Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Optimal impulse control of West Nile virus

  • Received: 30 June 2022 Revised: 21 August 2022 Accepted: 31 August 2022 Published: 05 September 2022
  • MSC : 49N25, 49K15, 92D30, 92B05

  • We construct a West Nile virus epidemic model that includes the interaction between the bird hosts and mosquito vectors, mosquito life stages (eggs, larvae, adults), and the dynamics of both larvicide and adulticide. We derive the basic reproduction number for the epidemic as the spectral radius of the next generation matrix. We formulate two impulsive optimal control problems which seek to balance the cost of insecticide applications (both the timing and application level) with the benefit of (1) vector control: reducing the number of mosquitoes or (2) disease control: reducing the disease burden. We reformulate these impulsive optimal control problems as nonlinear optimization problems and derive associated necessary conditions for the optimal controls. Numerical simulations are used to address three questions: How does the control and its impact on the system vary with the objective type? Is it beneficial to optimize the treatment timing? How does the control and its impact on the population vary with the type of pesticide used?

    Citation: Folashade Agusto, Daniel Bond, Adira Cohen, Wandi Ding, Rachel Leander, Allis Royer. Optimal impulse control of West Nile virus[J]. AIMS Mathematics, 2022, 7(10): 19597-19628. doi: 10.3934/math.20221075

    Related Papers:

    [1] Emadidin Gahalla Mohmed Elmahdi, Jianfei Huang . Two linearized finite difference schemes for time fractional nonlinear diffusion-wave equations with fourth order derivative. AIMS Mathematics, 2021, 6(6): 6356-6376. doi: 10.3934/math.2021373
    [2] Fouad Mohammad Salama, Faisal Fairag . On numerical solution of two-dimensional variable-order fractional diffusion equation arising in transport phenomena. AIMS Mathematics, 2024, 9(1): 340-370. doi: 10.3934/math.2024020
    [3] Ajmal Ali, Tayyaba Akram, Azhar Iqbal, Poom Kumam, Thana Sutthibutpong . A numerical approach for 2D time-fractional diffusion damped wave model. AIMS Mathematics, 2023, 8(4): 8249-8273. doi: 10.3934/math.2023416
    [4] Junying Cao, Zhongqing Wang, Ziqiang Wang . Stability and convergence analysis for a uniform temporal high accuracy of the time-fractional diffusion equation with 1D and 2D spatial compact finite difference method. AIMS Mathematics, 2024, 9(6): 14697-14730. doi: 10.3934/math.2024715
    [5] Abdul-Majeed Ayebire, Saroj Sahani, Priyanka, Shelly Arora . Numerical study of soliton behavior of generalised Kuramoto-Sivashinsky type equations with Hermite splines. AIMS Mathematics, 2025, 10(2): 2098-2130. doi: 10.3934/math.2025099
    [6] Yanjie Zhou, Xianxiang Leng, Yuejie Li, Qiuxiang Deng, Zhendong Luo . A novel two-grid Crank-Nicolson mixed finite element method for nonlinear fourth-order sin-Gordon equation. AIMS Mathematics, 2024, 9(11): 31470-31494. doi: 10.3934/math.20241515
    [7] Fouad Mohammad Salama, Nur Nadiah Abd Hamid, Norhashidah Hj. Mohd Ali, Umair Ali . An efficient modified hybrid explicit group iterative method for the time-fractional diffusion equation in two space dimensions. AIMS Mathematics, 2022, 7(2): 2370-2392. doi: 10.3934/math.2022134
    [8] Ailing Zhu, Yixin Wang, Qiang Xu . A weak Galerkin finite element approximation of two-dimensional sub-diffusion equation with time-fractional derivative. AIMS Mathematics, 2020, 5(5): 4297-4310. doi: 10.3934/math.2020274
    [9] Din Prathumwan, Thipsuda Khonwai, Narisara Phoochalong, Inthira Chaiya, Kamonchat Trachoo . An improved approximate method for solving two-dimensional time-fractional-order Black-Scholes model: a finite difference approach. AIMS Mathematics, 2024, 9(7): 17205-17233. doi: 10.3934/math.2024836
    [10] Fouad Mohammad Salama, Nur Nadiah Abd Hamid, Umair Ali, Norhashidah Hj. Mohd Ali . Fast hybrid explicit group methods for solving 2D fractional advection-diffusion equation. AIMS Mathematics, 2022, 7(9): 15854-15880. doi: 10.3934/math.2022868
  • We construct a West Nile virus epidemic model that includes the interaction between the bird hosts and mosquito vectors, mosquito life stages (eggs, larvae, adults), and the dynamics of both larvicide and adulticide. We derive the basic reproduction number for the epidemic as the spectral radius of the next generation matrix. We formulate two impulsive optimal control problems which seek to balance the cost of insecticide applications (both the timing and application level) with the benefit of (1) vector control: reducing the number of mosquitoes or (2) disease control: reducing the disease burden. We reformulate these impulsive optimal control problems as nonlinear optimization problems and derive associated necessary conditions for the optimal controls. Numerical simulations are used to address three questions: How does the control and its impact on the system vary with the objective type? Is it beneficial to optimize the treatment timing? How does the control and its impact on the population vary with the type of pesticide used?



    Fractional-order differential equations (FDM) have many applications in various fields of engineering and science, such as chemical and physical phenomena [2,3,4,5]. For instance, the fractional-order diffusion equation is used to describe anomalous diffusion phenomena in the transport process through disordered and complex systems including fractal media, fractional kinetic equations regarding slow diffusion, and movement of small molecular along the concentration space [6].

    In this article, the two-dimensional (2-D) time-fractional sub-diffusion equation (FSDE) with the weak singularity at initial time t=0 is considered as follows:

    αVtα=2Vx2+2Vy2+G(x,y,t), (1.1)

    with subject to conditions

    V(x,y,0)=ζ0(x,y),

    and

    V(0,y,t)=ζ1(x,y,t),V(L,y,t)=ζ2(x,y,t),V(x,0,t)=ζ3(x,y,t),V(x,L,t)=ζ4(x,y,t),0x,yM,0tN,

    where ζ0, ζ1, ζ2, ζ3, ζ4 are known functions and α(0,1).

    The FSDE can be obtained from the anomalous diffusion system by replacing the time derivative with a fractional derivative α where 0<α<1. The FSDE is an important class of fractional partial differential equations (PDEs), which is mainly used in the modeling of fractional random walk, the phenomenon of wave propagation, diffusion unification, etc. [7,8].

    The Caputo derivative of order α is

    C0Dαtf(x)=1Γ(1α)t0f(x)(tx)αdx. (1.2)

    The Caputo derivative approximated using the L1 gives the accuracy 2α [9,10], but the presence of kernel (tx)α produces solutions for Eq (1.1) with the weak-singularity at initial time t=0, which increases the computation cost and give low convergence rate for the approximate methods on uniform meshes [11]. Therefore, to increase the convergence rate many researchers solved the FSDE using different high-order numerical methods. Based on the chronology, several numerical methods are proposed for the solution of 2-D time FSDE (1.1), for example, Cui [12] proposed high-order alternating direction implicit (ADI) method, and it is unconditionally stable and convergent with convergence order O(να+h40). Zhuang and Liu [13] proposed an unconditionally stable and convergent implicit difference scheme. Zhang et al. [14] used the Crank-Nicolson-type compact ADI scheme and proved the unconditional stability and convergence having convergence order O(νmin[2α2,2α]+h014+h024) in H10 norm. Ji and Sun [15] used a high-order numerical scheme to solve (1.1), and proved convergence in L1(L)-norm and unconditional stability by the energy method. Wang et al. [16] solved 2-D FSDE using C-N alternating direction implicit finite difference method (FDM), where the fractional derivative is discretized using Riemann-Liouville fractional definition and to improve its temporal accuracy they used the Richardson extrapolation algorithm. Also, they proved its unique solvability, unconditional stability, and convergence O(ν2γ+h0x4+h0y4) of the scheme. Zhai and Feng [17] presented three different compact schemes for a 2-D time-fractional diffusion equation. The Caputo fractional definition is used for fractional derivative. All the schemes are fourth-order accurate for space and second-order accurate for the time variable. The stability of all the schemes is analyzed using Fourier analysis, which shows that two schemes are unconditionally stable, and the third one is conditionally stable.

    The advantage of high-order schemes is that it produces more accurate results but at the same time increase the execution timings because of the escalated computational complexity of the scheme. Similarly, the advantage of explicit group methods over the standard point methods that the it considered quarter grid points of the solution domain and the points are considered as iterative points in the iterative process which reduces the computational complexity of the proposed method and hence reduce the execution time per iteration. Since, the computational complexity is greatly reduced using the explicit group method the 2-D time-fractional advection-diffusion, hyperbolic telegraph fractional differential, and fractional diffusion equations etc. [18,19,20,21,22] with second-order accuracy, therefore, we proposed the grouping strategy with uniform grids for the solution of the 2-D time FSDE with fourth-order accuracy. The purpose of this paper is to solve 2-D time FSDE with the fourth-order explicit group method (FEGM).

    The paper is organized as follows: In Section 2, the derivation of the group explicit method from the finite difference method is presented. Section 3 discussed the stability of the proposed scheme, and the convergence of the proposed scheme is presented in Section 4. To show the efficiency of the proposed method, some numerical examples with discussion are presented in Section 5, and finally, Section 6 consists of the conclusion.

    First, let us define some notations:

    δ2xVki,j=Vki+1,j2Vki,j+Vki1,j,Vk+12i,j=Vk+1i,j+Vki,j2,xi=ih0,yj=jh0,i,j=0,1,2,3...,M,tk=kν,k=0,1,2,3...,N,

    where h0=Δx=Δy=LM represents the space step and ν=TN time step.

    Since, the Taylor series expansion with respect to x is

    Vki+1,j=Vki,j+h01!Vx|ki,j+h202!Vxx|ki,j+h303!V|ki,j+..., (2.1)
    Vki1,j=Vki,jh01!Vx|ki,j+h202!Vxx|ki,jh303!Vxxx|ki,j+... (2.2)

    By adding Eqs (2.1) and (2.2) and after rearranging, we get

    2Vki,jx2=Vki+1,j2uki,j+Vki1,jh20+2h204!4Vki,jx4+...=Vki+1,j2Vki,j+Vki1,jh20+O(h20). (2.3)

    Therefore, the Taylor series expansions at points uki+1,j and uki,j+1 are

    δ2xh20Vki,j=2Vx2|ki,jh20124Vx4|ki,jh403606Vx6|ki,j+O(h60), (2.4)
    δ2yh20Vki,j=2Vy2|ki,jh20124Vy4|ki,j+h403606Vy6|ki,j+O(h60). (2.5)

    The difference operator δ2x, which maintain the three-point stencil is given by []

    δ2xh20(1+112δ2x)Vki,j=2Vx2|ki,jh402404Vx4|ki,j+O(h60), (2.6)

    and

    δ2yh20(1+112δ2y)Vki,j=2Vy2|ki,jh402404Vy4|ki,j+O(h60). (2.7)

    The fractional derivative is approximated using the Central difference formula as [24]

    αtαV(x,y,t)|k+12i,j=1Γ(1α)tk+120Vt(x,y,ε)(tk+12ε)αε=1Γ(1α)[tk+120Vt(x,y,ε)((k+12)νε)αε+ttk+12tk(Vk+1i,jVki,jν+O(ν))((k+12)νε)αε]=1Γ(1α)ks0=1[sν(s01)νVs0i,jVs01i,jν+(εts012)Vtt(xi,yj,cs0)×((k+12νε)αε)]+(k+12)νkν(Vk+1i,jVki,jν+O(ν))((k+12)νε)αε=1Γ(1α)ks0=1Vs0i,jVs01i,jνsν(s01)ν((k+12)νε)αε+1Γ(1α)ks0=1sν(s1)ν(εts012)Vtt(xi,yj,cs0)((k+12)νε)αε+1Γ(1α)[Vk+1i,jVki,jν+O(ν)](k+12)νkν[((k+12)νε)αε]ε=1να(1α)Γ(1α)ks0=1[Vs0i,jVs01i,j][(ks0+32)1α(ks0+12)1α]+1να(1α)Γ(1α)(Vk+1i,jVki,j)121α+1Γ(1α)ks0=1sν(s1)ν(εts012)Vtt(xi,yj,cs0)((k+12)νε)αε+1Γ(1α)(1α)21αO(ν)2α.

    Therefore, after some simplifications, the Crank-Nicolson (C-N) Caputo fractional derivative

    αtαV(x,y,t)|k+12i,j=a1V|ki,j+k1s=1(aks+1aks)V|si,jakV|0i,j+σVk+1i,j+Vki,j21α+O(ν2α),σ=1ναΓ(2α),as=σ((s+12)1α(s12)1α),s=0,1,2,...,k. (2.8)

    Now using Eqs (2.6)–(2.8) and C-N or standard point (SP) scheme at V(xi,yj,tk+12), the standard fourth-order finite difference scheme for Eq (1.1) is as follows:

    a1Vki,j+k1s=1(aks+1aks)Vsi,jakV0i,j+σVk+1i,j+Vki,j21α=(1+112δ2x)1×δ2xh20Vk+12i,j+(1+112δ2y)1δ2yh20Vk+12i,j+fk+12i,j+O(ν2α+h40). (2.9)

    Substituting the values of δ2x, δ2y and Vk+12i,j into Eq (2.9), and after rearranging we get the standard point SP compact scheme:

    λ1Vk+1i,j=λ2(Vk+1i+1,j+Vk+1i1,j+Vk+1i,j+1+Vk+1i,j1)+λ3(Vk+1i+1,j+1+Vk+1i1,j+1+Vk+1i+1,j1+Vk+1i1,j1)+λ4Vki,j+λ5(Vki+1,j+Vki1,j+Vki,j+1+Vki,j1)+λ6(Vki+1,j+1+Vki1,j+1+Vki+1,j1+Vki1,j1)+2518h20fk+12i,j+536h20(fk+1ti+1,j+fk+1ti1,j+fk+1ti,j+1+fk+1ti,j1)+h2072(fk+12i+1,j+1+fk+12i1,j+1+fk+12i+1,j1+fk+12i1,j1)k1s=1(aks+1aks)(2518h20Vsi,j+536h20(Vsi+1,j+Vsi1,j+Vsi,j+1+Vsi,j1)+h2072(Vsi+1,j+1+Vsi1,j+1+Vsi+1,j1+Vsi1,j1))+O(ν2α+h40), (2.10)

    where

    g0=σ21α,g1=a1g0,λ1=172(240+100h20g0),λ2=172(4810h20g0),λ3=172(12h20g0),λ4=172(240+100h20g1),λ5=172(4810h20g1),λ6=172(12h20g1).

    Now, using Eq (2.10) will give the following system for the group of four points:

    [λ1λ2λ3λ2λ2λ1λ2λ3λ3λ2λ1λ2λ2λ3λ2λ1][Vk+1i,jVk+1i+1,jVk+1i+1,j+1Vk+1i,j+1]=[rhsi,jrhsi+1,jrhsi+1,j+1rhsi,j+1], (2.11)

    where

    rhsi,j=λ2(Vk+1i1,j+Vk+1i,j1)+λ3(Vk+1i1,j+1+Vk+1i+1,j1+Vk+1i1,j1)+λ4Vki,j+λ5(Vki+1,j+Vki1,j+Vki,j+1+Vki,j1)+λ6(Vki+1,j+1+Vki1,j+1+Vki+1,j1+Vki1,j1)+2518h20fk+12i,j+536h20(fk+12i+1,j+fk+12i1,j+fk+12i,j+1+fk+12i,j1)+h2072(fk+12i+1,j+1+fk+12i1,j+1+fk+12i+1,j1+fk+12i1,j1)Fi,j,
    rhsi+1,j=λ2(Vk+1i+2,j+Vk+1i+1,j1)+λ3(Vk+1i+2,j+1+Vk+1i+2,j1+Vk+1i,j1)+λ4Vki+1,j+λ5(Vki+2,j+Vki,j+Vki+1,j+1+Vki+1,j1)+λ6(Vki+2,j+1+Vki,j+1+Vki+2,j1+Vki,j1)+2518h20fk+12i+1,j+536h20(fk+12i+2,j+fk+12i,j+fk+12i+1,j+1+fk+12i+1,j1)+h2072(fk+12i+2,j+1+fk+12i,j+1+fk+12i+2,j1+fk+12i,j1)Fi+1,j,
    rhsi+1,j+1=λ2(Vk+1i+2,j+1+Vk+1i+1,j+2)+λ3(Vk+1i+2,j+2+Vk+1i,j+2+Vk+1i+2,j)+λ4Vki+1,j+1+λ5(Vki+2,j+1+Vki,j+1+Vki+1,j+2+Vki+1,j)+λ6(Vki+2,j+2+Vki,j+2+Vki+2,j+Vki,j)+2518h20fk+12i+1,j+1+536h20(fk+12i+2,j+1+fk+12i,j+1+fk+12i+1,j+2+fk+12i+1,j)+h2072(fk+12i+2,j+2+fk+12i,j+2+fk+12i+2,j+fk+12i,j)Fi+1,j+1,
    rhsi,j+1=λ2(Vk+1i1,j+1+Vk+1i,j+2)+λ3(Vk+1i+1,j+2+Vk+1i1,j+2+Vk+1i1,j)+λ4Vki,j+1+λ5(Vki+1,j+1+Vki1,j+1+Vki,j+2+Vki,j)+λ6(Vki+1,j+2+Vki1,j+2+Vki+1,j+Vki1,j)+2518h20fk+12i,j+1+536h20(fk+12i+1,j+1+fk+12i1,j+1+fk+12i,j+2+fk+12i,j)+h2072(fk+12i+1,j+2+fk+12i1,j+2+fk+12i+1,j+fk+12i1,j)Fi,j+1,

    and

    Fi,j=k1s=1(aks+1aks)(2518h20Vsi,j+536h20(Vsi+1,j+Vsi1,j+Vsi,j+1+Vsi,j1)+h2072(Vsi+1,j+1+Vsi1,j+1+Vsi+1,j1+Vsi1,j1)).

    Similarly, the inverted matrix equation (2.11) will give explicit group equation

    [Vk+1i,jVk+1i+1,jVk+1i+1,j+1Vk+1i,j+1]=1d[ϕ1ϕ2ϕ3ϕ2ϕ2ϕ1ϕ2ϕ3ϕ3ϕ2ϕ1ϕ2ϕ2ϕ3ϕ2ϕ1][rhsi,jrhsi+1,jrhsi+1,j+1rhsi,j+1], (2.12)

    where

    ϕ1=λ312λ1λ222λ22λ3λ1λ23,ϕ2=λ21λ2+2λ1λ2λ3+λ2λ23,ϕ3=2λ1λ22+λ21λ3+2λ22λ3λ33,d=(4λ22+(λ1λ3)2)(λ1+λ3)2.

    In the proposed method, firstly, group of four points are computed for the different iterations using Eq (2.12) till the required convergence is attained. After the required convergence, the SP compact scheme Eq (2.10) is used directly once for computing of reaming points. Figures 1 and 2 show the grid points on the x-y plane for FDM and FEGM at various time levels when m=9 respectively.

    Figure 1.  Four points in computation of grouping method.
    Figure 2.  Different points in the FEGM at time levels k+1,k,k1,...,1 with mesh size m=9.

    In this section, the stability of the proposed method is discussed.

    The Eq (2.12) can also be written as

    AV1=BV0+f12,k=0,AVk+1=BVkh20k1s=1(aks+1aks)CVs+h20fk+12,k>0, (3.1)

    where

    A=[R1R30R2R1R3R2R1R30R2R1],B=[P1P30P2P1P3P2P1P30P2P1],
    R1=[G1G3G2G1G3G2G1G3G2G1],C=[Q1Q30Q2Q1Q3Q2Q1Q30Q2Q1],f=[K1K1K1K1],
    R2=[G6G4G8G6G4G8G6G4G8G6],R3=[G7G9G5G7G9G5G7G9G5G7],
    P1=[H1H3H2H1H3H2H1H3H2H1],P2=[H6H4H8H6H4H8H6H4H8H6],
    P3=[H7H9H5H7H9H5H7H9H5H7],Q1=[L1L3L2L1L3L2L1L3L2L1],
    Q2=[L6L4L8L6L4L8L6L4L8L6],Q3=[L7L9L5L7L9L5L7L9L5L7],K1=[W1W1W1W1],
    G1=[λ1λ2λ3λ2λ2λ1λ2λ3λ3λ2λ1λ2λ2λ3λ2λ1],G2=[00λ3λ200λ2λ300000000],G3=[00000000λ3λ200λ2λ300],
    G4=[0000000000000λ300],G5=[0000000λ300000000],G6=[0λ2λ30000000000λ3λ20],
    G7=[0000λ200λ3λ300λ20000],G8=[00λ30000000000000],G9=[00000000λ30000000],
    H1=[λ4λ5λ6λ5λ5λ4λ5λ6λ6λ5λ4λ5λ5λ6λ5λ4],H2=[00λ6λ500λ5λ600000000],H3=[00000000λ6λ500λ5λ600],
    H4=[0000000000000λ600],H5=[0000000λ600000000],H6=[0λ5λ60000000000λ6λ50],
    H7=[0000λ500λ6λ600λ50000],H8=[00λ60000000000000],H9=[00000000λ60000000],
    L1=118[25521454522552141452255252145225],L2=118[00145400521400000000],L3=118[00000000145400541400],
    L4=[000000000000017200],L5=[000000017200000000],L6=118[05214000000000014520],
    L7=118[00005200141400520000],L8=[001720000000000000],L9=[000000001720000000],W1=[fi,jfi+1,jfi+1,j+1fi,j+1].

    It can observe that Eq (3.1) form the particular structure as

    [A(N2)2×(N2)2]Vk+1=[B(N2)2×(N2)2]Vkh20k1s=1(aks+1aks)[C(N2)2×(N2)2]Vs+h20fk+12.

    Proposition 3.1. The proposed scheme Eq (2.12) is unconditionally stable.

    Proof. Let Vki,j represents approximate and vki,j represents exact solutions for the time FSDE respectively, then the error is defined as ϵki,j=vki,jVki,j. So, from Eq (3.1),

    AE1=BE0,k=0,AEk+1=BEkh20k1s=1(aks+1aks)CEs,k>0, (3.2)

    where

    Ek+1=[Ek+11Ek+12Ek+1m2Ek+1m1],Ek+1i=[ϵk+11ϵk+12ϵk+1m2ϵk+1m1],ϵk+1i=[ϵk+1i,jϵk+1i+1,jϵk+1i+1,j+1ϵk+1i,j+1],i,j=1,2,...,m1.

    From Eq (3.1) we know

    A=G1I+(G2+G3)Q+G6I+(G4+G8)Q+G7I+(G5+G9)Q, (3.3)
    B=H1I+(H2+H3)Q+H6I+(H4+H8)Q+H7I+(H5+H9)Q, (3.4)
    C=L1I+(L2+L3)Q+L6I+(L4+L8)Q+L7I+(L5+L9)Q, (3.5)

    where I and Q are two matrices, I represents identity matrix and Q represents unity values having each diagonal forthwith above and below the main diagonal, and elsewhere zero.

    Suppose maximum eigenvalues are represented with ψ, χ and η for the matrices A, B and C respectively, then using Mathematica software, we get

    ψ=98(g1h20+4),χ=(296+7972h20g0),η=12172. (3.6)

    From Eq (3.2), when k = 0,

    E1=A1BE0,E1A1BE0=132+121h2g1348+79h2g0E0.

    But since a1=σ((32)1α(12)1α)=g0(31α1) and g1=a1g0=g0(31α2). Also we know that 31α<3, so,

    31α2<1,g0(31α2)<g0,g0>0,g1<g0.

    Hence,

    E1E0,g0>g1.

    Suppose

    ErE0,r=2,3,...,k, (3.7)

    and for r=k+1,

    Ek+1=A1(BEkh20k1s=1(aks+1aks)CEs))A1BEk+h20k1s=1(aks+1aks)A1CEs(A1B+h20k1s=1(aks+1aks)A1C)E0by using Eq. (3.7)=(324+81h20g1348+h20g0+121h20(aka1)72(348+79h20g0))E0=(324+81h20g1+1.68h20(aka1)348+79h20g0)E0=(132+(72.02)h2(g1+(aka1))348+79h20g0)E0.
    Ek+1E0,(aka1)<0.

    So, by mathematical induction, we prove that FEGM is unconditionally stable.

    Suppose ek+12i,j,ek+12i+1,j,ek+12i+1,j+1 and ek+12i,j+1 represent different truncation errors, then,

    Rk+12={Rk+121,1,Rk+121,2,...,Rk+121,M214,Rk+122,1,Rk+122,2,...,Rk+12M114,M214},

    where

    Rk+12i,j={ek+12i,j,ek+12i+1,j,ek+12i+1,j+1,ek+12i,j+1},i,j={1,2,...,M14},

    so from Eq (2.10) we have

    Rk+12φ0(ν2γ+h40), (4.1)

    where φ0 is a constant.

    Proposition 4.1. The FEGS equation (2.12) is unconditionally convergent with the order of convergence O(ν2α+h4).

    Proof. Since from Eq (4.1),

    R(k1)+12φ0(ν2α+h40), (4.2)

    then,

    R(k1)+12Rk+120,R(k1)+12Rk+12. (4.3)

    Since E0=0, then from Eq (2.10), we have

    AE1=R12,k=0,AEk+1=BEkh20k1s=1(aks+1aks)CEs+Rk+12,k>0. (4.4)

    When k=0,

    AE1=R12,E1A1R12=1λ1+2λ2+λ3R12=1348+79h20g0R12,E1μ0R12,whereμ0=1348+79h20g0andμ0(0,1),E1R12.

    Assume that

    EsR(s1)+12,s=2,3,...,k, (4.5)

    and now from Eq (4.4),

    AEk+1=BEkh20k1s=1(aks+1aks)CEs+Rk+12. (4.6)

    By taking norm function on both sides of Eq (4.6),

    Ek+1A1BEkh20k1s=1(aks+1aks)A1CEs+A1Rk+12(324+81h20g1348+79h20g0+1.68h20(aka1)348+79h20g0+1348+79h20g0)Rk+12(by using Eqs (4.3) and (4.5))=(325+81h20g1+1.68h20(aka1)348+79h20g0)Rk+12=γRk+12,

    where γ=133+121h2g1+1.68h20(aka1)348+79h20g0, but since h(0,1), g0>g1, and (a1ak)<0, then γ(0,1), therefore,

    Ek+1Rk+12φ0(ν2α+h40).

    Therefore, we get

    Ek+1φ0(ν2α+h40),k=0,1,2...,N1.

    Thus the proposed scheme is conditionally stable.

    The proposed scheme can be written in matrix form:

    G1V1=G2V0+G3Υ12,k=0,G1Vk+1=G2Vk+G3Υk+12k1s=1(aks+1aks)G3Vs,k1,V0i,j=b0(xi,yj),1iM,1jM,Vk0,j=b1(0,yj),1jM,0kN,VkL,j=b2(L,yj),1jM,0kN,Vki,0=b3(xi,0),1iM,0kN,Vki,L=b4(xi,L),1iM,0kN, (5.1)

    where

    G1=[λ1λ2λ2λ30λ2λ1λ2λ3λ2λ3λ2λ1λ2λ3λ2λ3λ2λ1λ2λ3λ2λ3λ2λ1λ2λ3λ2λ2λ1λ2λ2λ1λ2λ2λ1λ20λ2λ1],
    G2=[λ4λ5λ5λ60λ5λ4λ5λ6λ5λ6λ5λ4λ5λ6λ5λ6λ5λ4λ5λ6λ5λ6λ5λ4λ5λ6λ5λ5λ4λ5λ5λ4λ5λ5λ4λ50λ5λ4],
    G3=[ρ1ρ2ρ2ρ30ρ2ρ1ρ2ρ3ρ2ρ3ρ2ρ1ρ2ρ3ρ2ρ3ρ2ρ1ρ2ρ3ρ2ρ3ρ2ρ1ρ2ρ3ρ2ρ2ρ1ρ2ρ2ρ1ρ2ρ2ρ1ρ20ρ2ρ1],
    Υk=[Υk0,Υk1,Υk2,...,Υkn]T,Υk+12=f(xi,yj,tk+12),ρ1=25h2018,ρ2=5h2036andρ3=h2072.

    Proposition 5.1. The difference equation (2.12) is uniquely solvable.

    Proof. Since λ1=172(240+100h20g0), λ2=172(4810h20g0), λ3=172(12h20g0), and h0,g0>0, then,

    |λ1|=103+25h20g018

    and

    3|λ2|+2|λ3|73+49h20g0<103+2518h20g0=|λ1|.

    Hence, |λ1|>3|λ2|+2|λ1|, which shows that matrix G1 is strictly diagonally dominant and G1 is non-singular. This completes the proof.

    The proposed method is simulated using the Intel Core i-7, 2.40GHz GHz, 6GB of RAM with Windows 8 using Mathematica software, and the experiments were done using the proposed method with SOR iterative technique as an acceleration factor (ω=1.8) with different mesh sizes (n=10,14,18,22,30) and different time steps. Furthermore, throughout the experiments, the L-norm convergence criteria ζ=105 is used. Also, the C2-order and C1-order of convergence are used for the computational order of spatial and temporal convergence using [25]

    C2order=log2(L(16ν,2h0)L(ν,h0)), (6.1)
    C1order=log2(L(2ν,h0)L(ν,h0)), (6.2)

    where L is the maximum error.

    Some examples are presented below to show the efficiency of FEGM.

    Problem 1. [26]

    αVtα=2Vx2+2Vy2+(2Γ(3α)t2α+2t2)sin(x)sin(y),0<x, y<1,0<t1,

    with initial and Dirichlet boundary conditions.

    The analytic solution for Problem 1 is

    V(x,y,t)=t2sin(x)sin(y).

    Problem 2. [12]

    2Vt2=2Vx1+2Vy2+(Γ(2+α)2t1+α)ex+y,0<x, y<1,0<t1,

    with initial and Dirichlet boundary conditions.

    The analytic solution for Problem 2 is

    V(x,y,t)=ex+yt1+α.

    The number of iterations, error analysis, and execution times are shown for the comparison between FEGM and SP methods from Tables 15. The execution times in FEGM are decreased by (4.728.49)%, (223)%, (9.1628.13)%, (8.925.39)% and (6.9827.79)% compared to SP method in Tables 15 respectively. Similarly, in Table 6, the comparison between the proposed method and high-order standard point method[27] is presented, which shows the proposed method gives better results. Figures 3 and 4 represent the exact and approximate solution for Problem 1, respectively, which depicts the effectiveness of the FEGM. Likewise, In Figure 5, the compression of execution times between the SP and proposed methods are shown, which shows the proposed method is efficient in terms of execution timings. Table 7 shows the computational complexity per iteration, while the computational effort is shown in Tables 8 and 9, which depict that the FEGM requires less number of operations during computations as compared to the standard SP method. Tables 10 and 11 represent the spatial convergence order for Problems 1 and 2, respectively. Similarly, Tables 12 and 13 represent the temporal convergence order for the first and second Problem respectively, which depict the experimental and theoretical convergence orders in agreement.

    Table 1.  Numerical results for the Problem 1, when α=0.5.
    h0/ν No. of iteration Execution time Maximum-error Average-error
    FEGM SP FEGM SP FEGM SP FEGM SP
    h0=ν=110 43 49 7.39 7.76 1.6404×104 1.653 ×104 7.9408 ×105 7.3891 ×105
    h0=ν=118 41 48 66.19 79.82 6.6571 ×105 6.5544×105 2.8320 ×105 2.9081 ×105
    h0=ν=122 42 54 148.1 207.1 4.5739 ×105 4.6717 ×105 1.9997 ×105 2.085 ×105
    h0=ν=130 43 56 530.45 658.68 3.0559 ×105 3.2268 ×105 1.1887 ×105 1.2180 ×105

     | Show Table
    DownLoad: CSV
    Table 2.  Numerical results for the Problem 1, when α=0.75.
    h0/ν No. of iteration Execution time Maximum-error Average-error
    FEGM SP FEGM SP FEGM SP FEGM SP
    h0=ν=110 44 50 7.75 7.94 2.1534 ×104 2.2065 ×104 1.0469 ×104 1.0634 ×104
    h0=ν=114 44 43 27.36 27.28 1.2736 ×104 1.2786×104 5.9175 ×105 6.0624 ×105
    h0=ν=118 42 48 68.29 80.18 8.0887 ×105 8.5709 ×105 3.0710 ×105 3.9889×105
    h0=ν=122 41 55 150.40 197.87 6.1207 ×105 6.2773 ×105 2.8554 ×105 2.8809 ×105
    h0=ν=130 42 56 523.25 648.55 3.7373×105 4.4510 ×105 1.6460 ×105 1.7874 ×105

     | Show Table
    DownLoad: CSV
    Table 3.  Numerical results for the Problem 2, where α=0.1.
    h0/ν No. of iteration Execution time Maximum-error Average-error
    FEGM SP FEGM SP FEGM SP FEGM SP
    h0=ν=110 44 50 7.75 7.94 2.1534 ×104 2.2065 ×104 1.0469 ×104 1.0634 ×104
    h0=ν=114 44 43 27.36 27.28 1.2736 ×104 1.2786×104 5.9175 ×105 6.0624 ×105
    h0=ν=118 42 48 68.29 80.18 8.0887 ×105 8.5709 ×105 3.0710 ×105 3.9889×105
    h0=ν=122 41 55 150.40 197.87 6.1207 ×105 6.2773 ×105 2.8554 ×105 2.8809 ×105
    h0=ν=130 42 56 523.25 648.55 3.7373×105 4.4510 ×105 1.6460 ×105 1.7874 ×105

     | Show Table
    DownLoad: CSV
    Table 4.  Numerical results for the Problem 2, where α=0.5.
    ν/h0 No. of iteration Execution time Maximum-error Average-error
    FEGM SP FEGM SP FEGM SP FEGM SP
    h0=ν=110 46 52 7.65 8.72 2.9442 ×104 2.8915 ×104 1.3091 ×104 1.2849 ×104
    h0=ν=114 48 47 30.93 29.53 1.3893 ×104 1.4377 ×104 3.7322 ×105 3.9455 ×105
    h0=ν=118 48 52 77.2 84.75 8.5499 ×105 8.5075 ×105 2.4058 ×105 2.4340 ×105
    h0=ν=122 47 57 172.53 203.76 5.5120 ×105 5.5018 ×105 1.9837 ×105 1.7813 ×105
    h0=ν=130 47 65 588.74 789.14 2.9259 ×105 2.9669 ×105 1.2478 ×105 1.2549 ×105

     | Show Table
    DownLoad: CSV
    Table 5.  Numerical results for the Problem 2, where α=0.75.
    h0/ν No. of iteration Execution time Maximum-error Average-error
    FEGM SP FEGM SP FEGM SP FEGM SP
    h0=ν=110 47 53 7.92 8.82 2.2868 ×104 2.2917 ×104 1.0194 ×104 1.0189 ×104
    h0=ν=114 48 48 31.23 30.46 2.3640 ×104 2.3848 ×104 1.1941 ×104 1.2003 ×104
    h0=ν=118 49 52 78.34 85.3 2.1361 ×104 2.1290 ×104 1.0621 ×104 1.0863 ×104
    h0=ν=122 48 57 169.15 207.6 1.9686 ×104 1.8908 ×104 9.5981 ×105 9.5644 ×105
    h0=ν=130 48 65 599.97 775.49 1.5244 ×104 1.4938 ×104 7.3782 ×105 7.3922 ×105

     | Show Table
    DownLoad: CSV
    Table 6.  Comparison of the Proposed method with standard point method[27] for Example 2 when α=0.5.
    h0/ν No. of iteration Maximum-error Average-error
    FEGM [27] FEGM [27] FEGM [27]
    h0=ν=110 43 53 1.6404 ×104 1.2428 ×102 7.9408 ×105 8.8490 ×103
    h0=ν=118 41 52 6.6571 ×105 7.1213 ×103 2.8320 ×105 3.6917 ×103
    h0=ν=122 42 55 4.7739 ×105 2.6959 ×103 1.9997 ×105 1.3580 ×103
    h0=165,ν=135 41 58 2.5368 ×105 2.0605 ×103 5.0090 ×106 1.0285 ×103

     | Show Table
    DownLoad: CSV
    Figure 3.  Approximate solution for the Problem 1, where h0=ν=135.
    Figure 4.  Exact solution for the Problem 1, where h0=ν=135.
    Figure 5.  Execution time (in sec) for different mesh sizes for the Problems 1 and 2.
    Table 7.  The number of computing operations required for the FEGM and SP Technique.
    Technique operations per iteration
    +/- */ ÷
    SP (26+8(k1))m2 (8+4(k1))m2
    FEGM (28+8(k1))(m1)2 + (26+8(k1))(2m1) (12+4(k1))(m1)2 + (8+4(k1))(2m1)

     | Show Table
    DownLoad: CSV
    Table 8.  The total computation effort for the Problem 1, where α=12.
    h0/ν SP method FEGM
    Number of iteration Total operations Number of iteration Total operations
    h0=ν=110 49 695800 43 631498
    h0=ν=118 48 3701376 41 3232686
    h0=ν=122 54 7474896 42 5924940
    h0=ν=130 56 19252800 43 15000378

     | Show Table
    DownLoad: CSV
    Table 9.  The total computation effort for the Problem 2, where α=34.
    k/m SP method FEGM
    Number of iteration Total operations Number of iteration Total operations
    h0=ν=110 53 752600 47 690242
    h0=ν=118 52 4009824 49 3863454
    h0=ν=122 57 7890168 48 6771360
    h0=ν=130 65 22347000 48 16744608

     | Show Table
    DownLoad: CSV
    Table 10.  The spatial convergence order for the Problem 1.
    α=0.4 α=0.5
    ν/h0 Maximum error C2-order ν/h0 Maximum error C2-order
    ν=h0=0.5 1.4394 ×104 ν=h0=0.5 3.1088 ×104
    ν=0.031, h0=0.25 1.0910 ×105 3.72 ν=0.031, h0=0.25 2.2509 ×105 3.78
    ν=h0=0.25 2.1929 ×104 ν=h0=0.25 3.546 ×104
    ν=0.016, h0=0.12 9.1371 ×106 4.58 ν=0.016, h0=0.12 2.1414 ×105 4.04
    α=0.6 α=0.8
    ν/h0 Maximum error C2-order ν/h0 Maximum error C2-order
    ν=h0=0.5 5.2435 ×104 ν=h0=0.5 9.9004 ×104
    ν=0.031, h0=0.25 2.7191 ×105 4.26 ν=0.031, h0=0.25 9.9004 ×105 4.13
    ν=h0=0.25 5.0421 ×104 ν=h0=0.25 7.2673 ×104
    ν=0.016, h0=0.12 3.1980 ×105 3.97 ν=0.016, h0=0.12 3.7243 ×105 4.28

     | Show Table
    DownLoad: CSV
    Table 11.  The spatial convergence order for the Problem 2.
    α=0.7 α=0.8
    ν/h0 Maximum error C2-order ν/h0 Maximum error C2-order
    ν=h0=0.5 1.6072 ×103 ν=h0=0.5 3.4202 ×103
    ν=0.031, h0=0.25 1.0543 ×104 3.93 ν=0.031, h0=0.25 1.7636 ×104 4.27
    ν=h0=0.25 1.3545 ×103 ν=h0=0.25 1.6955 ×103
    ν=0.016, h0=0.12 5.9784 ×105 4.50 ν=0.016, h0=0.12 8.2806 ×105 4.35
    α=0.3 α=0.5
    ν/h0 Maximum error C2-order ν/h0 Maximum error C2-order
    ν=h0=0.5 3.832 ×103 ν=h0=0.5 8.6771 ×104
    ν=0.031, h0=0.25 3.2105 ×104 3.57 ν=0.031, h0=0.25 4.8772 ×105 4.15
    ν=h0=0.25 4.5916 ×104 ν=h0=0.25 4.1734 ×104
    ν=0.016, h0=0.12 2.5978 ×105 4.14 ν=0.016, h0=0.12 2.3009 ×105 4.18

     | Show Table
    DownLoad: CSV
    Table 12.  Temporal convergence order for the Problem 1, when h0=18.
    ν α=0.3 α=0.8
    L C1 Order L C1 Order
    ν=110 7.8675×104 2.1609×104
    ν=120 3.2208 ×105 1.28 7.1112 ×105 1.60
    ν= 140 1.7253 ×105 1.29 2.6203 ×105 1.44
    ν=180 6.2057×106 1.72 8.3392×106 1.65

     | Show Table
    DownLoad: CSV
    Table 13.  Temporal convergence order for the Problem 2, when h0=18.
    ν α=0.1 α=0.8
    L C1 Order L C1 Order
    ν=110 4.7691×104 2.1429×104
    ν=120 1.6086 ×104 1.56 8.2679 ×105 1.37
    ν= 140 5.1170 ×105 1.65 3.2827 ×105 1.33
    ν=180 1.7848×105 1.51 1.3010×105 1.51

     | Show Table
    DownLoad: CSV

    In this article, the 2-D fractional sub-diffusion equation is solved using the fractional explicit group method with weak singularity at initial time t=0, where the standard point finite difference scheme is used for the development of the fourth-order grouping scheme. The fractional explicit group method reduces the computational complexity and execution time by comparing it with the standard point fourth-order method without deteriorating the accuracy of the solutions. Furthermore, the unconditional stability and convergence of the proposed scheme are proved using the matrix analysis via mathematical induction, which confirms the feasibility and reliability of the new formulation.

    This work was supported by the Ministry of Higher Education under Fundamental Research Grant Scheme (FRGS/1/2019/STG06/UTM/02/13, FRGS/1/2020/STG05/UTM/02/12).

    We declare no conflicts of interest in this paper.



    [1] A. Abdelrazec, S. Lenhart, H. Zhu, Transmission dynamics of West Nile virus in mosquitoes and corvids and non-corvids, J. Math. Biol., 68 (2014), 1553–1582. https://doi.org/10.1007/s00285-013-0677-3 doi: 10.1007/s00285-013-0677-3
    [2] A. Abdelrazec, S. Lenhart, H. Zhu, Dynamics and Optimal Control of a West Nile Virus Model with Seasonality, Can. Appl. Math. Q., 23 (2015), 12–33.
    [3] J. F. Anderson, A. J. Main, Importance of Vertical and Horizontal Transmission of West Nile Virus by Culex pipiens in the Northeastern United States, J. Infect. Dis., 194 (2006), 1577–1579. https://doi.org/10.1086/508754 doi: 10.1086/508754
    [4] R. Bellini, H. Zeller, W. V. Bortel, A review of the vector management methods to prevent and control outbreaks of West Nile virus infection and the challenge for Europe, Parasites Vectors, 7 (2014), 1006–1028. https://doi.org/10.1186/1756-3305-7-323 doi: 10.1186/1756-3305-7-323
    [5] J. A. S. Bonds, Ultra-low-volume space sprays in mosquito control: a critical review, Med. Vet. Entomol., 26 (2012), 121–130. https://doi.org/10.1111/j.1365-2915.2011.00992.x doi: 10.1111/j.1365-2915.2011.00992.x
    [6] K. W. Blaynehm, A. B. Gumel, S. Lenhart, T. Clayton, Backward Bifurcation and Optimal Control in Transmission Dynamics of West Nile Virus, Bull. Math. Biol., 72 (2010), 1006–1028. https://doi.org/10.1007/s11538-009-9480-0 doi: 10.1007/s11538-009-9480-0
    [7] C. Bowman, A. B. Gumel, P. Van den Driessche, J. Wu, H. Zhu, A mathematical model for assessing control strategies against West Nile virus, Bull. Math. Biol., 67 (2005), 1107–1133. https://doi.org/10.1016/j.bulm.2005.01.002 doi: 10.1016/j.bulm.2005.01.002
    [8] M. D. Canon, C. D. Cullum, E. Polak, Theory of Optimal Control and Mathematical Programming, McGraw-Hill, 1969.
    [9] M. Carrieri, M. Bacchi, R. Bellini, S. Maini, On the competition occurring between Aedes albopictus and Culex pipiens (Diptera: Culicidae) in Italy, Environ. Entomol., 32, (2003), 1313–1321. https://doi.org/10.1603/0046-225X-32.6.1313 doi: 10.1603/0046-225X-32.6.1313
    [10] Centers for Disease Control and Prevention (CDC), West Nile Virus. Available from: https://www.cdc.gov/westnile/index.html
    [11] Center for Disease Control and Prevention (CDC), Life Cycle of Culex Species Mosquitoes. Available from: https://www.cdc.gov/mosquitoes/about/life-cycles/culex.html
    [12] Centers for Disease Control and Prevention (CDC), West Nile Virus & Dead Birds. Available from: https://www.cdc.gov/westnile/dead-birds/index.html
    [13] Centers for Disease Control and Prevention (CDC), West Nile Virus, Preliminary Maps & Data for 2021. Available from: https://www.cdc.gov/westnile/statsmaps/preliminarymapsdata2021/index.html
    [14] Centers for Disease Control and Prevention (CDC), Final Cumulative Maps & Data for 1999–2019. Available from: https://www.cdc.gov/westnile/statsmaps/cumMapsData.html#three
    [15] J. Chen, J. Huang, J. C. Beier, R. S. Cantrell, C. Cosner, D. O. Fuller, et al., Modeling and control of local outbreaks of West Nile virus in the United States, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 2423–2449. https://doi.org/10.3934/dcdsb.2016054 doi: 10.3934/dcdsb.2016054
    [16] A. T. Ciota, A. C. Matacchiero, A. M. Kilpatrick, L. D. Kramer, The effect of temperature on life history traits of Culex mosquitoes, J. Med. Entomol., 51 (2014), 55–62. https://doi.org/10.1515/biolet-2015-0006 doi: 10.1515/biolet-2015-0006
    [17] P. Clergeau, J. L. Savard, G. Mennechez, G. Falardeau, Bird abundance and diversity along an urban-rural gradient: a comparative study between two cities on different continents, Condor, 100 (1998), 413–425. https://doi.org/10.2307/1369707 doi: 10.2307/1369707
    [18] European Centre for Disease Prevention and Control, Culex pipiens - Factsheet for experts. Available from: https://www.ecdc.europa.eu/en/all-topics-z/disease-vectors/facts/mosquito-factsheets/culex-pipiens-factsheet-experts
    [19] U. Fillinger, H. Sombroek, S. Majambere, E. van Loon, W. Takken, S. W. Lindsay, Identifying the most productive breeding sites for malaria mosquitoes in The Gambia, Malar. J., 8 (2009), 1–14. https://doi.org/10.1186/1475-2875-8-62 doi: 10.1186/1475-2875-8-62
    [20] T. L. George, R. J. Harrigan, J. A. LaManna, D. F. DeSante, J. F. Saracco, T. B. Smith, Persistent impacts of West Nile virus on North American bird populations, Proc. Natl. Acad. Sci. U.S.A., 112 (2015), 14290–14294. https://doi.org/10.1073/pnas.1507747112 doi: 10.1073/pnas.1507747112
    [21] Y. Han, Z. Bai, Threshold dynamics of a West Nile virus model with impulsive culling and incubation period, Discrete Contin. Dyn. Syst. Ser. B, 21 (2021), 2423–2449. https://doi.org/10.3934/dcdsb.2021239 doi: 10.3934/dcdsb.2021239
    [22] Illinois Department of Public Health, Prevention and Control, Mosquitoes and Disease. Available from: http://www.idph.state.il.us/envhealth/pcmosquitoes.htm
    [23] Infection Prevention and Control Canada, West Nile Virus Resources. Available from: https://ipac-canada.org/west-nile-virus-resources
    [24] C. E. Jones, L. P. Lounibos, P. P. Marra, A. M. Kilpatrick, Rainfall Influences Survival of Culex pipiens (Diptera: Culicidae) in a Residential Neighborhood in the Mid-Atlantic United States, J. Med. Entomol., 49 (2012), 467–473. https://doi.org/10.1603/me11191 doi: 10.1603/me11191
    [25] M. P. Kain, B. M. Bolker, Predicting West Nile virus transmission in North American bird communities using phylogenetic mixed effects models and eBird citizen science data, Parasites Vectors, 12 (2019), 1–22.
    [26] A. M. Kilpatrick, S. S. Wheeler, Impact of West Nile Virus on Bird Populations: Limited Lasting Effects, Evidence for Recovery, and Gaps in Our Understanding of Impacts on Ecosystems, J. Med. Entomol., 56 (2019), 1491–1497. https://doi.org/10.1093/jme/tjz149 doi: 10.1093/jme/tjz149
    [27] C. J. M. Koenraadt, L. C. Harrington, Flushing effect of rain on container-inhabiting mosquitoes Aedes aegypti and Culex pipiens (Diptera: Culicidae), J. Med. Entomol., 45 (2008), 28–35. https://doi.org/10.1093/jmedent/45.1.28 doi: 10.1093/jmedent/45.1.28
    [28] N. Komar, S. Langevin, S. Hinten, N. Nemeth, E. Edwards, D. Hettler, et al., Experimental Infection of North American Birds with the New York 1999 Strain of West Nile Virus, Emerg. Infect. Dis., 9 (2003), 311–22. https://doi.org/10.3201/eid0903.020628 doi: 10.3201/eid0903.020628
    [29] C. R. Lesser, Field trial efficacy of Anvil 10+10 and Biomist 31:66 against Ochlerotatus sollicitans in Delaware, J. Am. Mosq. Control Assoc., 18 (2002), 36–39.
    [30] S. Lenhart, J. T. Workman, Optimal Control Applied to Biological Models, CRC Press, Boca Raton, 2007. https://doi.org/10.1201/9781420011418
    [31] T. Malik, A discrete time west nile virus transmission model with optimal bird- and vector-specific controls, Math. Biosci., 305 (2018), 60–70. https://doi.org/10.1016/j.mbs.2018.08.008 doi: 10.1016/j.mbs.2018.08.008
    [32] G. Marini, R. Rosá, A. Pugliese, H. Heesterbeek, Exploring vector-borne infection ecology in multi-host communities: A case study of West Nile virus, J. Theor. Biol., 415 (2017), 58–69. https://doi.org/10.1016/j.jtbi.2016.12.009 doi: 10.1016/j.jtbi.2016.12.009
    [33] K. M. McClure, C. Lawrence, A. M. Kilpatrick, Land use and larval habitat increase Aedes albopictus (Diptera: Culicidae) and Culex quinquefasciatus (Diptera: Culicidae) abundance in lowland Hawaii, J. Med. Entomol., 55 (2018), 1509–1516. https://doi.org/10.1093/jme/tjy117 doi: 10.1093/jme/tjy117
    [34] G. Ower, S. A. Juliano, Effects of larval density on a natural population of Culex restuans (Diptera: Culicidae): No evidence of compensatory mortality, Ecol. Entomol., 44 (2019), 197–205. https://doi.org/10.1111/een.12689 doi: 10.1111/een.12689
    [35] Kemi Swedish Chemicals Agency, Product Assessment Report Related to product authorisation under Regulation (EU) No 528/2012 VectoBac G and VectoBac GR, 2015.
    [36] Rankine Mosquito Management, Shire of Busselton Mosquito Management Plan, August 18, 2010. Available from: http://epbcnotices.environment.gov.au/_entity/annotation/59388137-229f-e611-abed-005056ba00a7/a71d58ad-4cba-48b6-8dab-f3091fc31cd5?t=1495843200341
    [37] S. E. Ronca, J. C. Ruff, K. O. Murray, A 20-year historical review of West Nile virus since its initial emergence in North America: Has West Nile virus become a neglected tropical disease? PLoS Negl. Trop. Dis., 15 (2021), e0009190. https://doi.org/10.1371/journal.pntd.0009190 doi: 10.1371/journal.pntd.0009190
    [38] J. E. Ruybal, L. D. Kramer, A. M. Kilpatrick, Geographic variation in the response of Culex pipiens life history traits to temperature, Parasites Vectors, 9 (2016), 116. https://doi.org/10.1186/s13071-016-1402-z doi: 10.1186/s13071-016-1402-z
    [39] M. S. Shocket, A. B. Verwillow, M. G. Numazu, H. Slamani, J. M. Cohen, E. M. Fadoua, et al., Transmission of West Nile and five other temperate mosquito-borne viruses peaks at temperatures between 23 C and 26 C, Elife, 9 (2020), e58511. https://doi.org/10.7554/eLife.58511 doi: 10.7554/eLife.58511
    [40] K. Staples, J. Oosthuizen, M. Lund, Effectiveness of s-methoprene briquets and application method for mosquito control in urban road gullies/catch basins/gully pots in a mediterranean climate: Implications for Ross River virus transmission, J. Am. Mosq. Control Assoc., 32 (2016), 203–209. https://doi.org/10.2987/16-6563.1 doi: 10.2987/16-6563.1
    [41] L. M. Styer, M. A. Meola, L. D. Kramer, West Nile Virus Infection Decreases Fecundity of Culex tarsalis Females, J. Med. Entomol., 44 (2007), 1074–1085. https://doi.org/10.1093/jmedent/44.6.1074 doi: 10.1093/jmedent/44.6.1074
    [42] A. Tran, G. L'ambert, G. Balança, S. Pradier, V. Grosbois, T. Balenghien, et al., An integrative eco-epidemiological analysis of West Nile virus transmission, EcoHealth, 14 (2017), 474–489. https://doi.org/10.1007/s10393-017-1249-6 doi: 10.1007/s10393-017-1249-6
    [43] C. B. F. Vogels, G. P. Göertz, G. P. Pijlman, C. J. M. Koenraadt, Vector competence of northern and southern E uropean Culex pipiens pipiens mosquitoes for West Nile virus across a gradient of temperatures, Med. Vet. Entomol., 31 (2017), 358–364. https://doi.org/10.1111/mve.12251 doi: 10.1111/mve.12251
    [44] C. B. Vogels, N. Hartemink, C. J. Koenraadt, Modelling West Nile virus transmission risk in Europe: effect of temperature and mosquito biotypes on the basic reproduction number, Sci. Rep., 7 (2017), 1–11. https://doi.org/10.1038/s41598-017-05185-4 doi: 10.1038/s41598-017-05185-4
    [45] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [46] F. B. Wang, R. Wu, X. Q. Zhao, A West Nile virus transmission model with periodic incubation periods, SIAM J. Appl. Dyn. Syst., 18 (2019), 1498–1535. https://doi.org/10.1137/18M1236162 doi: 10.1137/18M1236162
    [47] M. J. Wonham, T. de-Camino-Beck, M. A. Lewis, An epidemiological model for West Nile virus: invasion analysis and control applications, Proc. Royal Soc. B, 271 (2004), 501–507. https://doi.org/10.1098/rspb.2003.2608 doi: 10.1098/rspb.2003.2608
    [48] World Health Organization and others, Space spray application of insecticides for vector and public health pest control: a practitioner's guide, World Health Organization, (2003). https://apps.who.int/iris/handle/10665/68057
    [49] G. Wynn, C. J. Paradise, Effects of microcosm scaling and food resources on growth and survival of larval Culex pipiens, BMC Ecol., 1 (2001), 1–9. https://doi.org/10.1186/1472-6785-1-3 doi: 10.1186/1472-6785-1-3
    [50] X. Xu, Y. Xiao, R. A. Cheke, Models of impulsive culling of mosquitoes to interrupt transmission of West Nile virus to birds, Appl. Math. Model., 39 (2015), 3549–3568. https://doi.org/10.1016/j.apm.2014.10.072 doi: 10.1016/j.apm.2014.10.072
    [51] A. A. Yousten, F. J. Genthner, E. F.Benfield, F. Ernest, Fate of Bacillus sphaericus and Bacillus thuringiensis serovar israelensis in the aquatic environment, J. Am. Mosq. Control Assoc., 8 (1992), 143–148.
    [52] W. Zhou, Y. Xiao, J. M. Heffernan, A threshold policy to curb WNV transmission to birds with seasonality, Nonlinear Anal. Real World Appl., 59 (2021), 1498–1535. https://doi.org/10.1016/j.nonrwa.2020.103273 doi: 10.1016/j.nonrwa.2020.103273
  • This article has been cited by:

    1. Rasel Islam, M. Abul Kawser, M. Sohel Rana, M. Nurul Islam, Mathematical analysis of soliton solutions in space-time fractional Klein-Gordon model with generalized exponential rational function method, 2024, 12, 26668181, 100942, 10.1016/j.padiff.2024.100942
    2. Fouad Mohammad Salama, Faisal Fairag, On numerical solution of two-dimensional variable-order fractional diffusion equation arising in transport phenomena, 2024, 9, 2473-6988, 340, 10.3934/math.2024020
    3. Jalu A. Prakosa, Norma Alias, Chifayah Astuti, 2023, Performance comparison of applying integer and fractional order calculus to DC motor speed control experiments, 979-8-3503-4389-2, 79, 10.1109/ICRAMET60171.2023.10366595
    4. Nasir Ali, Muhammad Waseem, Maimoona Safdar, Ali Akgül, Fikadu Tesgera Tolasa, Iterative solutions for nonlinear equations via fractional derivatives: adaptations and advances, 2024, 32, 2769-0911, 10.1080/27690911.2024.2333816
    5. Waleed Hamali, Abdulah A. Alghamdi, Exact solutions to the fractional nonlinear phenomena in fluid dynamics via the Riccati-Bernoulli sub-ODE method, 2024, 9, 2473-6988, 31142, 10.3934/math.20241501
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1663) PDF downloads(84) Cited by(2)

Figures and Tables

Figures(12)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog