
Silicate minerals make up the majority of the earth's crust and account for almost 92 percent of the total. Silicate sheets, often known as silicate networks, are characterised as definite connectivity parallel designs. A key idea in studying different generalised classes of graphs in terms of planarity is the face of the graph. It plays a significant role in the embedding of graphs as well. Face index is a recently created parameter that is based on the data from a graph's faces. The current draft is utilizing a newly established face index, to study different silicate networks. It consists of a generalized chain of silicate, silicate sheet, silicate network, carbon sheet, polyhedron generalized sheet, and also triangular honeycomb network. This study will help to understand the structural properties of chemical networks because the face index is more generalized than vertex degree based topological descriptors.
Citation: Ricai Luo, Khadija Dawood, Muhammad Kamran Jamil, Muhammad Azeem. Some new results on the face index of certain polycyclic chemical networks[J]. Mathematical Biosciences and Engineering, 2023, 20(5): 8031-8048. doi: 10.3934/mbe.2023348
[1] | Huilin Ge, Yuewei Dai, Zhiyu Zhu, Biao Wang . Robust face recognition based on multi-task convolutional neural network. Mathematical Biosciences and Engineering, 2021, 18(5): 6638-6651. doi: 10.3934/mbe.2021329 |
[2] | Chii-Dong Ho, Gwo-Geng Lin, Thiam Leng Chew, Li-Pang Lin . Conjugated heat transfer of power-law fluids in double-pass concentric circular heat exchangers with sinusoidal wall fluxes. Mathematical Biosciences and Engineering, 2021, 18(5): 5592-5613. doi: 10.3934/mbe.2021282 |
[3] | José M. Sigarreta . Extremal problems on exponential vertex-degree-based topological indices. Mathematical Biosciences and Engineering, 2022, 19(7): 6985-6995. doi: 10.3934/mbe.2022329 |
[4] | Qingqun Huang, Muhammad Labba, Muhammad Azeem, Muhammad Kamran Jamil, Ricai Luo . Tetrahedral sheets of clay minerals and their edge valency-based entropy measures. Mathematical Biosciences and Engineering, 2023, 20(5): 8068-8084. doi: 10.3934/mbe.2023350 |
[5] | Hao Wang, Guangmin Sun, Kun Zheng, Hui Li, Jie Liu, Yu Bai . Privacy protection generalization with adversarial fusion. Mathematical Biosciences and Engineering, 2022, 19(7): 7314-7336. doi: 10.3934/mbe.2022345 |
[6] | Meili Tang, Qian Pan, Yurong Qian, Yuan Tian, Najla Al-Nabhan, Xin Wang . Parallel label propagation algorithm based on weight and random walk. Mathematical Biosciences and Engineering, 2021, 18(2): 1609-1628. doi: 10.3934/mbe.2021083 |
[7] | Xinmei Liu, Xinfeng Liang, Xianya Geng . Expected Value of Multiplicative Degree-Kirchhoff Index in Random Polygonal Chains. Mathematical Biosciences and Engineering, 2023, 20(1): 707-719. doi: 10.3934/mbe.2023032 |
[8] | Fengwei Li, Qingfang Ye, Juan Rada . Extremal values of VDB topological indices over F-benzenoids with equal number of edges. Mathematical Biosciences and Engineering, 2023, 20(3): 5169-5193. doi: 10.3934/mbe.2023240 |
[9] | Stefano Cosenza, Paolo Crucitti, Luigi Fortuna, Mattia Frasca, Manuela La Rosa, Cecilia Stagni, Lisa Usai . From Net Topology to Synchronization in HR Neuron Grids. Mathematical Biosciences and Engineering, 2005, 2(1): 53-77. doi: 10.3934/mbe.2005.2.53 |
[10] | Qiming Li, Tongyue Tu . Large-pose facial makeup transfer based on generative adversarial network combined face alignment and face parsing. Mathematical Biosciences and Engineering, 2023, 20(1): 737-757. doi: 10.3934/mbe.2023034 |
Silicate minerals make up the majority of the earth's crust and account for almost 92 percent of the total. Silicate sheets, often known as silicate networks, are characterised as definite connectivity parallel designs. A key idea in studying different generalised classes of graphs in terms of planarity is the face of the graph. It plays a significant role in the embedding of graphs as well. Face index is a recently created parameter that is based on the data from a graph's faces. The current draft is utilizing a newly established face index, to study different silicate networks. It consists of a generalized chain of silicate, silicate sheet, silicate network, carbon sheet, polyhedron generalized sheet, and also triangular honeycomb network. This study will help to understand the structural properties of chemical networks because the face index is more generalized than vertex degree based topological descriptors.
To exemplify the phenomena of compounds scientifically, researchers utilize the contraption of the diagrammatic hypothesis, it is a well-known branch of geometrical science named graph theory. This division of numerical science provides its services in different fields of sciences. The particular example in networking [1], from electronics [2], and for the polymer industry, we refer to see [3]. Particularly in chemical graph theory, this division has extra ordinary assistance to study giant and microscope-able chemical compounds. For such a study, researchers made some transformation rules to transfer a chemical compound to a discrete pattern of shapes (graph). Like, an atom represents as a vertex and the covalent bonding between atoms symbolized as edges. Such transformation is known as molecular graph theory. A major importance of this alteration is that the hydrogen atoms are omitted. Some chemical structures and compounds conversion are presented in [4,5,6].
In cheminformatics, the topological index gains attraction due to its implementations. Various topological indices help to estimate a bio-activity and physicochemical characteristics of a chemical compound. Some interesting and useful topological indices for various chemical compounds are studied in [3,7,8]. A topological index modeled a molecular graph or a chemical compound into a numerical value. Since 1947, topological index implemented in chemistry [9], biology [10], and information science [11,12]. Sombor index and degree-related properties of simplicial networks [13], Nordhaus–Gaddum-type results for the Steiner Gutman index of graphs [14], Lower bounds for Gaussian Estrada index of graphs [15], On the sum and spread of reciprocal distance Laplacian eigenvalues of graphs in terms of Harary index [16], the expected values for the Gutman index, Schultz index, and some Sombor indices of a random cyclooctane chain [17,18,19], bounds on the partition dimension of convex polytopes [20,21], computing and analyzing the normalized Laplacian spectrum and spanning tree of the strong prism of the dicyclobutadieno derivative of linear phenylenes [22], on the generalized adjacency, Laplacian and signless Laplacian spectra of the weighted edge corona networks [23,24], Zagreb indices and multiplicative Zagreb indices of Eulerian graphs [25], Minimizing Kirchhoff index among graphs with a given vertex bipartiteness, [26], asymptotic Laplacian energy like invariant of lattices [27]. Few interesting studies regarding the chemical graph theory can be found in [28,29,30,31,32].
