Research article Special Issues

Newly existence of solutions for pantograph a semipositone in Ψ-Caputo sense

  • In the present manuscript, the BVP problem of a semipostone multipoint Ψ-Caputo fractional pantograph problem is addressed.

    Dν;ψrϰ(ς)+F(ς,ϰ(ς),ϰ(r+λς))=0, ς in (r,),

    ϰ(r)=ϑ1, ϰ()=m2i=1ζiϰ(ηi)+ϑ2, ϑiR, i{1,2},

    and λ in (0,r). The seriousness of this research is to prove the existence of the solution of this problem by using Schauder's fixed point theorem (SFPT). We have developed our results in our research compared to some recent research in this field. We end our work by listing an example to demonstrate the result reached.

    Citation: Abdelkader Moumen, Hamid Boulares, Tariq Alraqad, Hicham Saber, Ekram E. Ali. Newly existence of solutions for pantograph a semipositone in Ψ-Caputo sense[J]. AIMS Mathematics, 2023, 8(6): 12830-12840. doi: 10.3934/math.2023646

    Related Papers:

    [1] Ridha Dida, Hamid Boulares, Bahaaeldin Abdalla, Manar A. Alqudah, Thabet Abdeljawad . On positive solutions of fractional pantograph equations within function-dependent kernel Caputo derivatives. AIMS Mathematics, 2023, 8(10): 23032-23045. doi: 10.3934/math.20231172
    [2] Hamid Boulares, Manar A. Alqudah, Thabet Abdeljawad . Existence of solutions for a semipositone fractional boundary value pantograph problem. AIMS Mathematics, 2022, 7(10): 19510-19519. doi: 10.3934/math.20221070
    [3] Reny George, Fahad Al-shammari, Mehran Ghaderi, Shahram Rezapour . On the boundedness of the solution set for the $ \psi $-Caputo fractional pantograph equation with a measure of non-compactness via simulation analysis. AIMS Mathematics, 2023, 8(9): 20125-20142. doi: 10.3934/math.20231025
    [4] Saeed M. Ali, Mohammed S. Abdo, Bhausaheb Sontakke, Kamal Shah, Thabet Abdeljawad . New results on a coupled system for second-order pantograph equations with $ \mathcal{ABC} $ fractional derivatives. AIMS Mathematics, 2022, 7(10): 19520-19538. doi: 10.3934/math.20221071
    [5] Weerawat Sudsutad, Chatthai Thaiprayoon, Aphirak Aphithana, Jutarat Kongson, Weerapan Sae-dan . Qualitative results and numerical approximations of the $ (k, \psi) $-Caputo proportional fractional differential equations and applications to blood alcohol levels model. AIMS Mathematics, 2024, 9(12): 34013-34041. doi: 10.3934/math.20241622
    [6] Choukri Derbazi, Zidane Baitiche, Mohammed S. Abdo, Thabet Abdeljawad . Qualitative analysis of fractional relaxation equation and coupled system with Ψ-Caputo fractional derivative in Banach spaces. AIMS Mathematics, 2021, 6(3): 2486-2509. doi: 10.3934/math.2021151
    [7] Abdelkader Moumen, Ramsha Shafqat, Zakia Hammouch, Azmat Ullah Khan Niazi, Mdi Begum Jeelani . Stability results for fractional integral pantograph differential equations involving two Caputo operators. AIMS Mathematics, 2023, 8(3): 6009-6025. doi: 10.3934/math.2023303
    [8] Iyad Suwan, Mohammed S. Abdo, Thabet Abdeljawad, Mohammed M. Matar, Abdellatif Boutiara, Mohammed A. Almalahi . Existence theorems for $ \Psi $-fractional hybrid systems with periodic boundary conditions. AIMS Mathematics, 2022, 7(1): 171-186. doi: 10.3934/math.2022010
    [9] Mohamed Houas, Kirti Kaushik, Anoop Kumar, Aziz Khan, Thabet Abdeljawad . Existence and stability results of pantograph equation with three sequential fractional derivatives. AIMS Mathematics, 2023, 8(3): 5216-5232. doi: 10.3934/math.2023262
    [10] Karim Guida, Lahcen Ibnelazyz, Khalid Hilal, Said Melliani . Existence and uniqueness results for sequential $ \psi $-Hilfer fractional pantograph differential equations with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(8): 8239-8255. doi: 10.3934/math.2021477
  • In the present manuscript, the BVP problem of a semipostone multipoint Ψ-Caputo fractional pantograph problem is addressed.

