72412 | 23 | 1000704 | 2.7364519542 | 334.60146 |
6 | 24 | 1312716 | 2.7364519227 | 327.39089 | 24 | 1312716 | 2.7364519227 | 448.35877 |
6 | 25 | 1726080 | 2.7364519037 | 468.01995 | 25 | 1726080 | 2.7364519038 | 608.05296 |
j | l | Nj,l | κhlj | CPUj,l(s) | l | Nj,l | κj,hl | CPUj,l(s) |
1 | 1 | 3600 | 2.5834151705 | 0.05433 | 1 | 3600 | 2.5834151539 | 0.06679 |
1 | 8 | 26328 | 2.5365029347 | 1.62136 | 8 | 26328 | 2.5365029348 | 2.52953 |
1 | 21 | 1208232 | 2.5310939833 | 249.69061 | 21 | 1208232 | 2.5310939827 | 391.04103 |
1 | 22 | 1570164 | 2.5310583228 | 485.28739 | 22 | 1570164 | 2.5310583228 | 651.02095 |
1 | 23 | 2050932 | 2.5310346038 | 817.8231911 | 23 | 2050932 | 2.531034604 | 1167.502765 |
3 | 1 | 3324 | 2.7404121518 | 0.02745 | 1 | 3324 | 2.7414582353 | 0.07244 |
3 | 11 | 30156 | 2.6778807957 | 1.75582 | 16 | 43908 | 2.6778901580 | 7.73674 |
3 | 20 | 428676 | 2.6740736381 | 57.92155 | 31 | 605400 | 2.6740696701 | 244.04938 |
3 | 23 | 1026540 | 2.6739097335 | 212.85588 | 34 | 1025280 | 2.6739660124 | 488.60793 |
3 | 24 | 1349388 | 2.6738786576 | 395.09095 | 35 | 1219860 | 2.6739372698 | 624.67912 |
4 | 1 | 3888 | 3.7164345114 | 0.05795 | 1 | 3888 | 3.7164345114 | 0.10192 |
4 | 9 | 44460 | 3.7115741607 | 3.84681 | 9 | 44460 | 3.7115741607 | 5.61523 |
4 | 22 | 1762944 | 3.7111432638 | 194.69801 | 22 | 1762944 | 3.7111432638 | 341.67732 |
4 | 23 | 2344044 | 3.7111398968 | 269.71127 | 23 | 2344044 | 3.7111398969 | 470.55583 |
4 | 24 | 3028620 | 3.7111378848 | 385.01813 | 24 | 3028620 | 3.7111378848 | 654.91996 |
6 | 1 | 3792 | 5.2873876626 | 0.06042 | 1 | 3792 | 5.2873876273 | 0.09334 |
6 | 5 | 11784 | 5.2632333578 | 0.70311 | 5 | 11784 | 5.2632333578 | 1.11777 |
6 | 20 | 942528 | 5.2537917257 | 198.46971 | 20 | 942528 | 5.2537917253 | 306.96848 |
6 | 21 | 1259328 | 5.2537597122 | 334.17056 | 21 | 1259328 | 5.2537597120 | 452.24058 |
6 | 22 | 1636512 | 5.2537348070 | 605.55218 | 22 | 1636512 | 5.2537348072 | 796.76924 |
j | l | Nj,l | κhlj | CPUj,l(s) | l | Nj,l | κj,hl | CPUj,l(s) |
1 | 1 | 9252 | 1.1578406889 | 0.08684 | 1 | 9252 | 1.1578406889 | 0.21686 |
1 | 4 | 9960 | 1.1568717901 | 0.51428 | 4 | 9960 | 1.1568717901 | 1.05144 |
1 | 22 | 854196 | 1.1551704849 | 83.61915 | 22 | 854520 | 1.1551704801 | 143.97265 |
1 | 23 | 1125306 | 1.1551665423 | 116.92568 | 23 | 1125690 | 1.1551665389 | 193.87293 |
1 | 24 | 1469730 | 1.1551634294 | 330.33730 | 24 | 1470228 | 1.1551634258 | 431.50241 |
3 | 1 | 9852 | 2.0253499592 | 0.10770 | 1 | 9852 | 2.0253499590 | 0.24006 |
3 | 3 | 13236 | 2.0200276681 | 0.62807 | 3 | 13236 | 2.0200276680 | 1.21075 |
3 | 18 | 1072320 | 2.0137654513 | 221.81309 | 18 | 1072320 | 2.0137654513 | 344.53795 |
3 | 19 | 1431672 | 2.0137487824 | 351.63554 | 19 | 1431672 | 2.0137487822 | 590.05031 |
3 | 20 | 1924536 | 2.0137351315 | 711.94221 | 20 | 1924536 | 2.0137351315 | 1029.63061 |
4 | 1 | 9540 | 2.1396949065 | 0.10559 | 1 | 9540 | 2.1396949061 | 0.23500 |
4 | 4 | 13446 | 2.1322409848 | 0.70466 | 4 | 13446 | 2.1322409847 | 1.33492 |
4 | 19 | 823536 | 2.1258417612 | 147.60184 | 19 | 823536 | 2.1258417612 | 260.40436 |
4 | 20 | 1085094 | 2.1258166076 | 225.83332 | 20 | 1085094 | 2.1258166075 | 386.16427 |
4 | 21 | 1437324 | 2.1257991175 | 324.24898 | 21 | 1437324 | 2.1257991172 | 566.48046 |
6 | 1 | 9828 | 2.7939491213 | 0.15553 | 1 | 9828 | 2.7939490858 | 0.31958 |
6 | 3 | 12894 | 2.7668920157 | 0.78224 | 3 | 12894 | 2.7668920151 | 1.00058 |
6 | 18 | 965010 | 2.7367899041 | 163.71460 | 18 | 965010 | 2.7367899035 | 335.07813 |
6 | 19 | 1292184 | 2.7367099740 | 271.08934 | 19 | 1292184 | 2.7367099727 | 503.74878 |
6 | 20 | 1729368 | 2.7366439994 | 494.77192 | 20 | 1729368 | 2.7366439984 | 797.84910 |
j | l | Nj,l | κhlj | CPUj,l(s) | l | Nj,l | κj,hl | CPUj,l(s) |
1 | 1 | 1632 | 2.5399573563 | 0.20754 | 1 | 1632 | 2.5399573531 | 0.33385 |
1 | 5 | 3600 | 2.5321126514 | 0.80285 | 5 | 3600 | 2.5321126514 | 1.16189 |
1 | 24 | 760152 | 2.5309641786 | 211.46084 | 24 | 760152 | 2.5309641786 | 239.26807 |
1 | 25 | 1003368 | 2.5309641677 | 278.22507 | 25 | 1003368 | 2.5309641677 | 320.01464 |
1 | 26 | 1339404 | 2.5309641607 | 378.58015 | 26 | 1339404 | 2.5309641607 | 439.05795 |
3 | 1 | 1584 | 2.6862908794 | 0.12511 | 1 | 1584 | 2.6862921826 | 0.40313 |
3 | 18 | 43920 | 2.6737990072 | 8.60574 | 24 | 46896 | 2.6737995054 | 17.94984 |
3 | 30 | 813360 | 2.6737894142 | 210.84097 | 42 | 823224 | 2.6737894180 | 409.26749 |
3 | 31 | 1021272 | 2.6737894039 | 275.45868 | 44 | 1129272 | 2.6737894027 | 587.31383 |
3 | 32 | 1276776 | 2.6737893962 | 363.84821 | 45 | 1328904 | 2.6737893981 | 708.17810 |
4 | 1 | 1824 | 3.7114311740 | 0.13369 | 1 | 1824 | 3.7114311740 | 0.21961 |
4 | 5 | 6360 | 3.7111583273 | 0.89324 | 5 | 6360 | 3.7111583273 | 1.89695 |
4 | 22 | 754512 | 3.7111313470 | 178.28979 | 22 | 754512 | 3.7111313471 | 250.31766 |
4 | 23 | 939408 | 3.7111313465 | 244.08245 | 23 | 939408 | 3.7111313466 | 341.16368 |
4 | 24 | 1218768 | 3.7111313461 | 339.61412 | 24 | 1218768 | 3.7111313462 | 460.76539 |
6 | 2 | 1920 | 5.2557235447 | 0.49529 | 2 | 1920 | 5.2557235444 | 0.59788 |
6 | 8 | 8904 | 5.2537750836 | 1.87161 | 8 | 8904 | 5.2537750836 | 2.28091 |
6 | 24 | 838920 | 5.2536682063 | 197.38184 | 24 | 838920 | 5.2536682064 | 267.40500 |
6 | 25 | 1119096 | 5.2536682008 | 270.08041 | 25 | 1119096 | 5.2536682009 | 376.06184 |
6 | 26 | 1456968 | 5.2536681969 | 380.87500 | 26 | 1456968 | 5.2536681971 | 520.85769 |
j | l | Nj,l | κhlj | CPUj,l(s) | l | Nj,l | κj,hl | CPUj,l(s) |
1 | 1 | 4656 | 1.1562458918 | 0.38986 | 1 | 4656 | 1.1562458918 | 0.55317 |
1 | 25 | 66996 | 1.1551541513 | 18.31403 | 25 | 66996 | 1.1551541513 | 22.07079 |
1 | 38 | 774480 | 1.1551532609 | 260.06329 | 38 | 774480 | 1.1551532609 | 325.52552 |
1 | 39 | 923052 | 1.1551532590 | 320.61556 | 39 | 923052 | 1.1551532591 | 400.40419 |
1 | 40 | 1099044 | 1.1551532576 | 398.76151 | 40 | 1099044 | 1.1551532576 | 496.73607 |
3 | 1 | 4680 | 2.0159225406 | 0.46936 | 1 | 4680 | 2.0159225405 | 0.57221 |
3 | 9 | 19224 | 2.0137381688 | 4.00481 | 9 | 19224 | 2.0137381688 | 5.20982 |
3 | 23 | 976428 | 2.0136927626 | 233.96942 | 23 | 976428 | 2.0136927626 | 313.17266 |
3 | 24 | 1280052 | 2.0136927550 | 324.92148 | 24 | 1280052 | 2.0136927550 | 421.48383 |
3 | 25 | 1679592 | 2.0136927505 | 458.31975 | 25 | 1679592 | 2.0136927505 | 578.37647 |
4 | 10 | 11316 | 2.1259084959 | 3.98294 | 10 | 11316 | 2.1259084959 | 4.01302 |
4 | 21 | 105648 | 2.1257416544 | 27.89323 | 21 | 105648 | 2.1257416544 | 37.43586 |
4 | 32 | 822120 | 2.1257391878 | 297.07841 | 32 | 822120 | 2.1257391878 | 368.95873 |
4 | 33 | 980688 | 2.1257391755 | 362.49125 | 33 | 980688 | 2.1257391755 | 456.94719 |
4 | 34 | 1181328 | 2.1257391658 | 446.73985 | 34 | 1181328 | 2.1257391658 | 572.04947 |
6 | 1 | 4680 | 2.7468959498 | 0.40303 | 1 | 4680 | 2.7468959503 | 0.61874 |
6 | 3 | 5232 | 2.7405213916 | 0.92105 | 3 | 5232 | 2.7405213907 | 1.21365 |
6 | 23 | 1000704 | 2.7364519542 | 234.72412 | 23 | 1000704 | 2.7364519542 | 334.60146 |
6 | 24 | 1312716 | 2.7364519227 | 327.39089 | 24 | 1312716 | 2.7364519227 | 448.35877 |
6 | 25 | 1726080 | 2.7364519037 | 468.01995 | 25 | 1726080 | 2.7364519038 | 608.05296 |