Recently, the researchers of [33] introduced a topological descriptor and called the face index. Moreover, the idea of computing structure-boiling point and energy of a structure, motivated them to introduced this parameter without heavy computation. They computed these parameters for different models compare the results with previous literature and found approximate solutions with comparatively less computations. This is all the blessings of face index of a graph. The major concepts of this research work are elaborated in the given below definitions.
Definition 1.1. [33] Let a graph G=(V(G),E(G),F(G)) having face, edge and vertex sets notation with F(G),E(G),V(G), respectively. It is mandatory that the graph is connected, simple and planar. If e from the edge set E(G), is one of those edges which surrounds a face, then the face f from the face set F(G), is incident to the edge e. Likewise, if a vertex α from the vertex set V(G) is at the end of those incident edges, then a face f is incident to that vertex. This face-vertex incident relation is symbolized here by the notation α∼f. The face degree of f in G is described as d(f)=∑α∼fd(α), which are elaborated in the Figure 1.
Definition 1.2. [33] The face index FI(G), for a graph G, is formulated as
FI(G)=∑f∈F(G)d(f)=∑α∼f,f∈F(G)d(α). |
In the Figure 1, we can see that there are two faces with degree 4, exactly two with five count and four with count of 6. Moreover, there is an external face with count of face degree 28, which is the count of vertices.
As the information given above that the face index is quite new and introduced in the year 2020, so there is not so much literature is available. A few recent studies on this topic are summarized here. A chemical compound of silicon carbides is elaborated with such novel definition in [34]. Some carbon nanotubes are discussed in [35]. Except for the face index, there are distance and degree-based graphical descriptors available in the literature. For example, distance-based descriptors of phenylene nanotube are studied in [36], and in [37] titania nanotubes are discussed with the same concept. Star networks are studied in [38], with the concept of degree-based descriptors. Bounds on the descriptors of some generalized graphs are discussed in [39]. General Sierpinski graph is discussed in [40], in terms of different topological descriptor aspects. The study of hyaluronic acid-doxorubicin ar found in [41], with the same concept of the index. The curvilinear regression model of the topological index for the COVID-19 treatment is discussed in [42]. For further reading and interesting advancements of topological indices, polynomials of zero-divisor structures are found in [43], zero divisor graph of commutative rings [44], swapped networks modeled by optical transpose interconnection system [45], metal trihalides network [46], some novel drugs used in the cancer treatment [47], para-line graph of Remdesivir used in the prevention of corona virus [48], tightest nonadjacently configured stable pentagonal structure of carbon nanocones [49]. In order to address a novel preventive category (P) in the HIV system known as the HIPV mathematical model, the goal of this study is to offer a design of a Morlet wavelet neural network (MWNN) [50].
In the next section, we discussed the newly developed face index or face-based index for different chemical compounds. Silicate network, triangular honeycomb network, carbon sheet, polyhedron generalized sheet, and generalized chain of silicate network are studied with the concept of the face-based index. Given that the face index is more versatile than vertex degree-based topological descriptors, this study will aid in understanding the structural characteristics of chemical networks. Only the difficulty authors will face to compute the face degree of a generalized network or structure, because it is more generalized version and taking degree based partition of edges into this umbrella of face index.
Silicates are formed when metal carbonates or metal oxides react with sand. The SiO4, which has a tetrahedron structure, is the fundamental chemical unit of silicates. The central vertex of the SiO4 tetrahedron is occupied by silicon ions, while the end vertices are occupied by oxygen ions [51,52,53]. A silicate sheet is made up of rings of tetrahedrons that are joined together in a two-dimensional plane by oxygen ions from one ring to the other to form a sheet-like structure. The silicate network SLn symbol, where n represents the total number of hexagons occurring between the borderline and center of the silicate network SLn. The silicate network of dimension one is depicted in Figure 2. It contain total 3n(5n+1) vertices are 36n2 edges. Moreover, the result required is detailed are available in Table 1.
Dimension | |f12| | |f15| | |f36| |
1 | 24 | 48 | 7 |
2 | 32 | 94 | 14 |
3 | 40 | 152 | 23 |
4 | 48 | 222 | 34 |
5 | 56 | 304 | 47 |
6 | 64 | 398 | 62 |
7 | 72 | 504 | 79 |
8 | 80 | 622 | 98 |
. | . | . | . |
. | . | . | . |
. | . | . | . |
n | 8n+16 | 6n2+28n+14 | n2+4n+2 |
Theorem 2.1. Let SLn be the silicate network of dimension n≥1. Then the face index of SLn is
FI(SLn)=126n2+720n+558. |
Proof. Consider SLn the graph of silicate network with dimension n. Suppose fi denotes the faces of graph SLn having degree i. that is, d(fi)=∑α∼fid(α)=i and |fi| denotes the number of faces with degree i. The graph SLn contains three types of internal faces f12, f15, f36, and single external face which is usually denoted by f∞.
If SLn has one dimension then sum of degree of vertices incident to the external face is 144 and when SLn has two dimension then sum of degree of incident vertices to the external face is 204 whenever SLn has three dimension then sum of degree of incident vertices to the external face is 264. Similarly, SLn has n−dimension then sum of degree of incident vertices to the external face is 60n+84.
The number of internal faces with degree in each dimension is mentioned in Table 1.
By using the definition of face index FI we have
FI(SLn)=∑α∼f∈F(SLn)d(α)=∑α∼f12∈F(SLn)d(α)+∑α∼f15∈F(SLn)d(α)+∑α∼f36∈F(SLn)d(α)+∑α∼f∞∈F(SLn)d(α)=|f12|(12)+|f15|(15)+|f36|(36)+(60n+84)=(8n+16)(12)+(6n2+28n+14)(15)+(n2+4n+2)(36)+60n+84=126n2+72n+558. |
Hence, this is our required result.