    Dν;ψrϰ(ς)+F(ς,ϰ(ς),ϰ(r+λς))=0, ς in (r,),

    ϰ(r)=ϑ1, ϰ()=m2i=1ζiϰ(ηi)+ϑ2, ϑiR, i{1,2},

    and λ in (0,r). The seriousness of this research is to prove the existence of the solution of this problem by using Schauder's fixed point theorem (SFPT). We have developed our results in our research compared to some recent research in this field. We end our work by listing an example to demonstrate the result reached.



    Recently, fractional calculus methods became of great interest, because it is a powerful tool for calculating the derivation of multiples systems. These methods study real world phenomena in many areas of natural sciences including biomedical, radiography, biology, chemistry, and physics [1,2,3,4,5,6,7]. Abundant publications focus on the Caputo fractional derivative (CFD) and the Caputo-Hadamard derivative. Additionally, other generalization of the previous derivatives, such as Ψ-Caputo, study the existence of solutions to some FDEs (see [8,9,10,11,12,13,14]).

    In general, an m-point fractional boundary problem involves a fractional differential equation with fractional boundary conditions that are specified at m different points on the boundary of a domain. The fractional derivative is defined using the Riemann-Liouville fractional derivative or the Caputo fractional derivative. Solving these types of problems can be challenging due to the non-local nature of fractional derivatives. However, there are various numerical and analytical methods available for solving such problems, including the spectral method, the finite difference method, the finite element method, and the homotopy analysis method. The applications of m-point fractional boundary problems can be found in various fields, including physics, engineering, finance, and biology. These problems are useful in modeling and analyzing phenomena that exhibit non-local behavior or involve memory effects (see [15,16,17,18]).

    Pantograph equations are a set of differential equations that describe the motion of a pantograph, which is a mechanism used for copying and scaling drawings or diagrams. The equations are based on the assumption that the pantograph arms are rigid and do not deform during operation, we can simply say that see [19]. One important application of the pantograph equations is in the field of drafting and technical drawing. Before the advent of computer-aided design (CAD) software, pantographs were commonly used to produce scaled copies of drawings and diagrams. By adjusting the lengths of the arms and the position of the stylus, a pantograph can produce copies that are larger or smaller than the original [20], electrodynamics [21] and electrical pantograph of locomotive [22].

    Many authors studied a huge number of positive solutions for nonlinear fractional BVP using fixed point theorems (FPTs) such as SFPT, Leggett-Williams and Guo-Krasnosel'skii (see [23,24]). Some studies addressed the sign-changing of solution of BVPs [25,26,27,28,29].

    In this work, we use Schauder's fixed point theorem (SFPT) to solve the semipostone multipoint Ψ-Caputo fractional pantograph problem

    Dν;ψrϰ(ς)+F(ς,ϰ(ς),ϰ(r+λς))=0, ς in (r,) (1.1)
    ϰ(r)=ϑ1, ϰ()=m2i=1ζiϰ(ηi)+ϑ2, ϑiR, i{1,2}, (1.2)

    where λ(0,r),Dν;ψr is Ψ-Caputo fractional derivative (Ψ-CFD) of order ν, 1<ν2, ζiR+(1im2) such that 0<Σm2i=1ζi<1, ηi(r,), and F:[r,]×R×RR.

    The most important aspect of this research is to prove the existence of a positive solution of the above m-point FBVP. Note that in [30], the author considered a two-point BVP using Liouville-Caputo derivative.

    The article is organized as follows. In the next section, we provide some basic definitions and arguments pertinent to fractional calculus (FC). Section 3 is devoted to proving the the main result and an illustrative example is given in Section 4.

    In the sequel, Ψ denotes an increasing map Ψ:[r1,r2]R via Ψ(ς)0, ς, and [α] indicates the integer part of the real number α.

    Definition 2.1. [4,5] Suppose the continuous function ϰ:(0,)R. We define (RLFD) the Riemann-Liouville fractional derivative of order α>0,n=[α]+1 by

    RLDα0+ϰ(ς)=1Γ(nα)(ddς)nς0(ςτ)nα1ϰ(τ)dτ,

    where n1<α<n.

    Definition 2.2. [4,5] The Ψ-Riemann-Liouville fractional integral (Ψ-RLFI) of order α>0 of a continuous function ϰ:[r,]R is defined by

    Iα;Ψrϰ(ς)=ςr(Ψ(ς)Ψ(τ))α1Γ(α)Ψ(τ)ϰ(τ)dτ.

    Definition 2.3. [4,5] The CFD of order α>0 of a function ϰ:[0,+)R is defined by

    Dαϰ(ς)=1Γ(nα)ς0(ςτ)nα1ϰ(n)(τ)dτ, α(n1,n),nN.

    Definition 2.4. [4,5] We define the Ψ-CFD of order α>0 of a continuous function ϰ:[r,]R by

    Dα;Ψrϰ(ς)=ςr(Ψ(ς)Ψ(τ))nα1Γ(nα)Ψ(τ)nΨϰ(τ)dτ, ς>r, α(n1,n),

    where nΨ=(1Ψ(ς)ddς)n,nN.

    Lemma 2.1. [4,5] Suppose q,>0, and ϰinC([r,],R). Then ς[r,] and by assuming Fr(ς)=Ψ(ς)Ψ(r), we have

    1) Iq;ΨrI;Ψrϰ(ς)=Iq+;Ψrϰ(ς),

    2) Dq;ΨrIq;Ψrϰ(ς)=ϰ(ς),

    3) Iq;Ψr(Fr(ς))1=Γ()Γ(+q)(Fr(ς))+q1,

    4) Dq;Ψr(Fr(ς))1=Γ()Γ(q)(Fr(ς))q1,

    5) Dq;Ψr(Fr(ς))k=0, k=0,,n1, nN, qin(n1,n].

    Lemma 2.2. [4,5] Let n1<α1n,α2>0, r>0, ϰL(r,), Dα1;ΨrϰL(r,). Then the differential equation

    Dα1;Ψrϰ=0

    has the unique solution

    ϰ(ς)=W0+W1(Ψ(ς)Ψ(r))+W2(Ψ(ς)Ψ(r))2++Wn1(Ψ(ς)Ψ(r))n1,

    and

    Iα1;ΨrDα1;Ψrϰ(ς)=ϰ(ς)+W0+W1(Ψ(ς)Ψ(r))+W2(Ψ(ς)Ψ(r))2++Wn1(Ψ(ς)Ψ(r))n1,

    with WR, {0,1,,n1}.

    Furthermore,

    Dα1;ΨrIα1;Ψrϰ(ς)=ϰ(ς),

    and

    Iα1;ΨrIα2;Ψrϰ(ς)=Iα2;ΨrIα1;Ψrϰ(ς)=Iα1+α2;Ψrϰ(ς).

    Here we will deal with the FDE solution of (1.1) and (1.2), by considering the solution of

    Dν;ψrϰ(ς)=h(ς), (2.1)

    bounded by the condition (1.2). We set

    Δ:=Ψ()Ψ(r)Σm2i=1ζi(Ψ(ηi)Ψ(r)).

    Lemma 2.3. Let ν(1,2] and ς[r,]. Then, the FBVP (2.1) and (1.2) have a solution ϰ of the form

    ϰ(ς)=[1+Σm2i=1ζi1Δ(Ψ(ς)Ψ(r))]ϑ1+Ψ(ς)Ψ(r)Δϑ2+rϖ(ς,τ)h(τ)Ψ(τ)dτ,

    where

    ϖ(ς,τ)=1Γ(ν){[(Ψ()Ψ(r))ν1Σm2j=iζj(Ψ(ηj)Ψ(τ))ν1]Ψ(ς)Ψ(r)Δ(Ψ(ς)Ψ(τ))ν1,τς,ηi1<τηi,[(Ψ()Ψ(τ))ν1Σm2j=iζj(Ψ(ηj)Ψ(τ))ν1]Ψ()Ψ(r)Δ,ςτ,ηi1<τηi, (2.2)

    i=1,2,...,m2.

    Proof. According to the Lemma 2.2 the solution of Dν;ψrϰ(ς)=h(ς) is given by

    ϰ(ς)=1Γ(ν)ςr(Ψ(ς)Ψ(τ))ν1h(τ)Ψ(τ)dτ+c0+c1(Ψ(ς)Ψ(r)), (2.3)

    where c0,c1R. Since ϰ(r)=ϑ1 and ϰ()=m2i=1ζiϰ(ηi)+ϑ2, we get c0=ϑ1 and

    c1=1Δ(1Γ(ν)m2i=1ζiηjr(Ψ(ηi)Ψ(τ))ν1h(τ)Ψ(τ)dτ+1Γ(ν)r(Ψ()Ψ(τ))ν1h(τ)Ψ(τ)dτ+ϑ1[m2i=1ζi1]+ϑ2).

    By substituting c0,c1 into Eq (2.3) we find,

    ϰ(ς)=[1+Σm2i=1ζi1Δ(Ψ(ς)Ψ(r))]ϑ1+(Ψ(ς)Ψ(r))Δϑ21Γ(ν)(ςr(Ψ(ς)Ψ(τ))ν1h(τ)Ψ(τ)dτ+(Ψ(ς)Ψ(r))Δm2i=1ζiηjr(Ψ(ηi)Ψ(τ))ν1h(τ)Ψ(τ)dτΨ(ς)Ψ(r)Δr(Ψ()Ψ(τ))ν1h(τ)Ψ(τ)dτ)=[1+Σm2i=1ζi1Δ(Ψ(ς)Ψ(r))]ϑ1+(Ψ(ς)Ψ(r))Δϑ2+rϖ(ς,τ)h(τ)Ψ(τ)dτ,

    where ϖ(ς,τ) is given by (2.2). Hence the required result.

    Lemma 2.4. If 0<m2i=1ζi<1, then

    i) Δ>0,

    ii) (Ψ()Ψ(τ))ν1m2j=iζj(Ψ(ηj)Ψ(τ))ν1>0.

    Proof. i) Since ηi<, we have

    ζi(Ψ(ηi)Ψ(r))<ζi(Ψ()Ψ(r)),
    m2i=1ζi(Ψ(ηi)Ψ(r))>m2i=1ζi(Ψ()Ψ(r)),
    Ψ()Ψ(r)m2i=1ζi(Ψ(ηi)Ψ(r))>Ψ()Ψ(r)m2i=1ζi(Ψ()Ψ(r))=(Ψ()Ψ(r))[1m2i=1ζi].

    If 1Σm2i=1ζi>0, then (Ψ()Ψ(r))Σm2i=1ζi(Ψ(ηi)Ψ(r))>0. So we have Δ>0.

    ii) Since 0<ν11, we have (Ψ(ηi)Ψ(τ))ν1<(Ψ()Ψ(τ))ν1. Then we obtain

    m2j=iζj(Ψ(ηj)Ψ(τ))ν1<m2j=iζj(Ψ()Ψ(τ))ν1(Ψ()Ψ(τ))ν1m2i=1ζi<(Ψ()Ψ(τ))ν1,

    and so

    (Ψ()Ψ(τ))ν1m2j=iζj(Ψ(ηj)Ψ(τ))ν1>0.

    Remark 2.1. Note that rϖ(ς,τ)Ψ(τ)dτ is bounded ς[r,]. Indeed

    r|ϖ(ς,τ)|Ψ(τ)dτ1Γ(ν)ςr(Ψ(ς)Ψ(τ))ν1Ψ(τ)dτ+Ψ(ς)Ψ(r)Γ(ν)Δm2i=1ζiηir(Ψ(ηj)Ψ(τ))ν1Ψ(τ)dτ+Ψ(ς)Ψ(r)ΔΓ(ν)r(Ψ()Ψ(τ))ν1Ψ(τ)dτ=(Ψ(ς)Ψ(r))νΓ(ν+1)+Ψ(ς)Ψ(r)ΔΓ(ν+1)m2i=1ζi(Ψ(ηi)Ψ(r))ν+Ψ(ς)Ψ(r)ΔΓ(ν+1)(Ψ()Ψ(r))ν(Ψ()Ψ(r))νΓ(ν+1)+Ψ()Ψ(r)ΔΓ(ν+1)m2i=1ζi(Ψ(ηi)Ψ(r))ν+(Ψ()Ψ(r))ν+1ΔΓ(ν+1)=M. (2.4)

    Remark 2.2. Suppose Υ(ς)L1[r,], and w(ς) verify

    {Dν;ψrw(ς)+Υ(ς)=0,w(r)=0, w()=Σm2i=1ζiw(ηi), (2.5)

    then w(ς)=rϖ(ς,τ)Υ(τ)Ψ(τ)dτ.

    Next we recall the Schauder fixed point theorem.

    Theorem 2.1. [23] [SFPT] Consider the Banach space Ω. Assume bounded, convex, closed subset in Ω. If ϝ: is compact, then it has a fixed point in .

    We start this section by listing two conditions which will be used in the sequel.

    (Σ1) There exists a nonnegative function ΥL1[r,] such that rΥ(ς)dς>0 and F(ς,ϰ,v)Υ(ς) for all (ς,ϰ,v)[r,]×R×R.

    (Σ2) G(ς,ϰ,v)0, for (ς,ϰ,v)[r,]×R×R.

    Let =C([r,],R) the Banach space of CFs (continuous functions) with the following norm

    ϰ=sup{|ϰ(ς)|:ς[r,]}.

    First of all, it seems that the FDE below is valid

    Dν;ψrϰ(ς)+G(ς,ϰ(ς),ϰ(r+λς))=0, ς[r,]. (3.1)

    Here the existence of solution satisfying the condition (1.2), such that G:[r,]×R×RR

    G(ς,z1,z2)={F(ς,z1,z2)+Υ(ς), z1,z20,F(ς,0,0)+Υ(ς), z10 or z20, (3.2)

    and ϰ(ς)=max{(ϰw)(ς),0}, hence the problem (2.5) has w as unique solution. The mapping Q: accompanied with the (3.1) and (1.2) defined as

    (Qϰ)(ς)=[1+Σm2i=1ζi1Δ(Ψ(ς)Ψ(r))]ϑ1+Ψ(ς)Ψ(r)Δϑ2+rϖ(ς,τ)G(ς,ϰ(τ),ϰ(r+λτ))Ψ(τ)dτ, (3.3)

    where the relation (2.2) define ϖ(ς,τ). The existence of solution of the problems (3.1) and (1.2) give the existence of a fixed point for Q.

    Theorem 3.1. Suppose the conditions (Σ1) and (Σ2) hold. If there exists ρ>0 such that

    [1+Σm2i=1ζi1Δ(Ψ()Ψ(r))]ϑ1+Ψ()Ψ(r)Δϑ2+LMρ,

    where Lmax{|G(ς,ϰ,v)|:ς[r,], |ϰ|,|v|ρ} and M is defined in (2.4), then, the problems (3.1) and (3.2) have a solution ϰ(ς).

    Proof. Since P:={ϰ:ϰρ} is a convex, closed and bounded subset of B described in the Eq (3.3), the SFPT is applicable to P. Define Q:P by (3.3). Clearly Q is continuous mapping. We claim that range of Q is subset of P. Suppose ϰP and let ϰ(ς)ϰ(ς)ρ, ς[r,]. So

    |Qϰ(ς)|=|[1+Σm2i=1ζi1Δ(Ψ(ς)Ψ(r))]ϑ1+Ψ(ς)Ψ(r)Δϑ2+rϖ(ς,τ)G(τ,ϰ(τ),ϰ(r+λτ))Ψ(τ)dτ|[1+Σm2i=1ζi1Δ(Ψ()Ψ(r))]ϑ1+Ψ()Ψ(r)Δϑ2+LMρ,

    for all ς[r,]. This indicates that Qϰρ, which proves our claim. Thus, by using the Arzela-Ascoli theorem, Q: is compact. As a result of SFPT, Q has a fixed point ϰ in P. Hence, the problems (3.1) and (1.2) has ϰ as solution.

    Lemma 3.1. ϰ(ς) is a solution of the FBVP (1.1), (1.2) and ϰ(ς)>w(ς) for every ς[r,] iff the positive solution of FBVP (3.1) and (1.2) is ϰ=ϰ+w.

    Proof. Let ϰ(ς) be a solution of FBVP (3.1) and (1.2). Then

    ϰ(ς)=[1+Σm2i=1ζi1Δ(Ψ(ς)Ψ(r))]ϑ1+(Ψ(ς)Ψ(r))Δϑ2+1Γ(ν)rϖ(ς,τ)G(τ,ϰ(τ),ϰ(r+λτ))Ψ(τ)dτ=[1+Σm2i=1ζi1Δ(Ψ(ς)Ψ(r))]ϑ1+Ψ(ς)Ψ(r)Δϑ2+1Γ(ν)rϖ(ς,τ)(F(τ,ϰ(τ),ϰ(r+λτ))+p(τ))Ψ(τ)dτ=[1+Σm2i=1ζi1Δ(Ψ(ς)Ψ(r))]ϑ1+Ψ(ς)Ψ(r)Δϑ2+1Γ(ν)rϖ(ς,τ)F(τ,(ϰw)(τ),(ϰw)(r+λτ))Ψ(τ)dτ+1Γ(ν)rϖ(ς,τ)p(τ)Ψ(τ)dτ=[1+Σm2i=1ζi1Δ(Ψ(ς)Ψ(r))]ϑ1+Ψ(ς)Ψ(r)Δϑ2+1Γ(ν)rϖ(ς,τ)G(τ,(ϰw)(τ),(ϰw)(r+λτ))Ψ(τ)dτ+w(ς).

    So,

    ϰ(ς)w(ς)=[1+Σm2i=1ζi1Δ(Ψ(ς)Ψ(r))]ϑ1+Ψ(ς)Ψ(r)Δϑ2+1Γ(ν)rϖ(ς,τ)F(τ,(ϰw)(τ),(ϰw)(r+λτ))Ψ(τ)dτ.

    Then we get the existence of the solution with the condition

    ϰ(ς)=[1+Σm2i=1ζi1Δ(Ψ(ς)Ψ(r))]ϑ1+Ψ(ς)Ψ(r)Δϑ2+1Γ(ν)rϖ(ς,τ)F(τ,ϰ(τ),ϰ(r+λτ))Ψ(τ)dτ.

    For the converse, if ϰ is a solution of the FBVP (1.1) and (1.2), we get

    Dν;ψr(ϰ(ς)+w(ς))=Dν;ψrϰ(ς)+Dν;ψrw(ς)=F(ς,ϰ(ς),ϰ(r+λς))p(ς)=[F(ς,ϰ(ς),ϰ(r+λς))+p(ς)]=G(ς,ϰ(ς),ϰ(r+λς)),

    which leads to

    Dν;ψrϰ(ς)=G(ς,ϰ(ς),ϰ(r+λς)).

    We easily see that

    ϰ(r)=ϰ(r)w(r)=ϰ(r)0=ϑ1,

    i.e., ϰ(r)=ϑ1 and

    ϰ()=m2i=1ζiϰ(ηi)+ϑ2,
    ϰ()w()=m2i=1ζiϰ(ηi)m2i=1ζjw(ηi)+ϑ2=m2i=1ζi(ϰ(ηi)w(ηi))+ϑ2.

    So,

    ϰ()=m2i=1ζiϰ(ηi)+ϑ2.

    Thus ϰ(ς) is solution of the problem FBVP (3.1) and (3.2).

    We propose the given FBVP as follows

    D75ϰ(ς)+F(ς,ϰ(ς),ϰ(1+0.5ς))=0, ς(1,e), (4.1)
    ϰ(1)=1, ϰ(e)=17ϰ(52)+15ϰ(74)+19ϰ(115)1. (4.2)

    Let Ψ(ς)=logς, where F(ς,ϰ(ς),ϰ(1+12ς))=ς1+ςarctan(ϰ(ς)+ϰ(1+12ς)).

    Taking Υ(ς)=ς we get e1ςdς=e212>0, then the hypotheses (Σ1) and (Σ2) hold. Evaluate Δ0.366, M3.25 we also get |G(ς,ϰ,v)|<π+e=L such that |ϰ|ρ, ρ=17, we could just confirm that

    [1+Σm2i=1ζi1Δ(Ψ()Ψ(r))]ϑ1+Ψ()Ψ(r)Δϑ2+LM16.3517. (4.3)

    By applying the Theorem 3.1 there exit a solution ϰ(ς) of the problem (4.1) and (4.2).

