The Craik-Leibovich equation (CL) serves as the theoretical model for Langmuir circulation. We show that the CL equation can be reduced to the dual space of a certain Lie algebra central extension. On this space, the CL equation can be rewritten as a Hamiltonian equation corresponding to the kinetic energy. Additionally, we provide an explanation of the appearance of this central extension structure through an averaging theory for Langmuir circulation. Lastly, we prove a stability theorem for two-dimensional steady flows of the CL equation. The paper also contains two examples of stable steady CL flows.
Citation: Cheng Yang. On the Hamiltonian and geometric structure of Langmuir circulation[J]. Communications in Analysis and Mechanics, 2023, 15(2): 58-69. doi: 10.3934/cam.2023004
[1] | Harman Kaur, Meenakshi Rana . Congruences for sixth order mock theta functions λ(q) and ρ(q). Electronic Research Archive, 2021, 29(6): 4257-4268. doi: 10.3934/era.2021084 |
[2] | Meenakshi Rana, Shruti Sharma . Combinatorics of some fifth and sixth order mock theta functions. Electronic Research Archive, 2021, 29(1): 1803-1818. doi: 10.3934/era.2020092 |
[3] | Changjian Wang, Jiayue Zhu . Global dynamics to a quasilinear chemotaxis system under some critical parameter conditions. Electronic Research Archive, 2024, 32(3): 2180-2202. doi: 10.3934/era.2024099 |
[4] | Chang-Jian Wang, Yu-Tao Yang . Boundedness criteria for the quasilinear attraction-repulsion chemotaxis system with nonlinear signal production and logistic source. Electronic Research Archive, 2023, 31(1): 299-318. doi: 10.3934/era.2023015 |
[5] | Maoji Ri, Shuibo Huang, Canyun Huang . Non-existence of solutions to some degenerate coercivity elliptic equations involving measures data. Electronic Research Archive, 2020, 28(1): 165-182. doi: 10.3934/era.2020011 |
[6] | Nan Li . Summability in anisotropic mixed-norm Hardy spaces. Electronic Research Archive, 2022, 30(9): 3362-3376. doi: 10.3934/era.2022171 |
[7] | Lili Li, Boya Zhou, Huiqin Wei, Fengyan Wu . Analysis of a fourth-order compact θ-method for delay parabolic equations. Electronic Research Archive, 2024, 32(4): 2805-2823. doi: 10.3934/era.2024127 |
[8] | Jianxing Du, Xifeng Su . On the existence of solutions for the Frenkel-Kontorova models on quasi-crystals. Electronic Research Archive, 2021, 29(6): 4177-4198. doi: 10.3934/era.2021078 |
[9] | Zihan Zheng, Juan Wang, Liming Cai . Global boundedness in a Keller-Segel system with nonlinear indirect signal consumption mechanism. Electronic Research Archive, 2024, 32(8): 4796-4808. doi: 10.3934/era.2024219 |
[10] | Ying Hou, Liangyun Chen . Constructions of three kinds of Bihom-superalgebras. Electronic Research Archive, 2021, 29(6): 3741-3760. doi: 10.3934/era.2021059 |
The Craik-Leibovich equation (CL) serves as the theoretical model for Langmuir circulation. We show that the CL equation can be reduced to the dual space of a certain Lie algebra central extension. On this space, the CL equation can be rewritten as a Hamiltonian equation corresponding to the kinetic energy. Additionally, we provide an explanation of the appearance of this central extension structure through an averaging theory for Langmuir circulation. Lastly, we prove a stability theorem for two-dimensional steady flows of the CL equation. The paper also contains two examples of stable steady CL flows.
Ramanujan's last letter to Hardy is one of the most mysterious and important mathematical letters in the history of mathematics. He introduced a class of functions that he called mock theta functions in his letter. For nearly a century, properties of these functions have been widely studied by different mathematicians. The important direction involves the arithmetic properties (see [1,2]), combinatorics (see [3,4]), identities between these functions, and generalized Lambert series (see [5,6]). For the interested reader, regarding the history and new developments in the study of mock theta functions, we refer to [7].
In 2007, McIntosh studied two second order mock theta functions in reference [8]; more details are given in reference [9]. These mock theta functions are:
A(q)=∞∑n=0q(n+1)2(−q;q2)n(q;q2)2(n+1)=∞∑n=0qn+1(−q2;q2)n(q;q2)n+1, | (1.1) |
B(q)=∞∑n=0qn(−q;q2)n(q;q2)n+1=∞∑n=0qn(n+1)(−q2;q2)n(q;q2)2n+1, | (1.2) |
where
(a;q)n=n−1∏i=0(1−aqi),(a;q)∞=∞∏i=0(1−aqi), |
(a1,a2,⋯,am;q)∞=(a1;q)∞(a2;q)∞⋯(am;q)∞, |
for |q|<1.
The functions A(q) and B(q) have been combinatorially interpreted in terms of overpartitions in [3] using the odd Ferrers diagram. In this paper, we study some arithmetic properties of one of the second order mock theta functions B(q). We start by noting, Bringmann, Ono and Rhoades [10] obtained the following identity:
B(q)+B(−q)2=f54f42, | (1.3) |
where
fkm:=(qm;qm)k∞, |
for positive integers m and k. We consider the function
B(q):=∞∑n=0b(n)qn. | (1.4) |
Followed by Eq (1.3), the even part of B(q) is given by:
∞∑n=0b(2n)qn=f52f41. | (1.5) |
In 2012, applying the theory of (mock) modular forms and Zwegers' results, Chan and Mao [5] established two identities for b(n), shown as:
∞∑n=0b(4n+1)qn=2f82f71, | (1.6) |
∞∑n=0b(4n+2)qn=4f22f44f51. | (1.7) |
In a sequel, Qu, Wang and Yao [6] found that all the coefficients for odd powers of q in B(q) are even. Recently, Mao [11] gave analogues of Eqs (1.6) and (1.7) modulo 6
∞∑n=0b(6n+2)qn=4f102f23f101f6, | (1.8) |
∞∑n=0b(6n+4)qn=9f42f43f6f81, | (1.9) |
and proved several congruences for the coefficients of B(q). Motivated from this, we prove similar results for b(n) by applying identities on the coefficients in arithmetic progressions. We present some congruence relations for the coefficients of B(q) modulo certain numbers of the form 2α⋅3β,2α⋅5β,2α⋅7β where α,β≥0. Our main theorems are given below:
Theorem 1.1. For n≥0, we have
∞∑n=0b(12n+9)qn=18[f92f123f171f36+2f52f43f6f91+28f62f33f66f141], | (1.10) |
∞∑n=0b(12n+10)qn=36[2f162f106f201f3f412−qf282f33f212f241f84f26−16q2f22f33f84f212f161f26]. | (1.11) |
In particular, b(12n+9)≡0(mod18),b(12n+10)≡0(mod36).
Theorem 1.2. For n≥0, we have
∞∑n=0b(18n+10)qn=72[f162f213f271f96+38qf132f123f241+64q2f102f33f96f211], | (1.12) |
∞∑n=0b(18n+16)qn=72[5f152f183f261f66+64qf122f93f36f231+32q2f92f126f201]. | (1.13) |
In particular, b(18n+10)≡0(mod72),b(18n+16)≡0(mod72).
Apart from these congruences, we find some relations between b(n) and restricted partition functions. Here we recall, Partition of a positive integer ν, is a representation of ν as a sum of non-increasing sequence of positive integers μ1,μ2,⋯,μn. The number of partitions of ν is denoted by p(ν) which is called the partition function. If certain conditions are imposed on parts of the partition, is called the restricted partition and corresponding partition function is named as restricted partition function. Euler proved the following recurrence for p(n) [12] [p. 12, Cor. 1.8]:
(n)−p(n−1)−p(n−2)+p(n−5)+p(n−7)−p(n−12)−p(n−15)+⋯+(−1)kp(n−k(3k−1)/2)+(−1)kp(n−k(3k+1)/2)+⋯={1, if n=0,0, otherwise. |
The numbers k(3k±1)/2 are pentagonal numbers. Following the same idea, different recurrence relations have been found by some researchers for restricted partition functions. For instance, Ewell [13] presented the recurrence for p(n) involving the triangular numbers. For more study of recurrences, see [14,15,16]. Under the influence of these efforts, we express the coefficients of mock theta function B(q) which are in arithmetic progression in terms of recurrence of some restricted partition functions.
This paper is organized as follows: Section 2, here we recall some preliminary lemmas and present the proof of Theorems 1.1 and 1.2. Section 3 includes some more congruences based on the above results. Section 4 depicts the links between b(n) and some of the restricted partition functions.
Before proving the results, we recall Ramanujan's theta function:
j(a,b)=∞∑n=−∞an(n+1)2bn(n−1)2, for|ab|<1. |
Some special cases of j(a,b) are:
ϕ(q):=j(q,q)=∞∑n=−∞qn2=f52f21f24,ψ(q):=j(q,q3)=∞∑n=0qn(n+1)/2=f22f1. |
Also,
ϕ(−q)=f21f2. |
The above function satisfy the following properties (see Entries 19, 20 in [17]).
j(a,b)=(−a,−b,ab;ab)∞,(Jacobi's triple product identity), |
j(−q,−q2)=(q;q)∞,(Euler's pentagonal number theorem). |
We note the following identities which will be used below.
Lemma 2.1. [[18], Eq (3.1)] We have
f32f31=f6f3+3qf46f59f83f18+6q2f36f29f218f73+12q3f26f518f63f9. | (2.1) |
Lemma 2.2. We have
f22f1=f6f29f3f18+qf218f9, | (2.2) |
f2f21=f46f69f83f318+2qf36f39f73+4q2f26f318f63. | (2.3) |
Proof. The first identity follows from [[19] Eq (14.3.3)]. The proof of second identity can be seen from [20].
Lemma 2.3. We have
1f41=f144f142f48+4qf24f48f102, | (2.4) |
f41=f104f22f48−4qf22f48f24. | (2.5) |
Proof. Identity (2.4) is Eq (1.10.1) from [19]. To obtain (2.5), replacing q by −q and then using
(−q;−q)∞=f32f1f4. |
Now, we present the proof of Theorems 1.1 and 1.2.
Proof of Theorems 1.1 and 1.2. From Eq (1.6), we have
∞∑n=0b(4n+1)qn=2(f32f31)3⋅f22f1. |
Substituting the values from Eqs (2.1) and (2.2) in above, we get
∞∑n=0b(4n+1)qn=2f36f29f33f18+2qf26f218f23f9+12qf66f79f103f218+18q2f96f129f173f318+36q2f56f49f18f93+90q3f86f99f163+72q3f46f9f418f83+48q4f36f718f73f29+288q4f76f69f318f153+504q5f66f39f618f143+576q6f56f918f133. | (2.6) |
Bringing out the terms involving q3n+2, dividing by q2 and replacing q3 by q, we get (1.10). Considering Eq (1.5), we have
∞∑n=0b(2n)qn=f32f31⋅f22f1. |
Substituting the values from Eqs (2.1) and (2.2), we obtain
∞∑n=0b(2n)qn=(f6f3+3qf46f59f83f18+6q2f36f29f218f73+12q3f26f518f63f9)(f6f29f3f18+qf218f9). |
Extracting the terms involving q3n,q3n+1,q3n+2 from the above equation, we have
∞∑n=0b(6n)qn=f22f23f21f6+18qf32f3f46f71, | (2.7) |
∞∑n=0b(6n+2)qn=f2f26f1f3+3f52f73f91f26+12qf22f76f61f23, | (2.8) |
∞∑n=0b(6n+4)qn=9f42f43f6f81. | (2.9) |
Using Eqs (2.4) and (2.5) in Eq (2.9), we get
∞∑n=0b(6n+4)qn=9f42f6(f144f142f48+4qf24f48f102)2(f1012f26f424−4q3f26f424f212). |
Extracting the terms involving q2n,q2n+1 from above, we arrive at
∞∑n=0b(12n+4)qn=9(f282f106f241f3f84f412+16qf42f84f106f161f3f412−32q2f162f33f412f201f26), | (2.10) |
∞∑n=0b(12n+10)qn=9(8f162f106f201f3f412−4qf282f33f412f241f84f26−16q2f42f33f84f412f161f26). | (2.11) |
From Eq (2.11), we ultimately arrive at Eq (1.11). To prove Theorem 1.2, consider Eq (2.9) as:
∞∑n=0b(6n+4)qn=9f43f6(f2f21)4. |
Using Eq (2.3) in above, we get
∞∑n=0b(6n+4)qn=9f176f249f283f1218+72qf166f219f273f918+360q2f156f189f263f618+288q3f146f159f253f318+864q3f126f159f193f618+2736q4f136f129f243+4608q5f126f99f318f233+5760q6f116f69f618f223+4608q7f106f39f918f213+2304q8f96f1218f203. | (2.12) |
Bringing out the terms involving q3n+1 and q3n+2 from Eq (2.12), we get Eqs (1.12) and (1.13), respectively.
This segment of the paper contains some more interesting congruence relations for b(n).
Theorem 3.1. For n≥0, we have
b(12n+1)≡{2(−1)k(mod6),ifn=3k(3k+1)/2,0(mod6),otherwise. | (3.1) |
Theorem 3.2. For n≥0, we have
b(2n)≡{(−1)k(2k+1)(mod4),ifn=k(k+1),0(mod4),otherwise. | (3.2) |
Theorem 3.3. For n≥0, we have
b(36n+10)≡0(mod72), | (3.3) |
b(36n+13)≡0(mod6), | (3.4) |
b(36n+25)≡0(mod12), | (3.5) |
b(36n+34)≡0(mod144), | (3.6) |
b(108n+t)≡0(mod18),for t∈{49,85}. | (3.7) |
Theorem 3.4. For n≥0, we have
b(20n+t)≡0(mod5),for t∈{8,16} | (3.8) |
b(20n+t)≡0(mod20),for t∈{6,18} | (3.9) |
b(20n+17)≡0(mod10), | (3.10) |
b(28n+t)≡0(mod14),for t∈{5,21,25}. | (3.11) |
Proof of Theorem 3.1. From Eq (2.6), picking out the terms involving q3n and replacing q3 by q, we have
∞∑n=0b(12n+1)qn=2f32f23f31f6+90qf82f93f161+72qf42f3f46f81+576q2f52f96f31. | (3.12) |
Reducing modulo 6, we obtain
∞∑n=0b(12n+1)qn≡2f3(mod6). | (3.13) |
With the help of Euler's pentagonal number theorem,
∞∑n=0b(12n+1)qn≡2∞∑k=−∞(−1)kq3k(3k+1)2(mod6), |
which completes the proof of Theorem 3.1.
Proof of Theorem 3.2. Reducing Eq (1.5) modulo 4, we get
∞∑n=0b(2n)qn≡f32(mod4). | (3.14) |
From Jacobi's triple product identity, we obtain
∞∑n=0b(2n)qn≡∞∑k=0(−1)k(2k+1)qk(k+1)(mod4), |
which completes the proof of Theorem 3.2.
Proof of Theorem 3.3. Consider Eq (1.11), reducing modulo 72
∞∑n=0b(12n+10)qn≡36qf282f33f412f241f84f26(mod72), |
∞∑n=0b(12n+10)qn≡36qf282f33f412f122f84f12=36qf162f33f312f84(mod72) |
or
∞∑n=0b(12n+10)qn≡36qf33f312(mod72). | (3.15) |
Extracting the terms involving q3n, replacing q3 by q in Eq (3.15), we arrive at Eq (3.3). Similarly, consider Eq (1.13) and reducing modulo 144, we have
∞∑n=0b(18n+16)qn≡72⋅5f152f183f261f66(mod144),≡72f152f96f132f66=72f22f36(mod144). |
Extracting the terms involving q2n+1, dividing both sides by q and replacing q2 by q, we get Eq (3.6).
From Eq (3.20), we get
∞∑n=0b(12n+1)qn≡2f3(mod6). |
Bringing out the terms containing q3n+1, dividing both sides by q and replacing q3 by q, we have b(36n+13)≡0(mod6). Reducing Eq (3.12) modulo 12, we have
∞∑n=0b(12n+1)qn≡2f32f23f31f6+90qf82f93f161(mod12), |
∞∑n=0b(12n+1)qn≡2f23f6(f6f3+3qf46f59f83f18+6q2f36f29f218f73+12q3f26f518f63f9)+6qf82f93f82. |
Extracting the terms containing q3n+2, dividing by q2 and replacing q3 by q, we obtain Eq (3.5). Reducing Eq (3.12) modulo 18,
∞∑n=0b(12n+1)qn≡2f32f23f31f6(mod18),=2f23f6(f6f3+3qf46f59f83f18+6q2f36f29f218f73+12q3f26f518f63f9). |
Extracting the terms involving q3n+1, dividing both sides by q and replacing q3 by q, we have
∞∑n=0b(36n+13)qn≡6f32f53f61f6≡6f6f53f23f6(mod18) |
or
∞∑n=0b(36n+13)qn≡6f33(mod18). |
Extracting the terms containing q3n+1,q3n+2 from above to get Eq (3.7).
Proof of Theorem 3.4. From Eqs (1.5) and (2.4), we have
∞∑n=0b(2n)qn=f52(f144f142f48+4qf24f48f102). |
Bringing out the terms containing even powers of q, we obtain
∞∑n=0b(4n)qn=f142f91f44, |
which can be written as:
∞∑n=0b(4n)qn=f152f101f54.f1f4f2≡f310f25f20.f1f4f2(mod5). |
Here
f1f4f2=(q;q)∞(q4;q4)∞(q2;q2)∞,=(q;q2)∞(q2;q2)∞(q4;q4)∞(q2;q2)∞, |
f1f4f2=(q,q3,q4;q4)∞=∞∑n=−∞(−1)nq2n2−n, | (3.16) |
where the last equality follows from Jacobi's triple product identity. Using the above identity, we have
∞∑n=0b(4n)qn≡f310f25f20∞∑n=−∞(−1)nq2n2−n(mod5). | (3.17) |
Since 2n2−n≢2,4(mod5), it follows that the coefficients of q5n+2,q5n+4 in ∑∞n=0b(4n)qn are congruent to 0(mod5), which proves that b(20n+t)≡0(mod5), for t∈{8,16}.
Consider Eq (1.7)
∞∑n=0b(4n+2)qn=4f54f51f22f4≡4f20f5f22f4(mod20). |
Now
f22f4=(q2;q2)2∞(q4;q4)∞,=(q2;q2)∞(q2;q4)∞(q4;q4)∞(q4;q4)∞, |
f22f4=(q2,q2,q4;q4)∞=∞∑n=−∞(−1)nq2n2. |
Using the above identity, we get
∞∑n=0b(4n+2)qn≡4f20f5∞∑n=−∞(−1)nq2n2(mod20). | (3.18) |
Since 2n2≢1,4(mod5), it follows that the coefficients of q5n+1,q5n+4 in ∑∞n=0b(4n+2)qn are congruent to 0(mod20), which proves Eq (3.9). For the proof of next part, consider Eq (1.6) as:
∞∑n=0b(4n+1)qn=2f52f101f31f32≡2f10f25f31f32(mod10), |
∞∑n=0b(4n+1)qn≡2f10f25∞∑k=0(−1)k(2k+1)qk(k+1)2∞∑m=0(−1)m(2m+1)qm(m+1)(mod10). | (3.19) |
Therefore, to contribute the coefficient of q5n+4, (k,m)≡(2,2)(mod5) and thus the contribution towards the coefficient of q5n+4 is a multiple of 5.
Consider Eq (1.6) as:
∞∑n=0b(4n+1)qn=2f72f71f2≡2f14f7f2(mod14). |
With the help of Euler's pentagonal number theorem,
∞∑n=0b(4n+1)qn≡2f14f7∞∑n=−∞(−1)nqn(3n+1)(mod14). | (3.20) |
As n(3n+1)≢1,5,6(mod7), it readily proves Eq (3.11).
In this section, we find some recurrence relations connecting b(n) and restricted partition functions. First we define some notations. Let ¯pl(n) denotes the number of overpartitions of n with l copies. Then
∞∑n=0¯pl(n)qn=(f2f21)l. |
Let pld(n) denotes the number of partitions of n into distinct parts with l copies. Then
∞∑n=0pld(n)qn=(f2f1)l. |
Theorem 4.1. We have
b(2n)=¯p2(n)−3¯p2(n)+5¯p2(n)+⋯+(−1)k(2k+1)¯p2(n−k(k+1))+⋯, | (4.1) |
(2n)=p4d(n)−p4d(n−2)−p4d(n−4)+p4d(n−10)+p4d(n−14)+⋯+(−1)kp4d(n−k(3k−1))+(−1)kp4d(n−k(3k+1))+⋯. | (4.2) |
Theorem 4.2.
(4n+1)=2p8d(n)−2p8d(n−1)−2p8d(n−2)+2p8d(n−5)+2p8d(n−7)+⋯+(−1)k2p8d(n−k(3k−1)2)+(−1)k2p8d(n−k(3k+1)2)+⋯, | (4.3) |
b(4n+1)=2n∑c=0b(2c)p3d(n−c). | (4.4) |
Theorem 4.3.
(6n+2)=4p10d(n)−8p10d(n−3)+8p10d(n−12)+8p10d(n−27)+⋯+8(−1)kp10d(n−3k2)+⋯. | (4.5) |
Proof of Theorem 4.1. Consider (1.5) as:
∞∑n=0b(2n)qn=(f2f21)2⋅f32. |
Then
∞∑n=0b(2n)qn=(∞∑n=0¯p2(n)qn)(∞∑k=0(−1)k(2k+1)qk(k+1)),=∞∑n=0∞∑k=0(−1)k(2k+1)¯p2(n)qn+k(k+1),=∞∑n=0(∞∑k=0(−1)k(2k+1)¯p2(n−k(k+1)))qn. |
From the last equality, we readily arrive at (4.1). To prove (4.2), consider (1.5) as:
∞∑n=0b(2n)qn=(f2f1)4⋅f2,=(∞∑n=0p4d(n)qn)(∞∑k=−∞(−1)kqk(3k+1)),=(∞∑n=0p4d(n)qn)(1+∞∑k=1(−1)kqk(3k−1)+∞∑k=1(−1)kqk(3k+1)), |
∞∑n=0b(2n)qn=∞∑n=0p4d(n)qn+∞∑n=0(∞∑k=1(−1)kp4d(n)qk(3k−1)+n)+∞∑n=0(∞∑k=1(−1)kp4d(n)qk(3k+1)+n), |
∞∑n=0b(2n)qn=∞∑n=0p4d(n)qn+∞∑n=0(∞∑k=1(−1)kp4d(n−k(3k−1))qn)+∞∑n=0(∞∑k=1(−1)kp4d(n−k(3k+1))qn), |
which proves Eq (4.2).
Proof of Theorem 4.2. Consider Eq (1.6) as:
∞∑n=0b(4n+1)qn=2(f2f1)8f1,=2(∞∑n=0p8d(n)qn)(∞∑k=−∞(−1)kqk(3k+1)2),=2(∞∑n=0p8d(n)qn)(1+∞∑k=1(−1)kqk(3k−1)/2+∞∑k=1(−1)kqk(3k+1)/2), |
∞∑n=0b(4n+1)qn=∞∑n=0p8d(n)qn+∞∑n=0∞∑k=1(−1)kp8d(n)qk(3k−1)/2+n+∞∑n=0∞∑k=1(−1)kp8d(n)qk(3k+1)/2+n, |
∞∑n=0b(4n+1)qn=∞∑n=0p8d(n)qn+∞∑n=0(∞∑k=1(−1)kp8d(n−k(3k−1)2))qn+∞∑n=0(∞∑k=1(−1)kp8d(n−k(3k+1)2))qn, |
which proves Eq (4.3). To prove Eq (4.4), consider Eq (1.6) as:
∞∑n=0b(4n+1)qn=2(f52f41)f32f31,=2(∞∑n=0b(2n)qn)(∞∑k=0p3d(k)qk),=2∞∑n=0(n∑c=0b(2c)p3d(n−c))qn. |
Comparing the coefficients of qn, we arrive at Eq (4.4).
Proof of Theorem 4.3. Consider Eq (1.8) as:
∞∑n=0b(6n+2)qn=4(f2f1)10⋅f23f6,=4(∞∑n=0p10d(n)qn)(∞∑k=−∞(−1)kq3k2),=4(∞∑n=0p10d(n)qn)(1+2∞∑k=1(−1)kq3k2),=4∞∑n=0p10d(n)qn+8∞∑n=0(∞∑k=1(−1)kp10d(n)q3k2+n),=4∞∑n=0p10d(n)qn+8∞∑n=0(∞∑k=1(−1)kp10d(n−3k2))qn. |
Comparing the coefficients of qn to obtain Eq (4.5).
In this paper, we have provided the arithmetic properties of second order mock theta function B(q), introduced by McIntosh. Some congruences are proved for the coefficients of B(q) modulo specific numbers. The questions which arise from this work are:
(i) Are there exist congruences modulo higher primes for B(q)?
(ii) Is there exist any other technique (like modular forms) that helps to look for some more arithmetic properties of B(q)?
(iii) How can we explore the other second order mock theta function A(q)?
The first author is supported by University Grants Commission (UGC), under grant Ref No. 971/(CSIR-UGC NET JUNE 2018) and the the second author is supported by Science and Engineering Research Research Board (SERB-MATRICS) grant MTR/2019/000123. The authors of this paper are thankful to Dr. Rupam Barman, IIT Guwahati, for his valuable insight during establishing Theorems 3.1 and 3.2. We would like to thank the referee for carefully reading our paper and offering corrections and helpful suggestions.
The authors declare there is no conflicts of interest.
[1] |
I. Langmuir, Surface Motion of Water Induced by Wind, Science, 87 (1938), 119–123. https://doi.org/10.1126/science.87.2250.119 doi: 10.1126/science.87.2250.119
![]() |
[2] |
D. D. Craik, S. Leibovich, A rational model for Langmuir circulations, J. Fluid. Mech., 73 (1976), 401–426. https://doi.org/10.1017/s0022112076001420 doi: 10.1017/s0022112076001420
![]() |
[3] |
D. D. Holm, The Ideal Craik-Leibovich Equations, Physica D, 98 (1996), 415–441. https://doi.org/10.1016/0167-2789(96)00105-4 doi: 10.1016/0167-2789(96)00105-4
![]() |
[4] |
V. A. Vladimirov, M. R. E. Proctor, D. W. Hughes, Vortex dynamics of oscillating flows, Arnold Math J., 1 (2015), 113–126. https://doi.org/10.1007/s40598-015-0010-x doi: 10.1007/s40598-015-0010-x
![]() |
[5] |
C. Yang, Multiscale method, Central extensions and a generalized Craik-Leibovich equation, J. Geom. Phys., 116 (2017), 228–243. https://doi.org/10.1016/j.geomphys.2017.02.004 doi: 10.1016/j.geomphys.2017.02.004
![]() |
[6] |
V. I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des uides parfaits, Ann. Inst. Fourier., 16 (1966), 319–361. https://doi.org/10.5802/aif.233 doi: 10.5802/aif.233
![]() |
[7] | V. I. Arnold, B. A. Khesin, Topological methods in hydrodynamics, Springer-Verlag, New York, 1998. https://doi.org/10.1007/b97593 |
[8] |
B. A. Khesin, Yu. V. Chekanov, Invariants of the Euler equations for ideal or barotropic hydrodynamics and superconductivity in D dimensions, Physica D, 40 (1989), 119–131. https://doi.org/10.1016/0167-2789(89)90030-4 doi: 10.1016/0167-2789(89)90030-4
![]() |
[9] |
C. Roger, Extensions centrales d'algèbres et de groupes de Lie de dimension infinie, algèbre de Virasoro et généralisations, Rep. Math. Phys., 35 (1995), 225–266. https://doi.org/10.1016/0034-4877(96)89288-3 doi: 10.1016/0034-4877(96)89288-3
![]() |
[10] |
C. Vizman, Geodesics on extensions of Lie groups and stability: the superconductivity equation, Phys. Lett. A, 284 (2001), 23–30. https://doi.org/10.1016/s0375-9601(01)00279-1 doi: 10.1016/s0375-9601(01)00279-1
![]() |
[11] |
V. Zeitlin, Vorticity and waves: geometry of phase-space and the problem of normal variables, Physics. Letters. A., 164 (1992), 177–183. https://doi.org/10.1016/0375-9601(92)90699-m doi: 10.1016/0375-9601(92)90699-m
![]() |
[12] |
C. Yang, B. Khesin, Averaging, symplectic reduction, and central extensions, Nonlinearity, 33 (2020), 1342–1365. https://doi.org/10.1088/1361-6544/ab5cdf doi: 10.1088/1361-6544/ab5cdf
![]() |
[13] | J. E. Marsden, G. Misiolek, J. Ortega, M. Perlmutter, T. S. Ratiu, Hamiltonian Reduction by Stages, Springer-Verlag, New York, 2007. https://doi.org/10.1007/978-3-540-72470-4 |
1. | Olivia X.M. Yao, New congruences modulo 9 for the coefficients of Gordon-McIntosh's mock theta function ξ ( q ) , 2024, 47, 1607-3606, 239, 10.2989/16073606.2023.2205604 | |
2. |
Yueya Hu, Eric H. Liu, Olivia X. M. Yao,
Congruences modulo 4 and 8 for Ramanujan’s sixth-order mock theta function ρ(q) ,
2025,
66,
1382-4090,
10.1007/s11139-024-01018-x
|