A chain silicate network of dimension (m,n) is symbolized as CSL(m,n) which is made by arranging (m,n) tetrahedron molecules linearly. A chain silicate network of dimension (m,n) with m,n≥1 where m denotes the number of rows and each row has n number of tetrahedrons. The following theorem formulates the face index FI for chain silicate network.
Theorem 2.2. Let CSL(m,n) be the chain of silicate network of dimension m,n≥1. Then the face index FI of the graph CSL(m,n) is
FI(CSL(m,n))={48n−12if m=1, n≥1;96m−12if n=1, m≥2;168m−60if n=2,m≥2;45m−9n+36mn−42if both m,n are even45m−9n+36mn−21otherwise. |
Proof. Let CSL(m,n) be the graph of chain silicate network of dimension (m,n) with m,n≥1 where m represents the number of rows and n is the number of tetrahedrons in each row. A graph CSL(m,n) for m=1 contains three type of internal faces f9, f12 and f15 with one external face f∞. While for m≥2, it has four type of internal faces f9, f12, f15 and f36 with one external face f∞. We want to evaluate the algorithm of face index FI for chain silicate network. We will discuss it in two different cases.
Case 1: When CSL(m,n) has one row (m=1) with n number of tetrahedrons as shown in the Figure 3.
The graph has three type of internal faces f9, f12 and f15 with one external face f∞. The sum of degree of incident vertices to the external face is 9n and number of faces are |f9|=2, |f12|=2n and |f15|=n−2. Now the face index FI of the graph CSL(m,n) is given by
FI(CSL(m,n))=∑α∼f∈F(CSL(m,n))d(α)=∑α∼f9∈F(CSL(m,n))d(α)+∑α∼f12∈F(CSL(m,n))d(α)+∑α∼f15∈F(CSL(m,n))d(α)+∑α∼f∞∈F(CSL(m,n))d(α)=|f9|(9)+|f12|(12)+|f15|(15)+(9n)=(2)(9)+(2n)(12)+(n−2)(15)+9n=48n−12. |
Case 2: When CSL(m,n) has more than one rows (m≠1) with n number of tetrahedrons in each row as shown in the Figure 4.
The graph has four type of internal faces f9, f12, f15 and f36 with one external face f∞. The sum of degree of incident vertices to the external face is
∑α∼f∞∈F(CSL(m,n))d(α)={18mif n=1, m≥1;27mif n=2, m≥1;30m+15n−30if both m,n are even30m+15n−33otherwise. |
The number of faces are |f9|, |f12|, f15 and |f36| are given by
|f9|={2if m is odd3+(−1)nif m is even.|f12|={2(2m+n−1)if m is odd4(⌊n+12⌋+2m−1)if m is even|f15|=(3m−2)n−m|f36|={(m−12)(n−1)if m is odd(2n+(−1)n−14)(m−22)nif m is even. |
Now the face index FI of the graph CSL(m,n) is given by
FI(CSL(m,n))=∑α∼f∈F(CSL(m,n))d(α)=∑α∼f9∈F(CSL(m,n))d(α)+∑α∼f12∈F(CSL(m,n))d(α)+∑α∼f15∈F(CSL(m,n))d(α)+∑α∼f36∈F(CSL(m,n))d(α)+∑α∼f∞∈F(CSL(m,n))d(α)=|f9|(9)+|f12|(12)+|f15|(15)+|f36|(36)+∑α∼f∞∈F(CSL(m,n))d(α). |
After some mathematical simplifications, we can get
FI(CSL(m,n))={48n−12if m=196m−12if n=1,∀m168m−60if n=2,∀m45m−9n+36mn−42if both m,n are even45m−9n+36mn−21otherwise. |
There are three regular plane tessellations known to exist, each constituted from the same type of regular polygon: triangular, square, and hexagonal. The triangular tessellation is used to define the hexagonal network, which is extensively studied in [54]. A dimensioned hexagonal network THk has 3k2−3k+1 vertices and 9k2−15k+6 edges, where k is the number of vertices on one side of the hexagon. It has 2k−2 diameter. There are six vertices of degree three that are referred to as corner vertices. Moreover, the result required detailed are available in the Table 2.
Dimension | |f12| | |f14| | |f17| | |f18| |
1 | 6 | 0 | 0 | 0 |
2 | 6 | 12 | 12 | 12 |
3 | 6 | 24 | 24 | 60 |
4 | 6 | 36 | 36 | 144 |
5 | 6 | 48 | 48 | 264 |
6 | 6 | 60 | 60 | 420 |
7 | 6 | 72 | 72 | 612 |
8 | 6 | 84 | 84 | 840 |
. | . | . | . | . |
. | . | . | . | . |
. | . | . | . | . |
k | 6 | 12(k−1) | 12(k−1) | 18k2−42k+24 |
Theorem 2.3. Let THk be the triangular honeycomb network of dimension k≥1. Then the face index of graph THk is
FI(THk)=324k2−336k+102. |
Proof. Consider THk be a graph of triangular honeycomb network. The graph TH1 has one internal and only one external face while graph THk with k≥2, contains four types of internal faces f12, f14, f17, and f18 with one external face f∞.
For TH1 the sum of degree of incident vertices to the external face is 18 and in TH2 the sum of degree of incident vertices to the external face is 66. Whenever the graph TH3, the sum of degree of incident vertices to the external face is 114. Similarly, for THk has n−dimension then sum of degree of incident vertices to the external face is 48k−30.
The number of internal faces with degree in each dimension is given in Table 2.
By using the definition of face index FI we have
FI(THk)=∑α∼f∈F(THk)d(α)=∑α∼f12∈F(THk)d(α)+∑α∼f14∈F(THk)d(α)+∑α∼f17∈F(THk)d(α)+∑α∼f18∈F(THk)d(α)+∑α∼f∞∈F(THk)d(α)=|f12|(12)+|f14|(14)+|f17|(17)+|f18|(18)+(48k−30)=(6)(12)+(12(k−1))(14)+(12(k−1))(17)+(18k2−42k+24)(18)+48k−30=324k2−336k+102. |
Hence, this is our required result.
Given carbon sheet in the Figure 6, is made by grid of hexagons. There are few types of carbon sheets are given in [55,56]. The carbon sheet is symbolize as HCSm,n, where n represents the total number of vertical hexagons and m denotes the horizontal hexagons. It contain total 4mn+2(n+m)−1 vertices and 6nm+2m+n−2 edges. Moreover, the result required detailed are available in Tables 3 and 4.
Dimension m | |f15| | |f16| | |f18| | |f∞| |
2 | 3 | 2(n−1) | n−1 | 20n+7 |
Dimension m | |f15| | |f16| | |f17| | |f18| | |f∞| |
2 | 3 | 2(n−1) | 0 | n−1 | 20n+7 |
3 | 2 | 2n | 1 | 3(n−1) | 20n+17 |
4 | 2 | 2n | 3 | 5(n−1) | 20n+27 |
5 | 2 | 2n | 5 | 7(n−1) | 20n+37 |
6 | 2 | 2n | 7 | 9(n−1) | 20n+47 |
. | . | . | . | . | . |
. | . | . | . | . | . |
. | . | . | . | . | . |
m | 2 | 2n | 2m−5 | 2mn−2m−3n+3 | 20n+10m−13 |
Theorem 2.4. Let HCSm,n be the carbon sheet of dimension (m,n) and m,n≥2. Then the face index of HCSm,n is
FI(HCSm,n)={70n+2ifm=236mn−14−2(n−4m)ifm≥3. |
Proof. Consider HCSm,n be the carbon sheet of dimension (m,n) and m,n≥2. Let fi denotes the faces of graph HCSm,n having degree i, which is d(fi)=∑α∼fid(α)=i, and |fi| denotes the number of faces with degree i. A graph HCSm,n for a particular value of m=2 contains three types of internal faces f15, f16, f17 and f18 with one external face f∞. While for the generalize values of m≥3, it contain four types of internal faces f15, f16 and f17 with one external face f∞ in usual manner. For the face index of generalize nanotube, we will divide into two cases on the values of m.
Case 1: When HCSm,n has one row or HCS2,n.
A graph HCSm,n for a this particular value of m=2 contains three types of internal faces |f15|=3, |f16|=2(n−1) and |f18|=n−1 with one external face f∞. For the face index of carbon sheet, details are given in the Table 3. Now the face index FI of the graph NT2,n is given by
FI(HCS2,n)=∑α∼f∈F(HCS2,n)d(α)=∑α∼f15∈F(HCS2,n)d(α)+∑α∼f16∈F(HCS2,n)d(α)+∑α∼f18∈F(HCS2,n)d(α)+∑α∼f∞∈F(HCS2,n)d(α)=|f15|(15)+|f16|(16)+|f18|(18)+20n+7.=3(15)+2(n−1)(16)+(n−1)(18)+20n+7.=70n+2. |
Case 2: When HCSm,n has m≥3 rows.
A graph HCSm,n for generalize values of m≥3 contains four types of internal faces |f15|=2, |f16|=2n, |f17|=2m−5 and |f18|=2mn−2m−3n+3 with one external face f∞. For the face index of carbon sheet, details are given in the Table 4. Now the face index FI of the graph NTm,n is given by
FI(HCSm,n)=∑α∼f∈F(HCSm,n)d(α)=∑α∼f15∈F(HCSm,n)d(α)+∑α∼f16∈F(HCSm,n)d(α)+∑α∼f17∈F(HCSm,n)d(α)+∑α∼f18∈F(HCSm,n)d(α)+∑α∼f∞∈F(HCSm,n)d(α)=|f15|(15)+|f16|(16)+|f17|(17)+|f18|(18)+20n+10m−13.=36mn−2n+8m−14. |
Given structure of polyhedron generalized sheet of C∗28 in the Figure 7, is made by generalizing a C∗28 polyhedron structure which is shown in the Figure 8. This particular structure of C∗28 polyhedron are given in [57]. The polyhedron generalized sheet of C∗28 is as symbolize PHSm,n, where n represents the total number of vertical C∗28 polyhedrons and m denotes the horizontal C∗28 polyhedrons. It contain total 23nm+3n+2m vertices and 33nm+n+m edges. Moreover, the result required detailed are available in Tables 3 and 5.
m | |f14| | |f15| | |f16| | |f17| | |f18| | |f20| | |f35| |
1 | 2n+1 | 2 | 4n−2 | 0 | 0 | 2n−1 | 0 |
2 | 2n+2 | 2 | 8n−2 | 2 | 2n−2 | 4n−2 | 2n−1 |
3 | 2n+3 | 2 | 12n−2 | 4 | 4n−4 | 6n−3 | 4n−2 |
. | . | . | . | . | . | . | . |
. | . | . | . | . | . | . | . |
. | . | . | . | . | . | . | . |
m | 2n+m | 2 | 4mn−2 | 2m−2 | 2mn−2(m+n)+2 | 2mn−m | 2mn−(m+2n)+1 |
Theorem 2.5. Let PHSm,n be the polyhedron generalized sheet of C∗28 of dimension (m,n) and m,n≥1. Then the face index of PHSm,n is
FI(PHSm,n)=210mn−2(3m+5n). |
Proof. Consider PHSm,n be the polyhedron generalized sheet of C∗28 of dimension (m,n) and m,n≥1. Let fi denotes the faces of graph PHSm,n having degree i, which is d(fi)=∑α∼fid(α)=i, and |fi| denotes the number of faces with degree i. A graph PHSm,n for the generalize values of m,n≥1, it contain seven types of internal faces f14,f15,f16,f17,f18,f20 and f35 with one external face f∞ in usual manner. For the face index of polyhedron generalized sheet, details are given in the Table 5.
A graph PHSm,n for generalize values of m,n≥1 contains seven types of internal faces |f14|=2n+m, |f15|=2, |f16|=4nm−2, |f17|=2(m−1), |f18|=2nm−2(m+n)+2, |f20|=2nm−2mn−m, and |f35|=2mn−m−2n+1 with one external face f∞. Now the face index FI of the graph PHSm,n is given by
FI(PHSm,n)=∑α∼f∈F(PHSm,n)d(α)=∑α∼f14∈F(PHSm,n)d(α)+∑α∼f15∈F(PHSm,n)d(α)+∑α∼f16∈F(PHSm,n)d(α)+∑α∼f17∈F(PHSm,n)d(α)+∑α∼f18∈F(PHSm,n)d(α)+∑α∼f20∈F(PHSm,n)d(α)+∑α∼f35∈F(PHSm,n)d(α)+∑α∼f∞∈F(PHSm,n)d(α)=|f14|(14)+|f15|(15)+|f16|(16)+|f17|(17)+|f18|(18)+|f20|(20)+|f35|(35)+37m+68n−35.=210mn−6m−10n. |
With the advancement of technology, types of equipment and apparatuses of studying different chemical compounds are evolved. But topological descriptors or indices are still preferable and useful tools to develop numerical science of compounds. Therefore, from time to time new topological indices are introduced to study different chemical compounds deeply. In this study, we discussed a newly developed tool of some silicate type networks and generalized sheets, carbon sheet, polyhedron generalized sheet, with the face index concept. It provides numerical values of these networks based on the information of faces. It also helps to study physicochemical characteristics based on the faces of silicate networks.
M. K. Jamil conceived of the presented idea. K. Dawood developed the theory and performed the computations. M. Azeem verified the analytical methods, R. Luo investigated and supervised the findings of this work. All authors discussed the results and contributed to the final manuscript.
This work was supported by the National Science Foundation of China (11961021 and 11561019), Guangxi Natural Science Foundation (2020GXNSFAA159084), and Hechi University Research Fund for Advanced Talents (2019GCC005).
The authors declare that they have no conflicts of interest.
[1] |
M. F. Nadeem, M. Azeem, A. Khalil, The locating number of hexagonal möbius ladder network, J. Appl. Math. Comput., 66 (2021), 149–165. https://doi.org/10.1007/s12190-020-01430-8 doi: 10.1007/s12190-020-01430-8
![]() |
[2] |
A. Ahmad, A. N. Koam, M. Siddiqui, M. Azeem, Resolvability of the starphene structure and applications in electronics, Ain Shams Eng. J., 13 (2022), 101587. https://doi.org/10.1016/j.asej.2021.09.014 doi: 10.1016/j.asej.2021.09.014
![]() |
[3] |
M. F. Nadeem, M. Imran, H. M. A. Siddiqui, M. Azeem, A. Khalil, Y. Ali, Topological aspects of metal-organic structure with the help of underlying networks, Arab. J. Chem., 14 (2021), 103157. https://doi.org/10.1016/j.arabjc.2021.103157 doi: 10.1016/j.arabjc.2021.103157
![]() |
[4] | M. Azeem, M. F. Nadeem, Metric-based resolvability of polycyclic aromatic hydrocarbons, Eur. Phys. J. Plus, 136 (2021), 395. |
[5] |
M. Imran, A. Ahmad, Y. Ahmad, M. Azeem, Edge weight based entropy measure of different shapes of carbon nanotubes, IEEE Access, 9 (2021), 139712–139724. https://doi.org/10.1109/ACCESS.2021.3119032 doi: 10.1109/ACCESS.2021.3119032
![]() |
[6] |
M. F. Nadeem, A. Shabbir, Computing and comparative analysis of topological invariants of y-junction carbon nanotubes, Int. J. Quant. Chem., 122 (2022), e26847. https://doi.org/10.1002/qua.26847 doi: 10.1002/qua.26847
![]() |
[7] |
X. Zuo, M. F. Nadeem, M. K. Siddiqui, M. Azeem, Edge weight based entropy of different topologies of carbon nanotubes, IEEE Access, 9 (2021), 102019–102029. https://doi.org/10.1109/ACCESS.2021.3097905 doi: 10.1109/ACCESS.2021.3097905
![]() |
[8] |
M. F. Nadeem, M. Azeem, H. M. K. Siddiqui, Comparative study of zagreb indices for capped, semi-capped and uncapped carbon nanotubes, Polycyclic Aromat. Compd., 42 (2022), 3545–3562. https://doi.org/10.1080/10406638.2021.1890625 doi: 10.1080/10406638.2021.1890625
![]() |
[9] |
F. Afzal, S. Hussain, D. Afzal, S. Razaq, Some new degree based topological indices via m-polynomial, J. Inf. Optim. Sci., 41 (2020), 1061–1076. https://doi.org/10.1080/02522667.2020.1744307 doi: 10.1080/02522667.2020.1744307
![]() |
[10] | A. Rauf, M. Naeem, S. U. Bukhari, Quantitative structure–property relationship of ev-degree and ve-degree based topological indices with physico-chemical properties of benzene derivatives and application, Int. J. Quant. Chem., 122 (2022), e26851. |
[11] | A. Rauf, M. Naeem, A. Aslam, Quantitative structure–property relationship of edge weighted and degree-based entropy of benzene derivatives, Int. J. Quant. Chem., 122 (2022), e26839. |
[12] | J. B. Liu, X.-B. Peng, S. Hayat, Topological index analysis of a class of networks analogous to alicyclic hydrocarbons and their derivatives, Int. J. Quant. Chem., 122 (2022), e26827. |
[13] |
Y. Shang, Sombor index and degree-related properties of simplicial networks, Appl. Math. Comput., 419 (2022), 126881. https://doi.org/10.1016/j.amc.2021.126881 doi: 10.1016/j.amc.2021.126881
![]() |
[14] |
Z. Wang, Y. Mao, K. C. Das, Y. Shang, Nordhaus–gaddum-type results for the steiner gutman index of graphs, Symmetry, 12 (2020), 1711. https://doi.org/10.3390/sym12101711 doi: 10.3390/sym12101711
![]() |
[15] |
Y. Shang, Lower bounds for gaussian estrada index of graphs, Symmetry, 10 (2018), 325. https://doi.org/10.3390/sym10080325 doi: 10.3390/sym10080325
![]() |
[16] |
S. Khan, S. Pirzada, Y. Shang, On the sum and spread of reciprocal distance laplacian eigenvalues of graphs in terms of harary index, Symmetry, 14 (2022), 1937. https://doi.org/10.3390/sym14091937 doi: 10.3390/sym14091937
![]() |
[17] | J. B. Liu, J. J. Gu, K. Wang, The expected values for the gutman index, schultz index, and some sombor indices of a random cyclooctane chain, Int. J. Quant. Chem., 123 (2022). |
[18] |
M. Azeem, M. Imran, M. F. Nadeem, Sharp bounds on partition dimension of hexagonal möbius ladder, J. King Saud Univ. Sci., 34 (2022), 101779. https://doi.org/10.1016/j.jksus.2021.101779 doi: 10.1016/j.jksus.2021.101779
![]() |
[19] |
A. Shabbir, M. Azeem, On the partition dimension of tri-hexagonal alpha-boron nanotube, IEEE Access, 9 (2021), 55644–55653. https://doi.org/10.1109/ACCESS.2021.3071716 doi: 10.1109/ACCESS.2021.3071716
![]() |
[20] |
J. B. Liu, M. F. Nadeem, M. Azeem, Bounds on the partition dimension of convex polytopes, Comb. Chem. High Throughput Screening, 25 (2022), 547–553. https://doi.org/10.2174/1386207323666201204144422 doi: 10.2174/1386207323666201204144422
![]() |
[21] | J. B. Liu, Y. Bao, W. T. Zheng, S. Hayat, Network coherence analysis on a family of nested weighted n-polygon networks, Fractals, 29 (2021), 2150260. |
[22] | J. B. Liu, J. J. Gu, Computing and analyzing the normalized laplacian spectrum and spanning tree of the strong prism of the dicyclobutadieno derivative of linear phenylenes, Int. J. Quant. Chem., 122 (2022), e26972. |
[23] |
J. B. Liu, J. Zhao, Z. Q. Cai, On the generalized adjacency, laplacian and signless laplacian spectra of the weighted edge corona networks, Phys. A Stat. Mechan. Appl., 540 (2020), 123073. https://doi.org/10.1016/j.physa.2019.123073 doi: 10.1016/j.physa.2019.123073
![]() |
[24] | J.-B. Liu, J. Zhao, J. Min, J. Cao, The hosoya index of graphs formed by a fractal graph, Fractals, 27 (2019), 1950135. |
[25] |
J.-B. Liu, C. Wang, S. Wang, and B. Wei, Zagreb indices and multiplicative zagreb indices of eulerian graphs, Bull. Malays. Math. Sci. Soc., 42 (2017), 67–78. https://doi.org/10.1007/s40840-017-0463-2 doi: 10.1007/s40840-017-0463-2
![]() |
[26] | J. B. Liu, X. F. Pan, Minimizing kirchhoff index among graphs with a given vertex bipartiteness, Appl. Math. Comput., 291 (2016), 84–88. |
[27] |
J. B. Liu, X. F. Pan, F. T. Hu, F. F. Hu, Asymptotic laplacian-energy-like invariant of lattices, Appl. Math. Comput., 253 (2015), 205–214. https://doi.org/10.1016/j.amc.2014.12.035 doi: 10.1016/j.amc.2014.12.035
![]() |
[28] |
S. Bukhari, M. K. Jamil, M. Azeem, S. Swaray, Patched network and its vertex-edge metric-based dimension, IEEE Access, 11 (2023), 4478–4485. https://doi.org/10.1109/ACCESS.2023.3235398 doi: 10.1109/ACCESS.2023.3235398
![]() |
[29] | M. C. Shanmukha, S. Lee, A. Usha, K. C. Shilpa, M. Azeem, Degree-based entropy descriptors of graphenylene using topological indices, Comput. Model. Eng. Sci., 2023 (2023), 1–25. |
[30] |
X. Zhang, M. T. A. Kanwal, M. Azeem, M. K. Jamil, M. Mukhtar, Finite vertex-based resolvability of supramolecular chain in dialkyltin, Main Group Metal Chem., 45 (2022), 255–264. https://doi.org/10.1515/mgmc-2022-0027 doi: 10.1515/mgmc-2022-0027
![]() |
[31] |
Q. Huang, A. Khalil, D. A. Ali, A. Ahmad, R. Luo, M. Azeem, Breast cancer chemical structures and their partition resolvability, Math. Biosci. Eng., 20 (2022), 3838–3853. https://doi.org/10.3934/mbe.2023180 doi: 10.3934/mbe.2023180
![]() |
[32] |
M. Azeem, M. K. Jamil, A. Javed, A. Ahmad, Verification of some topological indices of y-junction based nanostructures by m-polynomials, J. Math., 2022 (2022), 1–18. https://doi.org/10.1155/2022/8238651 doi: 10.1155/2022/8238651
![]() |
[33] | M. K. Jamil, M. Imran, K. A. Sattar, Novel face index for benzenoid hydrocarbons, Mathematics, 8 (2020), 312. |
[34] |
X. Zhang, A. Raza, A. Fahad, M. K. Jamil, M. A. Chaudhry, Z. Iqbal, On face index of silicon carbides, Discrete Dyn. Nat. Soc., 2020 (2020), 1–8. https://doi.org/10.1155/2020/6048438 doi: 10.1155/2020/6048438
![]() |
[35] |
A. Ye, A. Javed, M. K. Jamil, K. A. Sattar, A. Aslam, Z. Iqbal, et al., On computation of face index of certain nanotubes, Discrete Dyn. Nat. Soc., 2020 (2020), 1–6. https://doi.org/10.1155/2020/3468426 doi: 10.1155/2020/3468426
![]() |
[36] |
Z. Ahmad, , M. Naseem, M. K. Jamil, M. K. Siddiqui, M. F. Nadeem, New results on eccentric connectivity indices of v-phenylenic nanotube, Eurasian Chem. Commun., 2 (2020), 663–671. https://doi.org/10.33945/SAMI/ECC.2020.6.3 doi: 10.33945/SAMI/ECC.2020.6.3
![]() |
[37] |
Z. Ahmad, , M. Naseem, M. K. Jamil, M. F. Nadeem, S. Wang, Eccentric connectivity indices of titania nanotubes TiO, Eurasian Chem. Commun., 2 (2020), 712–721. https://doi.org/10.33945/SAMI/ECC.2020.6.8 doi: 10.33945/SAMI/ECC.2020.6.8
![]() |
[38] |
A. N. A. Koam, A. Ahmad, M. Nadeem, Comparative study of valency-based topological descriptor for hexagon star network, Comput. Syst. Sci. Eng., 36 (2021), 293–306. https://doi.org/10.32604/csse.2021.014896 doi: 10.32604/csse.2021.014896
![]() |
[39] | H. M. A. Siddiqui, S. Baby, M. F. Nadeem, M. K. Shafiq, Bounds of some degree based indices of lexicographic product of some connected graphs, Polycyclic Aromat. Compd., 42 (2022), 2568–2580. |
[40] |
J. B. Liu, H. M. A. Siddiqui, M. F. Nadeem, M. A. Binyamin, Some topological properties of uniform subdivision of sierpiński graphs, Main Group Metal Chem., 44 (2021), 218–227. https://doi.org/10.1515/mgmc-2021-0006 doi: 10.1515/mgmc-2021-0006
![]() |
[41] |
M. Ishtiaq, A. Rauf, Q. Rubbab, M. K. Siddiqui, H. Ibrahim, Algebraic polynomial based topological properties of anti-tumor drug hyaluronic acid-doxorubicin (HAD), Polycyclic Aromat. Compd., 42 (2022), 7049–7070. https://doi.org/10.1080/10406638.2021.1995011 doi: 10.1080/10406638.2021.1995011
![]() |
[42] |
V. Ravi, M. K. Siddiqui, N. Chidambaram, K. Desikan, On topological descriptors and curvilinear regression analysis of antiviral drugs used in COVID-19 treatment, Polycyclic Aromat. Compd., 42 (2022), 6932–6945. https://doi.org/10.1080/10406638.2021.1993941 doi: 10.1080/10406638.2021.1993941
![]() |
[43] | A. Ahmad, S. C. López, Distance-based topological polynomials associated with zero-divisor graphs, Math. Prob. Eng., 2021 (2021), 1–8. |
[44] | A. Ahmad, Vertex-degree based eccentric topological descriptors of zero divisor graph of commutative rings, Online J. Anal. Comb., 15 (2020), 1–10. |
[45] |
A. Ahmad, R. Hasni, K. Elahi, M. A. Asim, Polynomials of degree-based indices for swapped networks modeled by optical transpose interconnection system, IEEE Access, 8 (2020), 214293–214299. https://doi.org/10.1109/ACCESS.2020.3039298 doi: 10.1109/ACCESS.2020.3039298
![]() |
[46] |
F. A. Abolaban, A. Ahmad, M. A. Asim, Computation of vertex-edge degree based topological descriptors for metal trihalides network, IEEE Access, 9 (2021), 65330–65339. https://doi.org/10.1109/ACCESS.2021.3076036 doi: 10.1109/ACCESS.2021.3076036
![]() |
[47] |
Özge Çolakoğlu Havare, Topological indices and QSPR modeling of some novel drugs used in the cancer treatment, Int. J. Quant. Chem., 121 (2021), e26813. https://doi.org/10.1002/qua.26813 doi: 10.1002/qua.26813
![]() |
[48] | J. B. Liu, R. M. Singaraj, Topological analysis of para-line graph of remdesivir used in the prevention of corona virus, Int. J. Quant. Chem., 121 (2021), e26778. |
[49] | M. M. Zobair, M. A. Malik, H. Shaker, Eccentricity-based topological invariants of tightest nonadjacently configured stable pentagonal structure of carbon nanocones, Int. J. Quant. Chem., 121 (2021), e26807. |
[50] |
Z. Sabir, M. Umar, M. A. Z. Raja, H. M. Baskonus, W. Gao, Designing of morlet wavelet as a neural network for a novel prevention category in the HIV system, Int. J. Biomath., 15 (2021), 2250012. https://doi.org/10.1142/S1793524522500127 doi: 10.1142/S1793524522500127
![]() |
[51] |
M. Cancan, D. Afzal, S. Hussain, A. Maqbool, F. Afzal, Some new topological indices of silicate network via m-polynomial, J. Discrete Math. Sci. Cryptography, 23 (2020), 1157–1171. https://doi.org/10.1080/09720529.2020.1809776 doi: 10.1080/09720529.2020.1809776
![]() |
[52] |
J. B. Liu, M. K. Shafiq, H. Ali, A. Naseem, N. Maryam, S. S. Asghar, Topological indices of mth chain silicate graphs, Mathematics, 7 (2019), 42. https://doi.org/10.3390/math7010042 doi: 10.3390/math7010042
![]() |
[53] |
A. Q. Baig, M. Imran, H. Ali, On topological indices of poly oxide, poly silicate, DOX, and DSL networks, Can. J. Chem., 93 (2015), 730–739. https://doi.org/10.1139/cjc-2014-0490 doi: 10.1139/cjc-2014-0490
![]() |
[54] |
M. S. Chen, K. Shin, D. Kandlur, Addressing, routing, and broadcasting in hexagonal mesh multiprocessors, IEEE Trans. Comput., 39 (1990), 10–18. https://doi.org/10.1109/12.46277 doi: 10.1109/12.46277
![]() |
[55] |
M. F. Nadeem, M. Azeem, I. Farman, Comparative study of topological indices for capped and uncapped carbon nanotubes, Polycyclic Aromat. Compd., 42 (2022), 4666–4683. https://doi.org/10.1080/10406638.2021.1903952 doi: 10.1080/10406638.2021.1903952
![]() |
[56] |
M. F. Nadeem, M. Azeem, H. M. A. Siddiqui, Comparative study of zagreb indices for capped, semi-capped, and uncapped carbon nanotubes, Polycyclic Aromat. Compd., 42 (2022), 3545–3562. https://doi.org/10.1080/10406638.2021.1890625 doi: 10.1080/10406638.2021.1890625
![]() |
[57] | M. V. Diudea, C. L. Nagy, Diamond and Related Nanostructures, Springer Netherlands, 2013. https://doi.org/10.1007/978-94-007-6371-5 |
1. | Shabana Anwar, Muhammad Kamran Jamil, Amal S. Alali, Mehwish Zegham, Aisha Javed, Extremal values of the first reformulated Zagreb index for molecular trees with application to octane isomers, 2023, 9, 2473-6988, 289, 10.3934/math.2024017 | |
2. | Ali N. A. Koam, Ali Ahmad, Raed Qahiti, Muhammad Azeem, Waleed Hamali, Shonak Bansal, Enhanced Chemical Insights into Fullerene Structures via Modified Polynomials, 2024, 2024, 1076-2787, 10.1155/2024/9220686 | |
3. | Ali Ahmad, Ali N. A. Koam, Muhammad Azeem, Reverse-degree-based topological indices of fullerene cage networks, 2023, 121, 0026-8976, 10.1080/00268976.2023.2212533 | |
4. | Muhammad Waheed Rasheed, Abid Mahboob, Iqra Hanif, Uses of degree-based topological indices in QSPR analysis of alkaloids with poisonous and healthful nature, 2024, 12, 2296-424X, 10.3389/fphy.2024.1381887 | |
5. | Shriya Negi, Vijay Kumar Bhat, Face Index of Silicon Carbide Structures: An Alternative Approach, 2024, 16, 1876-990X, 5865, 10.1007/s12633-024-03119-0 | |
6. | Haseeb AHMAD, Muhammad AZEEM, Face-degree-based topological descriptors of germanium phosphide, 2024, 52, 18722040, 100429, 10.1016/j.cjac.2024.100429 | |
7. | Belman Gautham Shenoy, Raghavendra Ananthapadmanabha, Badekara Sooryanarayana, Prasanna Poojary, Vishu Kumar Mallappa, 2024, Rational Wiener Index and Rational Schultz Index of Graphs, 180, 10.3390/engproc2023059180 |
Dimension | |f12| | |f15| | |f36| |
1 | 24 | 48 | 7 |
2 | 32 | 94 | 14 |
3 | 40 | 152 | 23 |
4 | 48 | 222 | 34 |
5 | 56 | 304 | 47 |
6 | 64 | 398 | 62 |
7 | 72 | 504 | 79 |
8 | 80 | 622 | 98 |
. | . | . | . |
. | . | . | . |
. | . | . | . |
n | 8n+16 | 6n2+28n+14 | n2+4n+2 |
Dimension | |f12| | |f14| | |f17| | |f18| |
1 | 6 | 0 | 0 | 0 |
2 | 6 | 12 | 12 | 12 |
3 | 6 | 24 | 24 | 60 |
4 | 6 | 36 | 36 | 144 |
5 | 6 | 48 | 48 | 264 |
6 | 6 | 60 | 60 | 420 |
7 | 6 | 72 | 72 | 612 |
8 | 6 | 84 | 84 | 840 |
. | . | . | . | . |
. | . | . | . | . |
. | . | . | . | . |
k | 6 | 12(k−1) | 12(k−1) | 18k2−42k+24 |
Dimension m | |f15| | |f16| | |f18| | |f∞| |
2 | 3 | 2(n−1) | n−1 | 20n+7 |
Dimension m | |f15| | |f16| | |f17| | |f18| | |f∞| |
2 | 3 | 2(n−1) | 0 | n−1 | 20n+7 |
3 | 2 | 2n | 1 | 3(n−1) | 20n+17 |
4 | 2 | 2n | 3 | 5(n−1) | 20n+27 |
5 | 2 | 2n | 5 | 7(n−1) | 20n+37 |
6 | 2 | 2n | 7 | 9(n−1) | 20n+47 |
. | . | . | . | . | . |
. | . | . | . | . | . |
. | . | . | . | . | . |
m | 2 | 2n | 2m−5 | 2mn−2m−3n+3 | 20n+10m−13 |
m | |f14| | |f15| | |f16| | |f17| | |f18| | |f20| | |f35| |
1 | 2n+1 | 2 | 4n−2 | 0 | 0 | 2n−1 | 0 |
2 | 2n+2 | 2 | 8n−2 | 2 | 2n−2 | 4n−2 | 2n−1 |
3 | 2n+3 | 2 | 12n−2 | 4 | 4n−4 | 6n−3 | 4n−2 |
. | . | . | . | . | . | . | . |
. | . | . | . | . | . | . | . |
. | . | . | . | . | . | . | . |
m | 2n+m | 2 | 4mn−2 | 2m−2 | 2mn−2(m+n)+2 | 2mn−m | 2mn−(m+2n)+1 |
Dimension | |f12| | |f15| | |f36| |
1 | 24 | 48 | 7 |
2 | 32 | 94 | 14 |
3 | 40 | 152 | 23 |
4 | 48 | 222 | 34 |
5 | 56 | 304 | 47 |
6 | 64 | 398 | 62 |
7 | 72 | 504 | 79 |
8 | 80 | 622 | 98 |
. | . | . | . |
. | . | . | . |
. | . | . | . |
n | 8n+16 | 6n2+28n+14 | n2+4n+2 |
Dimension | |f12| | |f14| | |f17| | |f18| |
1 | 6 | 0 | 0 | 0 |
2 | 6 | 12 | 12 | 12 |
3 | 6 | 24 | 24 | 60 |
4 | 6 | 36 | 36 | 144 |
5 | 6 | 48 | 48 | 264 |
6 | 6 | 60 | 60 | 420 |
7 | 6 | 72 | 72 | 612 |
8 | 6 | 84 | 84 | 840 |
. | . | . | . | . |
. | . | . | . | . |
. | . | . | . | . |
k | 6 | 12(k−1) | 12(k−1) | 18k2−42k+24 |
Dimension m | |f15| | |f16| | |f18| | |f∞| |
2 | 3 | 2(n−1) | n−1 | 20n+7 |
Dimension m | |f15| | |f16| | |f17| | |f18| | |f∞| |
2 | 3 | 2(n−1) | 0 | n−1 | 20n+7 |
3 | 2 | 2n | 1 | 3(n−1) | 20n+17 |
4 | 2 | 2n | 3 | 5(n−1) | 20n+27 |
5 | 2 | 2n | 5 | 7(n−1) | 20n+37 |
6 | 2 | 2n | 7 | 9(n−1) | 20n+47 |
. | . | . | . | . | . |
. | . | . | . | . | . |
. | . | . | . | . | . |
m | 2 | 2n | 2m−5 | 2mn−2m−3n+3 | 20n+10m−13 |
m | |f14| | |f15| | |f16| | |f17| | |f18| | |f20| | |f35| |
1 | 2n+1 | 2 | 4n−2 | 0 | 0 | 2n−1 | 0 |
2 | 2n+2 | 2 | 8n−2 | 2 | 2n−2 | 4n−2 | 2n−1 |
3 | 2n+3 | 2 | 12n−2 | 4 | 4n−4 | 6n−3 | 4n−2 |
. | . | . | . | . | . | . | . |
. | . | . | . | . | . | . | . |
. | . | . | . | . | . | . | . |
m | 2n+m | 2 | 4mn−2 | 2m−2 | 2mn−2(m+n)+2 | 2mn−m | 2mn−(m+2n)+1 |