    In this paper, we have provided the proof of BVP solutions to a nonlinear Ψ-Caputo fractional pantograph problem or for a semi-positone multi-point of (1.1) and(1.2). What's new here is that even using the generalized Ψ-Caputo fractional derivative, we were able to explicitly prove that there is one solution to this problem, and that in our findings, we utilize the SFPT. The results obtained in our work are significantly generalized and the exclusive result concern the semi-positone multi-point Ψ-Caputo fractional differential pantograph problem (1.1) and (1.2).

    The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Small Groups (RGP.1/350/43).

    The authors declare no conflict of interest.



    [1] B. Ahmad, Existence of solutions for irregular boundary value problems of nonlinear fractional differential equations, Appl. Math. Lett., 23 (2010), 390–394. http://dx.doi.org/10.1016/j.aml.2009.11.004 doi: 10.1016/j.aml.2009.11.004
    [2] Z. Bai, On positive solutions of a nonlocal fractional boundary value problem, Nonlinear Anal.-Theor., 72 (2010), 916–924. http://dx.doi.org/10.1016/j.na.2009.07.033 doi: 10.1016/j.na.2009.07.033
    [3] Z. Bai, H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 311 (2005), 495–505. http://dx.doi.org/10.1016/j.jmaa.2005.02.052 doi: 10.1016/j.jmaa.2005.02.052
    [4] R. Almeida, A. Malinowska, M. Teresa, T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Method. Appl. Sci., 41 (2018), 336–352. http://dx.doi.org/10.1002/mma.4617 doi: 10.1002/mma.4617
    [5] A. Kilbas, H. Srivastava, J. Trujillo, Theory and applications of fractional differential equations, Boston: Elsevier, 2006. http://dx.doi.org/10.1016/S0304-0208(06)80001-0
    [6] K. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993.
    [7] I. Podlubny, Fractional differential equations, mathematics in science and engineering, New York: Academic Press, 1999.
    [8] H. Boulares, A. Benchaabane, N. Pakkaranang, R. Shafqat, B. Panyanak, Qualitative properties of positive solutions of a kind for fractional pantograph problems using technique fixed point theory, Fractal Fract., 6 (2022), 593. http://dx.doi.org/10.3390/fractalfract6100593 doi: 10.3390/fractalfract6100593
    [9] A. Hallaci, H. Boulares, A. Ardjouni, Existence and uniqueness for delay fractional differential equations with mixed fractional derivatives, Open J. Math. Anal., 4 (2020), 26–31. http://dx.doi.org/10.30538/psrp-oma2020.0059 doi: 10.30538/psrp-oma2020.0059
    [10] A. Hallaci, H. Boulares, M. Kurulay, On the study of nonlinear fractional differential equations on unbounded interval, General Letters in Mathematics, 5 (2018), 111–117. http://dx.doi.org/10.31559/glm2018.5.3.1 doi: 10.31559/glm2018.5.3.1
    [11] A. Ardjouni, H. Boulares, Y. Laskri, Stability in higher-order nonlinear fractional differential equations, Acta Comment. Univ. Ta., 22 (2018), 37–47. http://dx.doi.org/10.12697/ACUTM.2018.22.04 doi: 10.12697/ACUTM.2018.22.04
    [12] S. Liang, J. Zhang, Positive solutions for boundary value problems of nonlinear fractional differential equation, Nonlinear Anal.-Theor., 71 (2009), 5545–5550. http://dx.doi.org/10.1016/j.na.2009.04.045 doi: 10.1016/j.na.2009.04.045
    [13] S. Zhang, Positive solutions for boundary-value problems of nonlinear fractional differential equations, Electron. J. Differ. Eq., 2006 (2006), 36.
    [14] W. Zhong, W. Lin, Nonlocal and multiple-point boundary value problem for fractional differential equations, Comput. Math. Appl., 59 (2010), 1345–1351. http://dx.doi.org/10.1016/j.camwa.2009.06.032 doi: 10.1016/j.camwa.2009.06.032
    [15] E. Doha, A. Bhrawy, S. Ezz-Eldien, A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order, Comput. Math. Appl., 62 (2011), 2364–2373. http://dx.doi.org/10.1016/j.camwa.2011.07.024 doi: 10.1016/j.camwa.2011.07.024
    [16] M. Alsuyuti, E. Doha, S. Ezz-Eldien, Modified Galerkin algorithm for solving multitype fractional differential equations, Math. Meth. Appl. Sci., 42 (2019), 1389–1412. http://dx.doi.org/10.1002/mma.5431 doi: 10.1002/mma.5431
    [17] S. Ezz-Eldien, Y. Wang, M. Abdelkawy, M. Zaky, A. Aldraiweesh, J. Tenreiro Machado, Chebyshev spectral methods for multi-order fractional neutral pantograph equations, Nonlinear Dyn., 100 (2020), 3785–3797. http://dx.doi.org/10.1007/s11071-020-05728-x doi: 10.1007/s11071-020-05728-x
    [18] M. Alsuyuti, E. Doha, S. Ezz-Eldien, I. Youssef, Spectral Galerkin schemes for a class of multi-order fractional pantograph equations, J. Comput. Appl. Math., 384 (2021), 113157. http://dx.doi.org/10.1016/j.cam.2020.113157 doi: 10.1016/j.cam.2020.113157
    [19] J. Hale, Retarded functional differential equations: basic theory, New York: Springer, 1977. http://dx.doi.org/10.1007/978-1-4612-9892-2_3
    [20] K. Mahler, On a special functional equation, J. Lond. Math. Soc., 1 (1940), 115–123. http://dx.doi.org/10.1112/JLMS/S1-15.2.115 doi: 10.1112/JLMS/S1-15.2.115
    [21] L. Fox, D. Mayers, J. Ockendon, A. Tayler, On a functional differential equation, IMA J. Appl. Math., 8 (1971), 271–307. http://dx.doi.org/10.1093/imamat/8.3.271 doi: 10.1093/imamat/8.3.271
    [22] J. Ockendon, A. Tayler, The dynamics of a current collection system for an electric locomotive, Proc. R. Soc. Lond. A, 322 (1971), 447–468. http://dx.doi.org/10.1098/rspa.1971.0078 doi: 10.1098/rspa.1971.0078
    [23] D. Smart, Fixed point theorems, Cambridge: Cambridge University Press, 1980.
    [24] J. Wang, Y. Zhou, M. Feckan, Nonlinear impulsive problems for fractional differential equations and Ulam stability, Comput. Math. Appl., 64 (2012), 3389–3405. http://dx.doi.org/10.1016/j.camwa.2012.02.021 doi: 10.1016/j.camwa.2012.02.021
    [25] F. Li, Y. Zhang, Y. Li, Sign-changing solutions on a kind of fourth-order Neumann boundary value problem, J. Math. Anal. Appl., 344 (2008), 417–428. http://dx.doi.org/10.1016/j.jmaa.2008.02.050 doi: 10.1016/j.jmaa.2008.02.050
    [26] Y. Li, F. Li, Sign-changing solutions to second-order integral boundary value problems, Nonlinear Anal.-Theor., 69 (2008), 1179–1187. http://dx.doi.org/10.1016/j.na.2007.06.024 doi: 10.1016/j.na.2007.06.024
    [27] Z. Liu, Y. Ding, C. Liu, C. Zhao, Existence and uniqueness of solutions for singular fractional differential equation boundary value problem with p-Laplacian, Adv. Differ. Equ., 2020 (2020), 83. http://dx.doi.org/10.1186/s13662-019-2482-9 doi: 10.1186/s13662-019-2482-9
    [28] A. Tychonoff, Ein fixpunktsatz, Math. Ann., 111 (1935), 767–776. http://dx.doi.org/10.1007/BF01472256
    [29] X. Xu, Multiple sign-changing solutions for some m-point boundary-value problems, Electron. J. Differ. Eq., 2004 (2004), 1–14.
    [30] B. Ahmad, Sharp estimates for the unique solution of two-point fractional-order boundary value problems, Appl. Math. Lett., 65 (2017), 77–82. http://dx.doi.org/10.1016/j.aml.2016.10.008 doi: 10.1016/j.aml.2016.10.008
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1353) PDF downloads(80) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog