A mathematical model of tumor-immune system interactions with an oncolytic virus therapy for which the immune system plays a twofold role against cancer cells is derived. The immune cells can kill cancer cells but can also eliminate viruses from the therapy. In addition, immune cells can either be stimulated to proliferate or be impaired to reduce their growth by tumor cells. It is shown that if the tumor killing rate by immune cells is above a critical value, the tumor can be eradicated for all sizes, where the critical killing rate depends on whether the immune system is immunosuppressive or proliferative. For a reduced tumor killing rate with an immunosuppressive immune system, that bistability exists in a large parameter space follows from our numerical bifurcation study. Depending on the tumor size, the tumor can either be eradicated or be reduced to a size less than its carrying capacity. However, reducing the viral killing rate by immune cells always increases the effectiveness of the viral therapy. This reduction may be achieved by manipulating certain genes of viruses via genetic engineering or by chemical modification of viral coat proteins to avoid detection by the immune cells.
Citation: G. V. R. K. Vithanage, Hsiu-Chuan Wei, Sophia R-J Jang. Bistability in a model of tumor-immune system interactions with an oncolytic viral therapy[J]. Mathematical Biosciences and Engineering, 2022, 19(2): 1559-1587. doi: 10.3934/mbe.2022072
[1] | Xue Geng, Liang Guan, Dianlou Du . Action-angle variables for the Lie-Poisson Hamiltonian systems associated with the three-wave resonant interaction system. AIMS Mathematics, 2022, 7(6): 9989-10008. doi: 10.3934/math.2022557 |
[2] | Rutwig Campoamor-Stursberg, Eduardo Fernández-Saiz, Francisco J. Herranz . Generalized Buchdahl equations as Lie–Hamilton systems from the "book" and oscillator algebras: quantum deformations and their general solution. AIMS Mathematics, 2025, 10(3): 6873-6909. doi: 10.3934/math.2025315 |
[3] | Cenap Özel, Habib Basbaydar, Yasar Sñzen, Erol Yilmaz, Jung Rye Lee, Choonkil Park . On Reidemeister torsion of flag manifolds of compact semisimple Lie groups. AIMS Mathematics, 2020, 5(6): 7562-7581. doi: 10.3934/math.2020484 |
[4] | Wen Teng, Jiulin Jin, Yu Zhang . Cohomology of nonabelian embedding tensors on Hom-Lie algebras. AIMS Mathematics, 2023, 8(9): 21176-21190. doi: 10.3934/math.20231079 |
[5] | Junyuan Huang, Xueqing Chen, Zhiqi Chen, Ming Ding . On a conjecture on transposed Poisson n-Lie algebras. AIMS Mathematics, 2024, 9(3): 6709-6733. doi: 10.3934/math.2024327 |
[6] | Anas Al-Masarwah, Nadeen Kdaisat, Majdoleen Abuqamar, Kholood Alsager . Crossing cubic Lie algebras. AIMS Mathematics, 2024, 9(8): 22112-22129. doi: 10.3934/math.20241075 |
[7] | He Yuan, Zhuo Liu . Lie n-centralizers of generalized matrix algebras. AIMS Mathematics, 2023, 8(6): 14609-14622. doi: 10.3934/math.2023747 |
[8] | Simone Fiori . Coordinate-free Lie-group-based modeling and simulation of a submersible vehicle. AIMS Mathematics, 2024, 9(4): 10157-10184. doi: 10.3934/math.2024497 |
[9] | Nouf Almutiben, Ryad Ghanam, G. Thompson, Edward L. Boone . Symmetry analysis of the canonical connection on Lie groups: six-dimensional case with abelian nilradical and one-dimensional center. AIMS Mathematics, 2024, 9(6): 14504-14524. doi: 10.3934/math.2024705 |
[10] | Rutwig Campoamor-Stursberg, Eduardo Fernández-Saiz, Francisco J. Herranz . Exact solutions and superposition rules for Hamiltonian systems generalizing time-dependent SIS epidemic models with stochastic fluctuations. AIMS Mathematics, 2023, 8(10): 24025-24052. doi: 10.3934/math.20231225 |
A mathematical model of tumor-immune system interactions with an oncolytic virus therapy for which the immune system plays a twofold role against cancer cells is derived. The immune cells can kill cancer cells but can also eliminate viruses from the therapy. In addition, immune cells can either be stimulated to proliferate or be impaired to reduce their growth by tumor cells. It is shown that if the tumor killing rate by immune cells is above a critical value, the tumor can be eradicated for all sizes, where the critical killing rate depends on whether the immune system is immunosuppressive or proliferative. For a reduced tumor killing rate with an immunosuppressive immune system, that bistability exists in a large parameter space follows from our numerical bifurcation study. Depending on the tumor size, the tumor can either be eradicated or be reduced to a size less than its carrying capacity. However, reducing the viral killing rate by immune cells always increases the effectiveness of the viral therapy. This reduction may be achieved by manipulating certain genes of viruses via genetic engineering or by chemical modification of viral coat proteins to avoid detection by the immune cells.
Nonlinear differential equations are important mathematical tools for describing natural phenomena. The integrability and exact solutions of nonlinear evolution equations have always been of great concern to scientists [1,2]. The exact solution of nonlinear models plays an important role in describing some complex nonlinear phenomena. Some researchers have worked on solving the exact analytic solutions of the nonlinear extended models. They proposed many methods and also obtained more new types of exact solutions [3,4,5,6,7].
The study of integrable systems is an important research topic in disciplines such as physics and mathematics. The trace identity proposed by Tu is a simple and powerful tool for generating integrable hierarchies of soliton equations and their corresponding Hamiltonian structures [8]. By using the trace identity, based on Lie algebras, some isospectral integrable hierarchies and the corresponding Hamiltonian structures were constructed [9,10,11,12,13]. Some methods had been developed in deriving (2+1)-dimensional integrable systems, such as the TAH scheme. The TAH scheme is an effective method for generating (2+1)-dimensional soliton hierarchies. Based on this method, some (2+1)-dimensional integrable hierarchies and the corresponding Hamiltonian structures were obtained [14,15,16,17,18,19].
In order to obtain more integrable sysytems, Zhang et al. proposed an approach for generating nonisospectral integrable hierarchies under the assumption λt=∑i≥0ki(t)λ−i [20,21]. By using this method, [22,23] constructed some multi-component integrable hierarchies associated with multi-component non-semisimple Lie algebras. Moreover, based on Lie superalgebras, [24,25] investigated some nonisospectral super integrable hierarchies and the corresponding super Hamiltonian structures.
Matrix spectral problems and zero curvature equations play an important role in exploring the mathematical properties of associated soliton equations [26,27]. The semi-direct sum decomposition of Lie algebras provide a helpful way to construct the integrable couplings of soliton systems [28,29,30].
This paper is arranged as follows. In Section 2, based on Lie algebra sp(4), we construct the generalized Lie algebra Gsp(4), and obtain the nonisospectral integrable hierarchies and their Hamiltonian structures. In Section 3, based on the semi-direct sum decomposition of Lie algebras, the nonisospectral integrable coupling hierarchies and the corresponding Hamiltonian structures are obtained. In Sections 4 and 5, we obtain the nonisospectral integrable hierarchies and their coupling systems associated with the generalized Lie algebra Gso(5). In Section 6, by using sp(4)≅so(3,2), we obtain that there are the same integrable hierarchies of these two generalized Lie algebras, and there are also the same integrable couplings.
The compact real form sp(4) of complex symplectic Lie algebra sp(4,R) is defined as [31,32]
sp(4)={x∈gl(4,R)|Hx+xTH=0}, |
where H=(0I2−I20), I2 is the 2×2 identity matrix, and xT represents the transposition of x. We introduce the generalized Lie algebra sp(4), that admits a basis set as follows:
E1=e11−e33, E2=e22−e44, E3=e12−e43, E4=εe21−εe34,E5=εe14+εe23, E6=e32+e41, E7=εe13, E8=e31, E9=εe24, E10=e42, | (2.1) |
where ε∈R, and eij is a 4×4 matrix with 1 in the (i,j)-th position and zero elsewhere, which satisfy the commutative relations
[E1,E2]=0, [E1,E3]=E3, [E1,E4]=−E4, [E1,E5]=E5, [E1,E6]=−E6,[E1,E7]=2E7, [E1,E8]=−2E8, [E1,E9]=[E1,E10]=0, [E2,E3]=−E3,[E2,E4]=E4, [E2,E5]=E5, [E2,E6]=−E6, [E2,E7]=[E2,E8]=0,[E2,E9]=2E9, [E2,E10]=−2E10, [E3,E4]=ε(E1−E2), [E3,E5]=2E7,[E3,E6]=−2E10, [E3,E7]=0, [E3,E8]=−E6, [E3,E9]=E5, [E3,E10]=0,[E4,E5]=2E9, [E4,E6]=−2εE8, [E4,E7]=E5, [E4,E8]=[E4,E9]=0,[E4,E10]=−εE6, [E5,E6]=ε(E1+E2), [E5,E7]=0, [E5,E8]=E4, [E5,E9]=0,[E5,E10]=εE3, [E6,E7]=−εE3, [E6,E8]=[E6,E10]=0, [E6,E9]=−E4,[E7,E8]=εE1, [E7,E9]=[E7,E10]=[E8,E9]=[E8,E10]=0, [E9,E10]=εE2. |
We can construct different generalized Lie algebras Gsp(4) by adding the real number ε to different elements of the Lie algebra sp(4). Here, we will only discuss one of these cases.
Consider the linear nonisospectral problem
{φx=U1φ,φt=V1φ,λt=∑i≥0ki(t)λ−i, |
where
U1=(λ0εu3εu10λεu1εu5u4u2−λ0u2u60−λ),V1=(acεgεeεdbεeεphf−a−εdfq−c−b)=∑i≥0(aiciεgiεeiεdibiεeiεpihifi−ai−εdifiqi−ci−bi)λ−i. | (2.2) |
By solving stationary the zero curvature representation
V1x=∂U1∂λλt+[U1,V1], | (2.3) |
we can obtain
{aix=εu1fi−εu2ei+εu3hi−εu4gi+ki(t),bix=εu1fi−εu2ei+εu5qi−εu6pi+ki(t),cix=εu1qi−εu2gi+εu3fi−εu6ei,dix=u1hi−u2pi−u4ei+u5fi,eix=2λei−u1ai−u1bi−εu3di−u5ci,fix=−2λfi+u2ai+u2bi+u4ci+εu6di,gix=2λgi−2u1ci−2u3ai,hix=−2λhi+2εu2di+2u4ai,pix=2λpi−2εu1di−2u5bi,qix=−2λqi+2u2ci+2u6bi. | (2.4) |
By taking initial values
a0=α(t), b0=β(t), c0=d0=e0=f0=g0=h0=p0=q0=k0(t)=0, |
one has
a1=b1=k1(t)x, c1=ε2∂−1(u1u6+u2u3)(β−α), g1=u3α, p1=u5β, q1=u6β,d1=12∂−1(u1u4+u2u5)(α−β), e1=12u1(α+β), f1=12u2(α+β), h1=u4α,e2=14u1x(α+β)+ε4[u3∂−1(u1u4+u2u5)−u5∂−1(u1u6+u2u3)](α−β)+u1k1(t)x,f2=−14u2x(α+β)+ε4[u4∂−1(u1u6+u2u3)−u6∂−1(u1u4+u2u5)](β−α)+u2k1(t)x,g2=12u3xα+ε2u1∂−1(u1u6+u2u3)(β−α)+u3k1(t)x,h2=−12u4xα+ε2u2∂−1(u1u4+u2u5)(β−α)+u4k1(t)x,p2=12u5xβ−ε2u1∂−1(u1u4+u2u5)(β−α)+u5k1(t)x,q2=−12u6xβ+ε2u2∂−1(u1u6+u2u3)(β−α)+u6k1(t)x,⋯⋯ |
where α(t) is an integral constant. Noting that
V(n)1+=n∑i=0(ai,bi,ci,di,ei,fi,gi,hi,pi,qi)T, V(n)1−=∞∑i=n+1(ai,bi,ci,di,ei,fi,gi,hi,pi,qi)T,λ(n)+,x=n∑i=0ki(t)λn−i, λ(n)−,x=∞∑i=n+1ki(t)λn−i, |
it follows that one has
−V(n)1+,x+∂U1∂λλ(n)t,++[U1,V(n)1+]=(0,0,0,0,−2en+1,2fn+1,−2gn+1,2hn+1,−2pn+1,2qn+1)T. |
According to (2.4), it is easy to show that we have the recursion relations
(2εfn+12εen+1εhn+1εgn+1εqn+1εpn+1)=L1(2εfn2εenεhnεgnεqnεpn)+(2εu22εu1εu4εu3εu6εu5)kn(t)x, |
where the recurrence operator L1 is defined as
L1=(l11l12l13l14l15l16l21l22l23l24l25l26l31l32l33l34l35l36l41l42l43l44l45l46l51l52l53l54l55l56l61l62l63l64l65l66), |
and
l11=−∂2+ε2(2u2∂−1u1+u4∂−1u3+u6∂−1u5),l12=−ε2(2u2∂−1u2+u4∂−1u6+u6∂−1u4),l21=εu1∂−1u1+ε2(u3∂−1u5+u5∂−1u3), l22=∂2−εu1∂−1u2−ε2(u3∂−1u4+u5∂−1u6),l31=12l15=ε2(u2∂−1u5+u4∂−1u1), l32=12l14=−ε2(u2∂−1u4+u4∂−1u2),l41=12l23=ε2(u1∂−1u3+u3∂−1u1), l42=12l26=−ε2(u1∂−1u6+u3∂−1u2),l51=12l13=ε2(u2∂−1u3+u6∂−1u1), l52=12l16=−ε2(u2∂−1u6+u6∂−1u2),l61=12l25=ε2(u1∂−1u5+u5∂−1u1), l62=12l24=−ε2(u1∂−1u4+u5∂−1u2),l33=−∂2+εu2∂−1u1+εu4∂−1u3, l34=−εu4∂−1u4, l35=0, l36=−εu2∂−1u2,l43=εu3∂−1u3, l44=∂2−εu1∂−1u2−εu3∂−1u4, l45=εu1∂−1u1, l46=0,l53=0, l54=−εu2∂−1u2, l55=−∂2+εu2∂−1u1+εu6∂−1u5, l56=−εu6∂−1u6,l63=εu1∂−1u1, l64=0, l65=εu5∂−1u5, l66=∂2−εu1∂−1u2−εu5∂−1u6. |
Taking V(n)1=V(n)1,+, then the zero curvature equation
−V(n)1x+∂U1∂uut+∂U1∂λλ(n)t,++[U1,V(n)1]=0 |
leads to the following nonisospectral hierarchy
utn=(u1u2u3u4u5u6)tn=(−2en+12fn+1−2gn+12hn+1−2pn+12qn+1)=J1(2εfn+12εen+1εhn+1εgn+1εqn+1εpn+1)=J1L1(2εfn2εenεhnεgnεqnεpn)+J1(2εu22εu1εu4εu3εu6εu5)kn(t)x, | (2.5) |
where the Hamiltonian operator J1 is
J1=1ε(0−10000100000000−20000200000000−2000020). |
To furnish Hamiltonian structures, we use the trace identity, and have
⟨V1,∂U1∂λ⟩=2a+2b, ⟨V1,∂U1∂u1⟩=2εf, ⟨V1,∂U1∂u2⟩=2εe,⟨V1,∂U1∂u3⟩=εh, ⟨V1,∂U1∂u4⟩=εg, ⟨V1,∂U1∂u5⟩=εq, ⟨V1,∂U1∂u6⟩=εp. |
Substituting the above formulas into the trace identity yields
δδu∫(2a+2b)dx=λ−γ∂∂λλγ(2εf2εeεhεgεqεp). |
Balancing coefficients of each power of λ in the above equality gives rise to
δδu∫(2an+1+2bn+1)dx=(γ−n)(2εfn2εenεhnεgnεqnεpn). |
Taking n=1, gives γ=0. Thus, we see
ut=J1δH(1)n+1δu=J1L1δH(1)nδu+J1M1kn(t)x, H(1)n+1=−2∫(an+2+bn+2n+1)dx, n≥0, |
where M1=(2εu2,2εu1,εu4,εu3,εu6,εu5)T.
We generalize the semisimple Lie algebra g to the non-semisimple Lie algebra ˉg. This has the block matrix form [29,30]
M(A,B)=(AεBBA), | (3.1) |
where ε∈R, which is different from Section 2, and A,B are two arbitrary matrices with the same order. Non-semisimple Lie algebra ˉg has two subalgebras ˜g={M(A,O)} and ~gc={M(O,B)}, that forms the semi-direct sum of Lie algebras ˉg=˜g⊕s~gc. That is, [˜g,~gc]={[A,B]|A∈˜g,B∈~gc}, [˜g,˜g]⊆˜g, [~gc,~gc]⊆˜g, [˜g,~gc]⊆~gc.
We introduce the enlarged spectral problems
{φx=ˉUφ=(U1εU2U2U1),φt=ˉVφ=(V1εV2V2V1),λt=∑i≥0ki(t)λ−i. |
From the corresponding enlarged stationary zero curvature equation
ˉVx=∂ˉU∂λλt+[ˉU,ˉV], | (3.2) |
it is easy to have
{V1,x=[U1,V1]+ε[U2,V2],V2,x=[U2,V1]+[U1,V2]. |
In this section, we will construct the nonisospectral integrable coupling hierarchies associated with Lie algebra sp(4). We consider the nonisospectral problem
{φx=ˉU1φ,φt=ˉV1φ,λt=∑i≥0ki(t)λ−i, |
where
ˉU1=(U′1εU′2U′2U′1),U′1=(λ0u3u10λu1u5u4u2−λ0u2u60−λ),U′2=(00u′3u′100u′1u′5u′4u′200u′2u′600),ˉV1=(V′1εV′2V′2V′1),V′1=(acgedbephf−a−dfq−c−b),V′2=(a′c′g′e′d′b′e′p′h′f′−a′−d′f′q′−c′−b′), | (3.3) |
where u1,u2,⋯,u6 and a,b,c,d,e,f,g,h,p,q are different from (2.2).
We solve the enlarged stationary zero curvature equation by means of
ˉV1x=∂ˉU1∂λλt+[ˉU1,ˉV1], | (3.4) |
which yields
{aix=u1fi−u2ei+u3hi−u4gi+εu′1f′i−εu′2e′i+εu′3h′i−εu′4g′i+ki(t),bix=u1fi−u2ei+u5qi−u6pi+εu′1f′i−εu′2e′i+εu′5q′i−εu′6p′i+ki(t),cix=u1qi−u2gi+u3fi−u6ei+εu′1q′i−εu′2g′i+εu′3f′i−εu′6e′i,dix=u1hi−u2pi−u4ei+u5fi+εu′1h′i−εu′2p′i−εu′4e′i+εu′5f′i,eix=2λei−u1ai−u1bi−u3di−u5ci−εu′1a′i−εu′1b′i−εu′3d′i−εu′5c′i,fix=−2λfi+u2ai+u2bi+u4ci+u6di+εu′2a′i+εu′2b′i+εu′4c′i+εu′6d′i,gix=2λgi−2u1ci−2u3ai−2εu′1c′i−2εu′3a′i,hix=−2λhi+2u2di+2u4ai+2εu′2d′i+2εu′4a′i,pix=2λpi−2u1di−2u5bi−2εu′1d′i−2εu′5b′i,qix=−2λqi+2u2ci+2u6bi+2εu′2c′i+2εu′6b′i, | (3.5) |
and
{a′ix=u1f′i−u2e′i+u3h′i−u4g′i+u′1fi−u′2ei+u′3hi−u′4gi+ki(t),b′ix=u1f′i−u2e′i+u5q′i−u6p′i+u′1fi−u′2ei+u′5qi−u′6pi+ki(t),c′ix=u1q′i−u2g′i+u3f′i−u6e′i+u′1qi−u′2gi+u′3fi−u′6ei,d′ix=u1h′i−u2p′i−u4e′i+u5f′i+u′1hi−u′2pi−u′4ei+u′5fi,e′ix=2λe′i−u1a′i−u1b′i−u3d′i−u5c′i−u′1ai−u′1bi−u′3di−u′5ci,f′ix=−2λf′i+u2a′i+u2b′i+u4c′i+u6d′i+u′2ai+u′2bi+u′4ci+u′6di,g′ix=2λg′i−2u1c′i−2u3a′i−2u′1ci−2u′3ai,h′ix=−2λh′i+2u2d′i+2u4a′i+2u′2di+2u′4ai,p′ix=2λp′i−2u1d′i−2u5b′i−2u′1di−2u′5bi,q′ix=−2λq′i+2u2c′i+2u6b′i+2u′2ci+2u′6bi. | (3.6) |
By taking initial values
a0=α(t), b0=β(t), c0=d0=e0=f0=g0=h0=p0=q0=k0(t)=0,a′0=α′(t), b′0=β′(t), c′0=d′0=e′0=f′0=g′0=h′0=p′0=q′0=0, |
one has
a1=b1=k1(t)x, e1=12u1(α+β)+ε2u′1(α′+β′), f1=12u2(α+β)+ε2u′2(α′+β′),g1=u3α+εu′3α′, h1=u4α+εu′4α′, p1=u5β+εu′5β′, q1=u6β+εu′6β′,c1=12∂−1(u1u6+u2u3+εu′1u′6+εu′2u′3)(β−α)+ε2∂−1(u1u′6+u2u′3+u′1u6+u′2u3)(β′−α′),d1=12∂−1(u1u4+u2u5+εu′1u′4+εu′2u′5)(α−β)+ε2∂−1(u1u′4+u2u′5+u′1u4+u′2u5)(α′−β′),a′1=b′1=k1(t)x, e′1=12u′1(α+β)+12u1(α′+β′), f′1=12u′2(α+β)+12u2(α′+β′),g′1=u′3α+u3α′, h′1=u′4α+u4α′, p′1=u′5β+u5β′, q′1=u′6β+u6β′,c′1=12∂−1(u1u′6+u2u′3+u′1u6+u′2u3)(β−α)+12∂−1(u1u6+u2u3+εu′1u′6+εu′2u′3)(β′−α′),d′1=12∂−1(u1u′4+u2u′5+u′1u4+u′2u5)(α−β)+12∂−1(u1u4+u2u5+εu′1u′4+εu′2u′5)(α′−β′),⋯⋯ |
where α(t), β(t) are integral constants.
From the nonisospectral zero curvature equation
∂ˉU1∂uut+∂ˉU1∂λλt−ˉV(n)1x+[ˉU1,ˉV(n)1]=0, |
we can obtain the following integrable couplings:
ˉutn=(ˉu1ˉu2)tn, ˉu1tn=(u1u2u3u4u5u6)tn=(−2en+12fn+1−2gn+12hn+1−2pn+12qn+1), ˉu2tn=(u′1u′2u′3u′4u′5u′6)tn=(−2e′n+12f′n+1−2g′n+12h′n+1−2p′n+12q′n+1). | (3.7) |
To furnish Hamiltonian structures, we use the trace identity, and have
⟨V′1,∂U′2∂λ⟩+⟨V′2,∂U′1∂λ⟩=2(a′+b′), ⟨V′1,∂U′2∂u1⟩+⟨V′2,∂U′1∂u1⟩=2f′,⟨V′1,∂U′2∂u2⟩+⟨V′2,∂U′1∂u2⟩=2e′, ⟨V′1,∂U′2∂u3⟩+⟨V′2,∂U′1∂u3⟩=h′,⟨V′1,∂U′2∂u4⟩+⟨V′2,∂U′1∂u4⟩=g′, ⟨V′1,∂U′2∂u5⟩+⟨V′2,∂U′1∂u5⟩=q′,⟨V′1,∂U′2∂u6⟩+⟨V′2,∂U′1∂u6⟩=p′, ⟨V′1,∂U′2∂u′1⟩+⟨V′2,∂U′1∂u′1⟩=2f,⟨V′1,∂U′2∂u′2⟩+⟨V′2,∂U′1∂u′2⟩=2e, ⟨V′1,∂U′2∂u′3⟩+⟨V′2,∂U′1∂u′3⟩=h,⟨V′1,∂U′2∂u′4⟩+⟨V′2,∂U′1∂u′4⟩=g, ⟨V′1,∂U′2∂u′5⟩+⟨V′2,∂U′1∂u′5⟩=q,⟨V′1,∂U′2∂u′6⟩+⟨V′2,∂U′1∂u′6⟩=p. |
Substituting the above formulas into the trace identity, and balancing the coefficients of each power of λ, we give the first form
δδˉu∫2(a′n+1+b′n+1)dx=(γ−n)(M1M2), | (3.8) |
where
M1=(2f′n2e′nh′ng′nq′np′n), M2=(2fn2enhngnqnpn). |
At the same time, we also have
⟨V′1,∂U′1∂λ⟩+ε⟨V′2,∂U′2∂λ⟩=2(a+b), ⟨V′1,∂U′1∂u1⟩+ε⟨V′2,∂U′2∂u1⟩=2f,⟨V′1,∂U′1∂u2⟩+ε⟨V′2,∂U′2∂u2⟩=2e, ⟨V′1,∂U′1∂u3⟩+ε⟨V′2,∂U′2∂u3⟩=h,⟨V′1,∂U′1∂u4⟩+ε⟨V′2,∂U′2∂u4⟩=g, ⟨V′1,∂U′1∂u5⟩+ε⟨V′2,∂U′2∂u5⟩=q,⟨V′1,∂U′1∂u6⟩+ε⟨V′2,∂U′2∂u6⟩=p, ⟨V′1,∂U′1∂u′1⟩+ε⟨V′2,∂U′2∂u′1⟩=2εf′,⟨V′1,∂U′1∂u′2⟩+ε⟨V′2,∂U′2∂u′2⟩=2εe′, ⟨V′1,∂U′1∂u′3⟩+ε⟨V′2,∂U′2∂u′3⟩=εh′,⟨V′1,∂U′1∂u′4⟩+ε⟨V′2,∂U′2∂u′4⟩=εg′, ⟨V′1,∂U′1∂u′5⟩+ε⟨V′2,∂U′2∂u′5⟩=εq′,⟨V′1,∂U′1∂u′6⟩+ε⟨V′2,∂U′2∂u′6⟩=εp′. |
Substituting the above formulas into the trace identity, and balancing coefficients of each power of λ, we give the second form
δδu∫2(an+1+bn+1)dx=(γ−n)(M2εM1), |
where M1, M2 are defined as (3.8).
So, we can obtain the Hamiltonian structures of integrable couplings, which consists of the following two components. The first component has the form
ˉutn=(ˉu1ˉu2)tn=ˉJ1(K1K2)=ˉJ1δˉH1,mδˉu, K1=(2f′n+12e′n+1h′n+1g′n+1q′n+1p′n+1), K2=(2fn+12en+1hn+1gn+1qn+1pn+1), |
where ˉJ1=(OJ1J1O), and J1 is defined as (2.5). The second component has the form
ˉutn=(ˉu1ˉu2)tn=ˉJ2(K2εK1)=ˉJ2δˉH2,mδˉu, ˉJ2=(J1OO1εJ1). |
From (3.5) and (3.6), we can obtain the recursion relations
(−2en+12fn+1−2gn+12hn+1−2pn+12qn+1−2e′n+12f′n+1−2g′n+12h′n+1−2p′n+12q′n+1)=ˉL1(−2en2fn−2gn2hn−2pn2qn−2e′n2f′n−2g′n2h′n−2p′n2q′n)+(−2u1−2εu′12u2+2εu′2−2u3−2εu′32u4+2εu′4−2u5−2εu′52u6+2εu′6−2u1−2u′12u2+2u′2−2u3−2u′32u4+2u′4−2u5−2u′52u6+2u′6)kn(t)x, |
where the recurrence operator ˉL1 is defined as
ˉL1=(L′1L′21εL′2L′1), L′1=(l11l12l13l14l15l16l21l22l23l24l25l26l31l32l33l34l35l36l41l42l43l44l45l46l51l52l53l54l55l56l61l62l63l64l65l66), L′2=(l′11l′12l′13l′14l′15l′16l′21l′22l′23l′24l′25l′26l′31l′32l′33l′34l′35l′36l′41l′42l′43l′44l′45l′46l′51l′52l′53l′54l′55l′56l′61l′62l′63l′64l′65l′66), |
and
l11=12(∂−2u1∂−1u2−u3∂−1u4−u5∂−1u6−2εu′1∂−1u′2−εu′3∂−1u′4−εu′5∂−1u′6),l12=−12(2u1∂−1u1+u3∂−1u5+u5∂−1u3+2εu′1∂−1u′1+εu′3∂−1u′5+εu′5∂−1u′3),l13=12l51=−12(u1∂−1u4+u5∂−1u2+εu′1∂−1u′4+εu′5∂−1u′2),l14=12l32=−12(u1∂−1u3+u3∂−1u1+εu′1∂−1u′3+εu′3∂−1u′1),l15=12l31=−12(u1∂−1u6+u3∂−1u2+εu′1∂−1u′6+εu′3∂−1u′2),l16=12l52=−12(u1∂−1u5+u5∂−1u1+εu′1∂−1u′5+εu′5∂−1u′1),l′11=−ε2(2u1∂−1u′2+u3∂−1u′4+u5∂−1u′6+2u′1∂−1u2+u′3∂−1u4+u′5∂−1u6),l′12=−ε2(2u1∂−1u′1+u3∂−1u′5+u5∂−1u′3+2u′1∂−1u1+u′3∂−1u5+u′5∂−1u3),l′13=12l′51=−ε2(u1∂−1u′4+u5∂−1u′2+u′1∂−1u4+u′5∂−1u2),l′14=12l′32=−ε2(u1∂−1u′3+u3∂−1u′1+u′1∂−1u3+u′3∂−1u1),l′15=12l′31=−ε2(u1∂−1u′6+u3∂−1u′2+u′1∂−1u6+u′3∂−1u2),l′16=12l′52=−ε2(u1∂−1u′5+u5∂−1u′1+u′1∂−1u5+u′5∂−1u1),l21=12(2u2∂−1u2+u4∂−1u6+u6∂−1u4+2εu′2∂−1u′2+εu′4∂−1u′6+εu′6∂−1u′4),l22=12(−∂+2u2∂−1u1+u4∂−1u3+u6∂−1u5+2εu′2∂−1u′1+εu′4∂−1u′3+εu′6∂−1u′5),l23=12l41=12(u2∂−1u4+u4∂−1u2+εu′2∂−1u′4+εu′4∂−1u′2),l24=12l62=12(u2∂−1u3+u6∂−1u1+εu′2∂−1u′3+εu′6∂−1u′1),l25=12l61=12(u2∂−1u6+u6∂−1u2+εu′2∂−1u′6+εu′6∂−1u′2),l26=12l42=12(u2∂−1u5+u4∂−1u1+εu′2∂−1u′5+εu′4∂−1u′1),l′21=ε2(2u2∂−1u′2+u4∂−1u′6+u6∂−1u′4+2u′2∂−1u2+u′4∂−1u6+u′6∂−1u4),l′22=ε2(2u2∂−1u′1+u4∂−1u′3+u6∂−1u′5+2u′2∂−1u1+u′4∂−1u3+u′6∂−1u5),l′23=12l′41=ε2(u2∂−1u′4+u4∂−1u′2+u′2∂−1u4+u′4∂−1u2),l′24=12l′62=ε2(u2∂−1u′3+u6∂−1u′1+u′2∂−1u3+u′6∂−1u1),l′25=12l′61=ε2(u2∂−1u′6+u6∂−1u′2+u′2∂−1u6+u′6∂−1u2),l′26=12l′42=ε2(u2∂−1u′5+u4∂−1u′1+u′2∂−1u5+u′4∂−1u1), l35=0,l33=∂2−u1∂−1u2−u3∂−1u4−εu′1∂−1u′2−εu′3∂−1u′4, l34=−(u3∂−1u3+εu′3∂−1u′3),l36=−(u1∂−1u1+εu′1∂−1u′1), l′33=−ε(u1∂−1u′2+u3∂−1u′4+u′1∂−1u2+u′3∂−1u4),l′34=−ε(u3∂−1u′3+u3∂−1u′3), l′35=0, l′36=−ε(u1∂−1u′1+u1∂−1u′1),l43=u4∂−1u4+εu′4∂−1u′4, l44=−∂2+u4∂−1u3+u2∂−1u1+εu′4∂−1u′3+εu′2∂−1u′1,l45=u2∂−1u2+εu′2∂−1u′2, l46=0, l′43=ε(u4∂−1u′4+u′4∂−1u4),l′44=ε(u4∂−1u′3+u2∂−1u′1+u′4∂−1u3+u′2∂−1u1), l′45=ε(u2∂−1u′2+u2∂−1u′2), l′46=0,l54=−(u1∂−1u1+εu′1∂−1u′1), l55=∂2−u1∂−1u2−u5∂−1u6−εu′1∂−1u′2−εu′5∂−1u′6,l56=−(u5∂−1u5+εu′5∂−1u′5), l53=l′53=0, l′54=−ε(u1∂−1u′1+u′1∂−1u1),l′55=−ε(u1∂−1u′2+u5∂−1u′6+u′1∂−1u2+u′5∂−1u6), l′56=−ε(u5∂−1u′5+u5∂−1u′5),l63=u2∂−1u2+εu′2∂−1u′2, l64=l′64=0, l65=u6∂−1u6+εu′6∂−1u′6,l66=−∂2+u2∂−1u1+u6∂−1u5+εu′2∂−1u′1+εu′6∂−1u′5, l′63=ε(u2∂−1u′2+u′2∂−1u2),l′65=ε(u6∂−1u′6+u′6∂−1u6), l′66=ε(u2∂−1u′1+u6∂−1u′5+u′2∂−1u1+u′6∂−1u5). |
In this section, based on Lie algebra so(5) [31,33], we introduce the generalized Lie algebra Gso(5), that admits a basis set as follows:
E1=e22−e44, E2=e33−e55, E3=εe32−εe45, E4=e23−e54, E5=e52−e43,E6=εe25−εe34, E7=e13+e51, E8=εe15+εe31, E9=εe12+εe41, E10=e14+e21, | (4.1) |
where eij is a 5×5 matrix with 1 in the (i,j)-th position and zero elsewhere, which satisfy the commutative relations
[E1,E2]=0, [E1,E3]=−E3, [E1,E4]=E4, [E1,E5]=−E5, [E1,E6]=E6,[E1,E7]=[E1,E8]=0, [E1,E9]=−E9, [E1,E10]=E10, [E2,E3]=E3,[E2,E4]=−E4, [E2,E5]=−E5, [E2,E6]=E6, [E2,E7]=−E7, [E2,E8]=E8,[E2,E9]=[E2,E10]=0, [E3,E4]=ε(E2−E1), [E3,E5]=[E3,E6]=0, [E3,E7]=−E9,[E3,E8]=[E3,E9]=0, [E3,E10]=E8, [E4,E5]=[E4,E6]=[E4,E7]=0,[E4,E8]=εE10, [E4,E9]=−εE7, [E4,E10]=0, [E5,E6]=−ε(E1+E2), [E5,E7]=0,[E5,E8]=−E9, [E5,E9]=0, [E5,E10]=E7, [E6,E7]=εE10, [E6,E8]=[E6,E10]=0,[E6,E9]=−εE8, [E7,E8]=−εE2, [E7,E9]=εE5, [E7,E10]=−E4, [E8,E9]=εE3,[E8,E10]=−E6, [E9,E10]=−εE1. |
Consider the nonisospectral problem
{φx=U2φ,φt=V2φ,λt=∑i≥0ki(t)λ−i, |
where
U2=(0εu5u3u6εu4u6λ00εu2εu40λ−εu20εu50−u1−λ0u3u100−λ),V2=(0εpgqεhqad0εfεhεcb−εf0εp0−e−a−εcge0−d−b)=∑i≥0(0εpigiqiεhiqiaidi0εfiεhiεcibi−εfi0εpi0−ei−ai−εcigiei0−di−bi)λ−i, | (4.2) |
here u1,u2,⋯,u6 and a,b,c,d,e,f,g,h,p,q are different from (2.2) and (3.3).
By solving the stationary zero curvature representation
V2x=∂U2∂λλt+[U2,V2], | (4.3) |
we can obtain
{aix=−εu1fi+εu2ei−εu5qi+εu6pi+ki(t),bix=−εu1fi+εu2ei−εu3hi+εu4gi+ki(t),cix=εu4pi−εu5hi,dix=−u3qi+u6gi,eix=−2λei+u1ai+u1bi+εu3pi−εu5gi,fix=2λfi−u2ai−u2bi−u4qi+u6hi,gix=−λgi+u1qi+u3bi+εu5di−u6ei,hix=λhi−εu2pi−u4bi+εu5fi−u6ci,pix=−λpi−u1hi+u3ci+u4ei+u5ai,qix=λqi+εu2gi−εu3fi−εu4di−u6ai. | (4.4) |
By taking initial values
a0=α(t), b0=β(t), c0=d0=e0=f0=g0=h0=p0=q0=k0(t)=0, |
one has
a1=b1=k1(t)x, c1=ε∂−1u4u5(α−β),d1=∂−1u3u6(β−α), e1=12u1(α+β),f1=12u2(α+β), g1=u3β, h1=u4β, p1=u5α, q1=u6α,e2=−14u1x(α+β)+ε2u3u5(α−β)+u1k1(t)x,f2=14u2x(α+β)+12u4u6(α−β)+u2k1(t)x,g2=−u3xβ+12u1u6(α−β)+εu5∂−1u3u6(β−α)+u3k1(t)x,h2=u4xβ+ε2u2u5(α−β)+εu6∂−1u4u5(α−β)+u4k1(t)x,p2=−u5xα+12u1u4(α−β)+εu3∂−1u4u5(α−β)+u5k1(t)x,q2=u6xα+ε2u2u3(α−β)+εu4∂−1u3u6(β−α)+u6k1(t)x,⋯⋯ |
where α(t) is an integral constant. Noting that
V(n)2+=n∑i=0(ai,bi,ci,di,ei,fi,gi,hi,pi,qi)T, V(n)2−=∞∑i=n+1(ai,bi,ci,di,ei,fi,gi,hi,pi,qi)T,λ(n)+,x=n∑i=0ki(t)λn−i, λ(n)−,x=∞∑i=n+1ki(t)λn−i, |
it follows that one has
−V(n)2+,x+∂U2∂λλ(n)t,++[U2,V(n)2+]=(0,0,0,0,2en+1,−2fn+1,gn+1,−hn+1,pn+1,−qn+1)T. |
According to (4.4), it is easy to show that we have the recursion relations
(2εfn+12εen+12εhn+12εgn+12εqn+12εpn+1)=L2(2εfn2εen2εhn2εgn2εqn2εpn)+(2εu22εu12εu42εu32εu62εu5)kn(t)x, |
where the recurrence operator L2 is defined as
L2=(l11l12l13l14l15l16l21l22l23l24l25l26l31l32l33l34l35l36l41l42l43l44l45l46l51l52l53l54l55l56l61l62l63l64l65l66), |
and
l11=∂2−εu2∂−1u1, l12=εu2∂−1u2, l13=−ε2u2∂−1u3−u62, l14=ε2u2∂−1u4,l15=−ε2u2∂−1u5+u42, l16=ε2u2∂−1u6, l21=−εu1∂−1u1, l22=−∂2+εu1∂−1u2,l23=−ε2u1∂−1u3, l24=ε2u1∂−1u4−ε2u5, l25=−ε2u1∂−1u5, l26=ε2u1∂−1u6+ε2u3,l31=−εu4∂−1u1−εu5, l32=εu4∂−1u2, l33=∂−εu4∂−1u3−εu6∂−1u5, l35=0,l34=εu4∂−1u4, l36=εu2+εu6∂−1u4, l41=−εu3∂−1u1, l42=εu3∂−1u2−u6,l43=−εu3∂−1u3, l44=−∂+εu3∂−1u4+εu5∂−1u6, l45=u1−εu5∂−1u3, l46=0,l51=εu3−εu6∂−1u1, l52=εu6∂−1u2, l53=0, l54=−εu2+εu4∂−1u6,l55=∂−εu4∂−1u3−εu6∂−1u5, l56=εu6∂−1u6, l61=−εu5∂−1u1, l62=u4+εu5∂−1u2,l63=−u1−εu3∂−1u5, l64=0, l65=−εu5∂−1u5, l66=−∂+εu3∂−1u4+εu5∂−1u6. |
Taking V(n)2=V(n)2,+, the zero curvature equation
−V(n)2x+∂U2∂uut+∂U2∂λλ(n)t,++[U2,V(n)2]=0 |
leads to the nonisospectral hierarchy
utn=(u1u2u3u4u5u6)tn=(2en+1−2fn+1gn+1−hn+1pn+1−qn+1)=J2(2εfn+12εen+12εhn+12εgn+12εqn+12εpn+1)=J2L2(2εfn2εen2εhn2εgn2εqn2εpn)+J2(2εu22εu12εu42εu32εu62εu5)kn(t)x, | (4.5) |
where the Hamiltonian operator J2 is
J2=1ε(010000−100000000120000−1200000000120000−120). |
To furnish Hamiltonian structures, we use the trace identity, and have
⟨V2,∂U2∂λ⟩=2a+2b, ⟨V2,∂U2∂u1⟩=2εf, ⟨V2,∂U2∂u2⟩=2εe,⟨V2,∂U2∂u3⟩=2εh, ⟨V2,∂U2∂u4⟩=2εg, ⟨V2,∂U2∂u5⟩=2εq, ⟨V2,∂U2∂u6⟩=2εp. |
Substituting the above formulas into the trace identity and balancing coefficients of each power of λ gives rise to
δδu∫(2an+1+2bn+1)dx=(γ−n)(2εfn2εen2εhn2εgn2εqn2εpn). |
Taking n=1, gives γ=0. Thus, we see
ut=J2δH(2)n+1δu=J2L2δH(2)nδu+J2M2kn(t)x, H(2)n+1=−2∫(an+2+bn+2n+1)dx, n≥0, |
where M2=(2εu2,2εu1,2εu4,2εu3,2εu6,2εu5)T.
In this section, we will construct the nonisospectral integrable coupling hierarchies associated with Lie algebra so(5). We consider the nonisospectral problem
{φx=ˉU2φ, ˉU2=(U′3εU′4U′4U′3),φt=ˉV2φ, ˉV2=(V′3εV′4V′4V′3),λt=∑i≥0ki(t)λ−i, |
where
U′3=(0u5u3u6u4u6λ00u2u40λ−u20u50−u1−λ0u3u100−λ),U′4=(0u′5u′3u′6u′4u′6000u′2u′400−u′20u′50−u′100u′3u′1000),V′3=(0pgqhqad0fhcb−f0p0−e−a−cge0−d−b),V′4=(0p′g′q′h′q′a′d′0f′h′c′b′−f′0p′0−e′−a′−c′g′e′0−d′−b′), | (5.1) |
where u1,u2,⋯,u6,u′1,u′2,⋯,u′6, and a,b,c,d,e,f,g,h,p,q,a′,b′,c′,d′,e′,f′,g′,h′,p′,q′ are different from (2.2), (3.3), and (4.2).
We solve the stationary zero curvature equation by means of
ˉV2x=∂ˉU2∂λλt+[ˉU2,ˉV2] | (5.2) |
which yields
{aix=−u1fi+u2ei−u5qi+u6pi−εu′1f′i+εu′2e′i−εu′5q′i+εu′6p′i+ki(t),bix=−u1fi+u2ei−u3hi+u4gi−εu′1f′i+εu′2e′i−εu′3h′i+εu′4g′i+ki(t),cix=u4pi−u5hi+εu′4p′i−εu′5h′i,dix=−u3qi+u6gi−εu′3q′i+εu′6g′i,eix=−2λei+u1ai+u1bi+u3pi−u5gi+εu′1a′i+εu′1b′i+εu′3p′i−εu′5g′i,fix=2λfi−u2ai−u2bi−u4qi+u6hi−εu′2a′i−εu′2b′i−εu′4q′i+εu′6h′i,gix=−λgi+u1qi+u3bi+u5di−u6ei+εu′1q′i+εu′3b′i+εu′5d′i−εu′6e′i,hix=λhi−u2pi−u4bi+u5fi−u6ci−εu′2p′i−εu′4b′i+εu′5f′i−εu′6c′i,pix=−λpi−u1hi+u3ci+u4ei+u5ai−εu′1h′i+εu′3c′i+εu′4e′i+εu′5a′i,qix=λqi+u2gi−u3fi−u4di−u6ai+εu′2g′i−εu′3f′i−εu′4d′i−εu′6a′i, | (5.3) |
and
{a′ix=−u1f′i+u2e′i−u5q′i+u6p′i−u′1fi+u′2ei−u′5qi+u′6pi+ki(t),b′ix=−u1f′i+u2e′i−u3h′i+u4g′i−u′1fi+u′2ei−u′3hi+u′4gi+ki(t),c′ix=u4p′i−u5h′i+u′4pi−u′5hi,d′ix=−u3q′i+u6g′i−u′3qi+u′6gi,e′ix=−2λe′i+u1a′i+u1b′i+u3p′i−u5g′i+u′1ai+u′1bi+u′3pi−u′5gi,f′ix=2λf′i−u2a′i−u2b′i−u4q′i+u6h′i−u′2ai−u′2bi−u′4qi+u′6hi,g′ix=−λg′i+u1q′i+u3b′i+u5d′i−u6e′i+u′1qi+u′3bi+u′5di−u′6ei,h′ix=λh′i−u2p′i−u4b′i+u5f′i−u6c′i−u′2pi−u′4bi+u′5fi−u′6ci,p′ix=−λp′i−u1h′i+u3c′i+u4e′i+u5a′i−u′1hi+u′3ci+u′4ei+u′5ai,q′ix=λq′i+u2g′i−u3f′i−u4d′i−u6a′i+u′2gi−u′3fi−u′4di−u′6ai. | (5.4) |
By taking initial values
a0=α(t), b0=β(t), c0=d0=e0=f0=g0=h0=p0=q0=k0(t)=0,a′0=α′(t), b′0=β′(t), c′0=d′0=e′0=f′0=g′0=h′0=p′0=q′0=0, |
one has
a1=b1=k1(t)x, e1=12u1(α+β)+ε2u′1(α′+β′), f1=12u2(α+β)+ε2u′2(α′+β′),g1=u3β+εu′3β′, h1=u4β+εu′4β′, p1=u5α+εu′5α′, q1=u6α+εu′6α′,c1=∂−1(u4u5+εu′4u′5)(α−β)+ε∂−1(u4u′5+u′4u5)(α′−β′),d1=∂−1(u3u6+εu′3u′6)(β−α)+ε∂−1(u3u′6+u′3u6)(β′−α′),a′1=b′1=k1(t)x, e′1=12u′1(α+β)+12u1(α′+β′), f′1=12u′2(α+β)+12u2(α′+β′),g′1=u′3β+u3β′, h′1=u′4β+u4β′, p′1=u′5α+u5α′, q′1=u′6α+u6α′,c′1=∂−1(u4u′5+u′4u5)(α−β)+∂−1(u4u5+εu′4u′5)(α′−β′),d′1=∂−1(u3u′6+u′3u6)(β−α)+∂−1(u3u6+εu′3u′6)(β′−α′),⋯⋯ |
where α(t), β(t) are integral constants.
From the nonisospectral zero curvature equation
∂ˉU2∂uut+∂ˉU2∂λλt−ˉV(n)2x+[ˉU2,ˉV(n)2]=0, |
we can obtain the following integrable couplings
ˉutn=(ˉu3ˉu4)tn, ˉu3tn=(u1u2u3u4u5u6)tn=(−2en+12fn+1−2gn+12hn+1−2pn+12qn+1), ˉu4tn=(u′1u′2u′3u′4u′5u′6)tn=(−2e′n+12f′n+1−2g′n+12h′n+1−2p′n+12q′n+1). |
To furnish Hamiltonian structures, we use the trace identity, and have
⟨V′3,∂U′4∂λ⟩+⟨V′4,∂U′3∂λ⟩=2(a′+b′), ⟨V′3,∂U′4∂u1⟩+⟨V′4,∂U′3∂u1⟩=2f′,⟨V′3,∂U′4∂u2⟩+⟨V′4,∂U′3∂u2⟩=2e′, ⟨V′3,∂U′4∂u3⟩+⟨V′4,∂U′3∂u3⟩=2h′,⟨V′3,∂U′4∂u4⟩+⟨V′4,∂U′3∂u4⟩=2g′, ⟨V′3,∂U′4∂u5⟩+⟨V′4,∂U′3∂u5⟩=2q′,⟨V′3,∂U′4∂u6⟩+⟨V′4,∂U′3∂u6⟩=2p′, ⟨V′3,∂U′4∂u′1⟩+⟨V′4,∂U′3∂u′1⟩=2f,⟨V′3,∂U′4∂u′2⟩+⟨V′4,∂U′3∂u′2⟩=2e, ⟨V′3,∂U′4∂u′3⟩+⟨V′4,∂U′3∂u′3⟩=2h,⟨V′3,∂U′4∂u′4⟩+⟨V′4,∂U′3∂u′4⟩=2g, ⟨V′3,∂U′4∂u′5⟩+⟨V′4,∂U′3∂u′5⟩=2q,⟨V′3,∂U′4∂u′6⟩+⟨V′4,∂U′3∂u′6⟩=2p. |
Substituting the above formulas into the trace identity, and balancing coefficients of each power of λ, we give the first form
δδˉu∫2(a′n+1+b′n+1)dx=(γ−n)(M3M4), | (5.5) |
where
M3=(2f′n2e′n2h′n2g′n2q′n2p′n), M4=(2fn2en2hn2gn2qn2pn). |
At the same time, we also have
⟨V′3,∂U′3∂λ⟩+ε⟨V′4,∂U′4∂λ⟩=2(a+b), ⟨V′3,∂U′3∂u1⟩+ε⟨V′4,∂U′4∂u1⟩=2f,⟨V′3,∂U′3∂u2⟩+ε⟨V′4,∂U′4∂u2⟩=2e, ⟨V′3,∂U′3∂u3⟩+ε⟨V′4,∂U′4∂u3⟩=2h,⟨V′3,∂U′3∂u4⟩+ε⟨V′4,∂U′4∂u4⟩=2g, ⟨V′3,∂U′3∂u5⟩+ε⟨V′4,∂U′4∂u5⟩=2q,⟨V′3,∂U′3∂u6⟩+ε⟨V′4,∂U′4∂u6⟩=2p, ⟨V′3,∂U′3∂u′1⟩+ε⟨V′4,∂U′4∂u′1⟩=2εf′,⟨V′3,∂U′3∂u′2⟩+ε⟨V′4,∂U′4∂u′2⟩=2εe′, ⟨V′3,∂U′3∂u′3⟩+ε⟨V′4,∂U′4∂u′3⟩=2εh′,⟨V′3,∂U′3∂u′4⟩+ε⟨V′4,∂U′4∂u′4⟩=2εg′, ⟨V′3,∂U′3∂u′5⟩+ε⟨V′4,∂U′4∂u′5⟩=2εq′,⟨V′3,∂U′3∂u′6⟩+ε⟨V′4,∂U′4∂u′6⟩=2εp′. |
Substituting the above formulas into the trace identity, and balancing coefficients of each power of λ, we give the second form
δδu∫2(an+1+bn+1)dx=(γ−n)(M4εM3), |
where M3, M4 are defined as (5.5).
So, we can obtain the Hamiltonian structures of integrable couplings, that consists of the following two components. The first component has the form
ˉutn=(ˉu3ˉu4)tn=ˉJ3(K3K4)=ˉJ3δˉH3,mδˉu, K3=(2f′n+12e′n+12h′n+12g′n+12q′n+12p′n+1), K4=(2fn+12en+12hn+12gn+12qn+12pn+1), |
where ˉJ3=(OJ2J2O), and J2 is defined as (4.5). The second component has the form
ˉutn=(ˉu3ˉu4)tn=ˉJ4(K4εK3)=ˉJ4δˉH4,mδˉu, ˉJ4=(J2OO1εJ2). |
From (5.3) and (5.4), we obtain the following recursion relations
(−2en+12fn+1−2gn+12hn+1−2pn+12qn+1−2e′n+12f′n+1−2g′n+12h′n+1−2p′n+12q′n+1)=ˉL2(−2en2fn−2gn2hn−2pn2qn−2e′n2f′n−2g′n2h′n−2p′n2q′n)+(2u2+2u′22u1+2u′12u4+2u′42u3+2u′32u6+2u′62u5+2u′52u2+2εu′22u1+2εu′12u4+2εu′42u3+2εu′32u6+2εu′62u5+2εu′5)kn(t)x, |
where the recurrence operator ˉL2 is defined as
ˉL2=(L′3L′41εL′4L′3), L′3=(l11l12l13l14l15l16l21l22l23l24l25l26l31l32l33l34l35l36l41l42l43l44l45l46l51l52l53l54l55l56l61l62l63l64l65l66), L′4=(l′11l′12l′13l′14l′15l′16l′21l′22l′23l′24l′25l′26l′31l′32l′33l′34l′35l′36l′41l′42l′43l′44l′45l′46l′51l′52l′53l′54l′55l′56l′61l′62l′63l′64l′65l′66), |
and
l11=∂2−u2∂−1u1−εu′2∂−1u′1, l12=u2∂−1u2+εu′2∂−1u′2, l13=−12(u2∂−1u3+εu′2∂−1u′3+u6),l14=12(u2∂−1u4+εu′2∂−1u′4),l15=−12(u2∂−1u5+εu′2∂−1u′5−u4),l16=12(u2∂−1u6+εu′2∂−1u′6),l′11=−u2∂−1u′1−u′2∂−1u1, l′12=u2∂−1u′2+u′2∂−1u2, l′13=−12(u2∂−1u′3+u′2∂−1u3+u′6),l′14=12(u2∂−1u′4+u′2∂−1u4), l′15=−12(u2∂−1u′5+u′2∂−1u5−u′4), l′16=12(u2∂−1u′6+u′2∂−1u6),l21=−u1∂−1u1−εu′1∂−1u′1, l22=−∂2+u1∂−1u2+εu′1∂−1u′2, l23=−12(u1∂−1u3+εu′1∂−1u′3),l24=12(u1∂−1u4+εu′1∂−1u′4−u5),l25=−12(u1∂−1u5+εu′1∂−1u′5),l26=12(u1∂−1u6+εu′1∂−1u′6+u3),l′21=−u1∂−1u′1−u′1∂−1u1, l′22=u1∂−1u′2+u′1∂−1u2, l′23=−12(u1∂−1u′3+u′1∂−1u3),l′24=12(u1∂−1u′4+u′1∂−1u4−u′5),l′25=−12(u1∂−1u′5+u′1∂−1u5),l′26=12(u1∂−1u′6+u′1∂−1u6+u′3),l31=−u4∂−1u1−εu′4∂−1u′1−u5, l32=u4∂−1u2+εu′4∂−1u′2, l35=l′35=0, |
l33=∂−u4∂−1u3−u6∂−1u5−εu′4∂−1u′3−εu′6∂−1u′5, l34=u4∂−1u4+εu′4∂−1u′4,l36=u6∂−1u4+εu′6∂−1u′4+u2,l′31=−u4∂−1u′1−u′4∂−1u1−u′5,l′32=u4∂−1u′2+u′4∂−1u2,l′33=−u4∂−1u′3−u6∂−1u′5−u′4∂−1u3−u′6∂−1u5, l′34=u4∂−1u′4+u′4∂−1u4,l′36=u6∂−1u′4+u′6∂−1u4+u′2,l41=−u3∂−1u1−εu′3∂−1u′1,l42=u3∂−1u2+εu′3∂−1u′2−u6,l43=−u3∂−1u3−εu′3∂−1u′3, l44=−∂+u3∂−1u4+u5∂−1u6+εu′3∂−1u′4+εu′5∂−1u′6,l45=−u5∂−1u3+εu′5∂−1u′3+u1, l′41=−u3∂−1u′1−u′3∂−1u1, l46=l′46=0,l′42=u3∂−1u′2+u′3∂−1u2−u′6, l′43=−u3∂−1u′3−u′3∂−1u3, l53=l′53=0,l′44=u3∂−1u′4+u5∂−1u′6+u′3∂−1u4+u′5∂−1u6, l′45=−u5∂−1u′3+u′5∂−1u3+u′1,l51=−u6∂−1u1−εu′6∂−1u′1+u3,l52=u6∂−1u2+εu6∂−1u′2,l54=u4∂−1u6+εu′4∂−1u′6−u2,l55=∂−u4∂−1u3−u6∂−1u5−εu′4∂−1u′3−εu′6∂−1u′5, l56=u6∂−1u6+εu′6∂−1u′6,l′51=−u6∂−1u′1−u′6∂−1u1+u′3, l′52=u6∂−1u′2+u′6∂−1u2, l′54=u4∂−1u′6+u′4∂−1u6−u′2,l′55=−u4∂−1u′3−u6∂−1u′5−u′4∂−1u3−u′6∂−1u5, l′56=u6∂−1u′6+u′6∂−1u6,l61=−u5∂−1u1−εu′5∂−1u′1,l62=u5∂−1u2+εu5∂−1u′2+u4,l63=−u3∂−1u5−εu′3∂−1u′5−u1,l64=0, l65=−u5∂−1u5−εu′5∂−1u′5, l66=−∂+u3∂−1u4+u5∂−1u6+εu′3∂−1u′4+εu′5∂−1u′6,l′61=−u5∂−1u′1−u′5∂−1u1, l′62=u5∂−1u′2+u′5∂−1u2+u′4, l′63=−u3∂−1u′5−u′3∂−1u5−u′1,l′64=0, l′65=−u5∂−1u′5−u′5∂−1u5, l′66=u3∂−1u′4+u5∂−1u′6+u′3∂−1u4+u′5∂−1u6. |
Lie algebra so(3,2) is defined as [31]
so(3,2)={x∈gl(5,R∣x=−I32xTI32,tr(x)=0}, |
where I32=(−I300I2).
So, elements of Lie algebra so(3,2) have the form
(X1X2XT2X3), |
where XT1=−X1, XT3=−X3, and X1,X2,X3 are 3×3, 3×2, and 2×2 real matrices, respectively. It is easy to get the elements of Lie algebra so(3,2) with the form
(0λ1λ2λ5λ6−λ10λ3λ7λ8−λ2−λ30λ9λ10λ5λ7λ90λ4λ6λ8λ10−λ40). |
We can obtain the bases of Lie algebra so(3,2) as
E1=e12−e21, E2=e13−e31, E3=e23−e32, E4=e45−e54, E5=e14+e41,E6=e15+e51, E7=e24+e42, E8=e25+e52, E9=e34+e43, E10=e35+e53, | (6.1) |
where eij is a 5×5 matrix with 1 in the (i,j)-th position and zero elsewhere. Next, we consider the generalized Lie algebra Gso(3,2), that admits a basis set as follows:
E′1=E7+E10, E′2=−E7+E10, E′3=−E1+E5, E′4=εE1+εE5, E′5=εE2−εE6,E′6=−E2−E6, E′7=εE3−εE4−εE8+εE9, E′8=−E3+E4−E8+E9,E′9=−εE3−εE4+εE8+εE9, E′10=E3+E4+E8+E9, | (6.2) |
where Ei,i=1,2,⋯,10 are defined as (6.1), and satisfy the following commutative relations:
[E′1,E′2]=0, [E′1,E′3]=E′3, [E′1,E′4]=−E′4, [E′1,E′5]=E′5, [E′1,E′6]=−E′6,[E′1,E′7]=2E′7, [E′1,E′8]=−2E′8, [E′1,E′9]=[E′1,E′10]=0, [E′2,E′3]=−E′3,[E′2,E′4]=E′4, [E′2,E′5]=E′5,[E′2,E′6]=−E′6,[E′2,E′7]=[E′2,E′8]=0,[E′2,E′9]=2E′9,[E′2,E′10]=−2E′10, [E′3,E′4]=εE′1−εE′2, [E′3,E′5]=E′7, [E′3,E′6]=−E′10, [E′3,E′7]=0,[E′3,E′8]=−2E′6, [E′3,E′9]=2E′5, [E′3,E′10]=0, [E′4,E′5]=εE′9, [E′4,E′6]=−εE′8,[E′4,E′7]=2εE′5, [E′4,E′8]=[E′4,E′9]=0, [E′4,E′10]=−2εE′6, [E′5,E′6]=εE′1+εE′2,[E′5,E′7]=0, [E′5,E′8]=2E′4, [E′5,E′9]=0, [E′5,E′10]=2εE′3, [E′6,E′7]=−2εE′3,[E′6,E′8]=[E′6,E′10]=0, [E′6,E′9]=−2E′4, [E′7,E′8]=4εE′1, [E′7,E′9]=[E′7,E′10]=0,[E′8,E′9]=[E′8,E′10]=0, [E′9,E′10]=4εE′2. |
Consider the nonisospectral problem
{φx=U3φ,φt=V3φ,λt=∑i≥0ki(t)λ−i, |
where
U3=λ(E′1+E′2)+√2u1E′5+√22u2E′6+u3E′7+u44E′8+u52E′9+u62E′10,V3=aE′1+bE′2+√2cE′3+√22dE′4+√2eE′5+√22fE′6+gE′7+h4E′8+p2E′9+q2E′10, | (6.3) |
where u1,u2,⋯,u6 and a,b,c,d,e,f,g,h,p,q are the same as (2.2).
By solving the stationary zero curvature representation
V3x=∂U3∂λλt+[U3,V3], | (6.4) |
we can obtain the same equation as (2.4). This means that integrable hierarchies obtained from the linear nonisospectral problems {φx=U3φ,φt=V3φ,λt=∑i≥0ki(t)λ−i are the same as (2.5).
If we consider the spectral matrix U1 and time spectral matrix V1 in Lie algebra Gsp(4), and choose spectral matrices U3 and V3 in Lie algebra Gso(3,2), then from zero curvature equations V1x=∂U1∂λλt+[U1,V1] and V3x=∂U3∂λλt+[U3,V3], we can obtain the same nonisospectral integrable hierarchies. So, based on sp(4)≅so(3,2), as long as we select the corresponding spectral problem between Lie algebras Gsp(4) and Gso(3,2), and we can obtain the same hierarchies.
In this section, we will construct the nonisospectral integrable coupling hierarchies associated with Lie algebra so(3,2). We consider the nonisospectral problem
{φx=ˉU3φ,φt=ˉV3φ,λt=∑i≥0ki(t)λ−i, |
where
ˉU3=(U′5εU′6U′6U′5), ˉV3=(V′5εV′6V′6V′5), | (6.5) |
and
U′5=2λE10+√2(u1−u22)E2−√2(u1+u22)E6+(u3−u44−u52+u62)E3+(−u3+u44−u52+u62)E4+(−u3−u44+u52+u62)E8+(u3+u44+u52+u62)E9,U′6=√2(u′1−u′22)E2−√2(u′1+u′22)E6+(u′3−u′44−u′52+u′62)E3+(−u′3+u′44−u′52+u′62)E4+(−u′3−u′44+u′52+u′62)E8+(u′3+u′44+u′52+u′62)E9,V′5=√2(d2−c)E1+√2(e−f2)E2+(g−h4−p2+q2)E3+(−g+h4−p2+q2)E4+√2(c+d2)E5−√2(e+f2)E6+(a−b)E7+(−g−h4+p2+q2)E8+(g+h4+p2+q2)E9+(a+b)E10,V′6=√2(d′2−c′)E1+√2(e′−f′2)E2+(g′−h′4−p′2+q′2)E3+(−g′+h′4−p′2+q′2)E4+√2(c′+d′2)E5−√2(e′+f′2)E6+(a′−b′)E7+(−g′−h′4+p′2+q′2)E8+(g′+h′4+p′2+q′2)E9+(a′+b′)E10, |
where u1,u2,⋯,u6,u′1,u′2,⋯,u′6, and a,b,c,d,e,f,g,h,p,q,a′,b′,c′,d′,e′,f′,g′,h′,p′,q′ are the same as (3.3).
Solving the stationary zero curvature equation
ˉV3x=∂ˉU3∂λλt+[ˉU3,ˉV3], | (6.6) |
we can obtain the same equations as (3.5) and (3.6). This means that integrable coupling systems obtained from the linear nonisospectral problems {φx=ˉU3φ,φt=ˉV3φ,λt=∑i≥0ki(t)λ−i are the same as (3.7).
If we consider the spectral matrix ˉU1 and time spectral matrix ˉV1 in Lie algebra sp(4), and choose spectral matrices ˉU3 and ˉV3 in Lie algebra so(3,2), then from zero curvature equations ˉV1x=∂ˉU1∂λλt+[ˉU1,ˉV1] and ˉV3x=∂ˉU3∂λλt+[ˉU3,ˉV3], we can obtain the same nonisospectral integrable coupling systems. So, based on sp(4)≅so(3,2), as long as we select the corresponding spectral problem between Lie algebras sp(4) and so(3,2), we can obtain the same integrable couplings.
By adding any real number ε, we construct the generalized Lie algebras Gsp(4), Gso(5), and Gso(3,2). Based on these three Lie algebras, we introduce the spectral parameter λt=∑i≥0ki(t)λ−i, and obtain the nonisospectral integrable hierarchies and their Hamiltonian structures of these three Lie algebras. Additionally, based on the semi-direct sum decomposition of Lie algebras, we derive the integrable coupling systems associated with Lie algebras sp(4), so(5), and so(3,2). At the same time, we use sp(4)≅so(3,2), and further discuss the relationship between the integrable couplings systems corresponding to these two Lie algebras.
Baiying He: Conceived of the study, Completed the computations, Writing-original draft; Siyu Gao: Writing review and editing, Writing-original draft. All authors have read and approved the final version of the manuscript for publication.
The authors would like to thank the referee for valuable comments and suggestions on this paper, which have considerably improved its presentation and quality.
This work is partially supported by National Natural Science Foundation of China (Nos.12001467 and 12471024) and Nanhu Scholars Program for Young Scholars of XYNU.
The authors declare that they have no conflicts of interest.
[1] | H. Dong, S. N. Markovic, The basics of cancer immunotherapy, Springer, (2018). doi: 10.1007/978-3-319-70622-1-3. |
[2] |
G. Marelli, A. Howells, N. R. Lemoine, Y. Wang, Oncolytic viral therapy and the immune system: A double-edged sword against cancer, Front. Immunol., 9 (2018), 1–9. doi: 10.3389/fimmu.2018.00866. doi: 10.3389/fimmu.2018.00866
![]() |
[3] |
H. Fukuhara, Y. Ino, T. Todo, Oncolytic virus therapy: A new era of cancer treatment at dawn. Cancer Sci., 107 (2016), 1373–1379. doi: 10.1111/cas.13027. doi: 10.1111/cas.13027
![]() |
[4] |
S. Gujar, J. G. Pol, Y. Kim, P. W. Lee, G. Kroemer, Antitumor benefits of antiviral immunity: An underappreciated aspect of oncolytic virotherapies, Trends Immunol., 39 (2018), 209–221. doi: 10.1016/j.it.2017.11.006. doi: 10.1016/j.it.2017.11.006
![]() |
[5] |
A. Magen, J. Nie, T. Ciucci, S. Tamoutounour, Y. Zhao, M. Mehta, et al., Single-cell profiling defines transcriptomic signatures specific to tumor-reactive versus virus-responsive CD4+ T cells, Cell Reports, 29 (2019), 3019–3032. doi: 10.1016/j.celrep.2019.10.131. doi: 10.1016/j.celrep.2019.10.131
![]() |
[6] |
P. F. Ferrucci, L. Pala, F. Conforti, E. Cocorocchio, Talimogene Laherparepvec (T-VEC): An intralesional cancer immunotherapy for advanced melanoma, Cancers, 13 (2021), 1383. doi: 10.3390/cancers13061383. doi: 10.3390/cancers13061383
![]() |
[7] |
S. Y. Gun, S. W. L. Lee, J. L. Sieow, S. C. Wong, Targeting immune cells for cancer therapy, Redox Biol., 25 (2019), 101174. doi: 10.1016/j.redox.2019.101174. doi: 10.1016/j.redox.2019.101174
![]() |
[8] |
A. L. De Matos, L. S. Franco, G. Mcfadden, Oncolytic viruses and the immune system: The dynamic duo, Mol. Ther. Methods Clin. Dev., 17 (2020), 349–358. doi: 10.1016/j.omtm.2020.01.001. doi: 10.1016/j.omtm.2020.01.001
![]() |
[9] |
D. Haddad, Genetically engineered vaccinia viruses as agents for cancer, treatment, imaging, and transgene delivery, Front. Oncol., 7 (2017), 1–12. doi: 10.3389/fonc.2017.00096. doi: 10.3389/fonc.2017.00096
![]() |
[10] |
D. S. Vinay, E. P. Ryan, G. Pawelec, W. H. Talib, J. Stagg, E. Elkord, et al., Immune evasion in cancer: Mechanistic basis and therapeutic strategies, Semin. Cancer Biol., 35 (2015), S185–S198. doi: 10.1016/j.semcancer.2015.03.004. doi: 10.1016/j.semcancer.2015.03.004
![]() |
[11] |
D. Hanahan, R. A. Weinberg, Hallmarks of cancer: the next generation, Cell, 144 (2011), 646–674. doi: 10.1016/j.cell.2011.02.013. doi: 10.1016/j.cell.2011.02.013
![]() |
[12] |
R. Eftimie, J. L. Bramson, D. J. D. Earn, Interaction between the immune system and cancer: a brief review of non-spatial mathematical models, Bull. Math. Biol., 73 (2011), 232. doi: 10.1007/s11538-010-9526-3. doi: 10.1007/s11538-010-9526-3
![]() |
[13] |
V. Garcia, S. Bonhoeffer, F. Fu, Cancer-induced immunosuppression can enable effectiveness of immunotherapy through bistability generation: A mathematical and computational examination, J. Theor. Biol., 492 (2020), 110185. doi: 10.1016/j.jtbi.2020.110185. doi: 10.1016/j.jtbi.2020.110185
![]() |
[14] |
K. J. Mahasa, A. Eladdadi, L. de Pillis, R. Ouifki, Oncolytic potency and reduced virus tumorspecificity in oncolytic virotherapy. A mathematical modelling approach, PLoS ONE, 12 (2017), e0184347. doi: 10.1371/journal.pone.0184347. doi: 10.1371/journal.pone.0184347
![]() |
[15] |
K. M Storey, S. E. Lawler, T. L. Jackson, Modeling oncolytic viral therapy, immune checkpoint inhibition, and the complex dynamics of innate and adaptive immunity in glioblastoma treatment, Front. Physiol., 11 (2020), 151. doi: 10.3389/fphys.2020.00151. doi: 10.3389/fphys.2020.00151
![]() |
[16] |
D. Wodarz, Viruses as antitumor weapons, Cancer Res. 61 (2001), 3501–3507. doi: 10.1016/S0165-4608(00)00403-9. doi: 10.1016/S0165-4608(00)00403-9
![]() |
[17] |
J. T. Wu, H. M. Byrne, D. H. Kirn, L. M. Wein, Modeling and analysis of a virus that replicates selectively in tumor cells, Bull. Math. Biol., 63 (2001), 731–768. doi: 10.1006/bulm.2001.0245. doi: 10.1006/bulm.2001.0245
![]() |
[18] |
C. Guiot, P. G. Degiorgis, P. P. Delsanto, P. Gabriele, T. S. Deisboeck, Does tumour growth follow a "universal law"?, J. Theor. Biol., 225 (2003), 147–151. doi: 10.1016/S0022-5193(03)00221-2. doi: 10.1016/S0022-5193(03)00221-2
![]() |
[19] |
A. K. Laird, Dynamics of tumor growth, Br. J. Cancer, 18 (1964), 490–502. doi: 10.1038/bjc.1964.55. doi: 10.1038/bjc.1964.55
![]() |
[20] | M. Nowak, R. M. May, Virus dynamics: mathematical principles of immunology and virology, Oxford University Press, (2000). |
[21] |
R. M. Anderson, R. M. May, Population biology of infectious diseases: Part I, Nature, 280 (1979), 361–367. doi: 10.1007/978-3-642-68635-1. doi: 10.1007/978-3-642-68635-1
![]() |
[22] |
D. Wodarz, N. Komarova, Towards predictive computational models of oncolytic virus therapy: Basis for experimental validation and model selection, PLoS ONE, 4 (2009), e4271. doi: 10.1371/journal.pone.0004271. doi: 10.1371/journal.pone.0004271
![]() |
[23] |
J. J. Crivelli, J. Földes, P. S. Kim, J. R. Wares, A mathematical model for cell cycle-specific cancer virotherapy, J. Biol. Dyn., 6 (2011), 104–120. doi: 10.1080/17513758.2011.613486. doi: 10.1080/17513758.2011.613486
![]() |
[24] |
A. L. Jenner, C. O. Yun, P. S. Kim, A. C. F. Coster, Mathematical modelling of the interaction between cancer cells and an oncolytic virus: Insights into the effects of treatment protocols, Bull. Math. Biol., 80 (2018), 1615–1629. doi: 10.1007/s11538-018-0424-4. doi: 10.1007/s11538-018-0424-4
![]() |
[25] |
R. Eftimie, G. Eftimie, Tumour-associated macrophages and oncolytic virotherapies: a mathematical investigation into a complex dynamics, Lett. Biomath. 5 (2018), 6–35. doi: 10.1080/23737867.2018.1430518. doi: 10.1080/23737867.2018.1430518
![]() |
[26] |
A. L. Jenner, P. S. Kim, F. Frascoli, Oncolytic virotherapy for tumours following a Gompertz growth law, J. Theor. Biol., 480 (2019), 129–140. doi: 10.1016/j.jtbi.2019.08.002. doi: 10.1016/j.jtbi.2019.08.002
![]() |
[27] |
V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor, A. S. Perelson, Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis, Bull. Math. Biol., 56 (1994), 295–321. doi: 10.1007/BF02460644 doi: 10.1007/BF02460644
![]() |
[28] |
K. W. Okamoto, P. Amarasekare, I. Petty, Modeling oncolytic virotherapy: Is complete tumor–tropism too much of a good thing?, J. Theor. Biol. 358 (2014), 166–178. doi: 10.1016/j.jtbi.2014.04.030. doi: 10.1016/j.jtbi.2014.04.030
![]() |
[29] |
B. S. Choudhury, B. Nasipuri, Efficient virotherapy of cancer in the presence of immune response, Int. J. Dynam. Control, 2 (2014), 314–325. doi: 10.1007/s40435-013-0035-8. doi: 10.1007/s40435-013-0035-8
![]() |
[30] | S. R. J. Jang, H. C. Wei, On a mathematical model of tumor-immune system interactions with an oncolytic virus therapy, Discrete Contin. Dyn. Syst. Ser. B, 2021 (2021). |
[31] | L. J. S. Allen, An Introduction to Mathematical Biology, Upper Saddle River, (2007). |
[32] |
H. R. Thieme, Convergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol. 30 (1992), 755–763. doi: 10.1007/BF00173267. doi: 10.1007/BF00173267
![]() |
[33] |
S. Marino, I. B. Hogue, C. J. Ray, D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 254 (2008), 178–196. doi: 10.1016/j.jtbi.2008.04.011. doi: 10.1016/j.jtbi.2008.04.011
![]() |
[34] |
M. Karaaslan, G. K. Wong, A. Rezaei, Reduced order model and global sensitivity analysis for return permeability test, J. Pet. Sci. Eng., 207 (2021), 109064. doi: 10.1016/j.petrol.2021.109064. doi: 10.1016/j.petrol.2021.109064
![]() |
[35] |
L. G. de Pillis, A. E. Radunskaya, C. L. Wiseman, A validated mathematical model of cell-mediated immune response to tumor growth. Cancer Res., 65 (2005), 7950–7958. doi: 10.1158/0008-5472.CAN-07-0238. doi: 10.1158/0008-5472.CAN-07-0238
![]() |
[36] |
X. Hu, G. Ke, S. R. J. Jang, Modeling pancreatic cancer dynamics with immunotherapy, Bull. Math. Biol., 81 (2019), 1885–1915. doi: 10.1007/s11538-019-00591-3. doi: 10.1007/s11538-019-00591-3
![]() |
[37] |
E. L. Deer, J. González-Hernández, J. D. Coursen, J. E. Shea, J. Ngatia, C. L. Scaife, et al., Phenotype and genotype of pancreatic cancer cell lines, Pancreas, 39 (2010), 425–435. doi: 10.1097/MPA.0b013e3181c15963. doi: 10.1097/MPA.0b013e3181c15963
![]() |
[38] |
A. Cerwenka, J. Kopitz, P. Schirmacher, W. Roth, G. Gdynia, HMGB1: The metabolic weapon in the arsenal of NK cells, Mol. Cell. Oncol., 3 (2016), e1175538. doi: 10.1080/23723556.2016.1175538. doi: 10.1080/23723556.2016.1175538
![]() |
[39] |
I. J. Fidler, Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled with 125i-5-iodo-2′-deoxyuridine, J. Natl. Cancer Inst., 4 (1970), 773–782. doi: 10.1093/jnci/45.4.773. doi: 10.1093/jnci/45.4.773
![]() |
[40] |
P. Vacca, E. Munari, N. Tumino, F. Moretta, G. Pietra, V. Massimo, et al., Human natural killer cells and other innate lymphoid cells in cancer: friends or foes?, Immunol. Lett., 201 (2018), 14–19. doi: 10.1016/j.imlet.2018.11.004. doi: 10.1016/j.imlet.2018.11.004
![]() |
[41] |
A. Goyos, J. Robert, Tumorigenesis and anti-tumor immune responses in Xenopus, Front. Biosci., 14 (2009), 167-176. doi: 10.2741/3238. doi: 10.2741/3238
![]() |
[42] |
H. C. Wei, Numerical revisit to a class of one-predator, two-prey models, Int. J. Bifurcation Chaos, 20 (2010), 2521–2536. doi: 10.1142/S0218127410027143. doi: 10.1142/S0218127410027143
![]() |
[43] |
H. C. Wei, On the bifurcation analysis of a food web of four species, Appl. Math. Comput., 215 (2010), 3280–3292. doi: 10.1016/j.amc.2009.10.016. doi: 10.1016/j.amc.2009.10.016
![]() |
[44] |
H. C. Wei, Mathematical and numerical analysis of a mathematical model of mixed immunotherapy and chemotherapy of cancer, Discrete Continuous Dyn. Syst. Ser. B, 21 (2016), 1279–1295. doi: 10.1142/S0218127413500685. doi: 10.1142/S0218127413500685
![]() |
[45] |
D. F. Hale, T. J. Vreeland, G. E. Peoples, Arming the immune system through vaccination to prevent cancer recurrence, Am. Soc. Clin. Oncol. Educ. Book., 35 (2016), e159–e167. doi: 10.14694/EDBK-158946. doi: 10.14694/EDBK-158946
![]() |
[46] |
Y. Eto, Y. Yoshioka, Y. Mukai, N. Okada, S. Nakagawa, Development of PEGylated adenovirus vector with targeting ligand, Int. J. Pharm., 354 (2008), 3–8. doi: 10.1016/j.ijpharm.2007.08.025. doi: 10.1016/j.ijpharm.2007.08.025
![]() |
[47] |
C. Bressy, E. Hastie, V. Z. Grdzelishvili, Combining oncolytic virotherapy with p53 tumor suppressor gene therapy, Mol. Ther. Oncolytics, 5 (2017), 20–40. doi: 10.1016/j.omto.2017.03.002. doi: 10.1016/j.omto.2017.03.002
![]() |