As of August 2021, COVID-19 is still spreading in Japan. Vaccination, one of the key measures to bring COVID-19 under control, began in February 2021. Previous studies have reported that COVID-19 vaccination reduces the number of infections and mortality rates. However, simulations of spreading infection have suggested that vaccination in Japan is insufficient. Therefore, we developed a susceptible–infected–recovered–vaccination1–vaccination2–death model to verify the effect of the first and second vaccination doses on reducing the number of infected individuals in Japan; this includes an infection simulation. The results confirm that appropriate vaccination measures will sufficiently reduce the number of infected individuals and reduce the mortality rate.
Citation: Yuto Omae, Yohei Kakimoto, Makoto Sasaki, Jun Toyotani, Kazuyuki Hara, Yasuhiro Gon, Hirotaka Takahashi. SIRVVD model-based verification of the effect of first and second doses of COVID-19/SARS-CoV-2 vaccination in Japan[J]. Mathematical Biosciences and Engineering, 2022, 19(1): 1026-1040. doi: 10.3934/mbe.2022047
[1] | Rou Lin, Min Zhao, Jinlu Zhang . Random uniform exponential attractors for non-autonomous stochastic Schrödinger lattice systems in weighted space. AIMS Mathematics, 2023, 8(2): 2871-2890. doi: 10.3934/math.2023150 |
[2] | Ailing Ban . Asymptotic behavior of non-autonomous stochastic Boussinesq lattice system. AIMS Mathematics, 2025, 10(1): 839-857. doi: 10.3934/math.2025040 |
[3] | Xin Liu . Stability of random attractors for non-autonomous stochastic p-Laplacian lattice equations with random viscosity. AIMS Mathematics, 2025, 10(3): 7396-7413. doi: 10.3934/math.2025339 |
[4] | Xintao Li, Yunlong Gao . Random uniform attractors for fractional stochastic FitzHugh-Nagumo lattice systems. AIMS Mathematics, 2024, 9(8): 22251-22270. doi: 10.3934/math.20241083 |
[5] | Chunting Ji, Hui Liu, Jie Xin . Random attractors of the stochastic extended Brusselator system with a multiplicative noise. AIMS Mathematics, 2020, 5(4): 3584-3611. doi: 10.3934/math.2020233 |
[6] | Xintao Li, Lianbing She, Rongrui Lin . Invariant measures for stochastic FitzHugh-Nagumo delay lattice systems with long-range interactions in weighted space. AIMS Mathematics, 2024, 9(7): 18860-18896. doi: 10.3934/math.2024918 |
[7] | Hamood Ur Rehman, Aziz Ullah Awan, Sayed M. Eldin, Ifrah Iqbal . Study of optical stochastic solitons of Biswas-Arshed equation with multiplicative noise. AIMS Mathematics, 2023, 8(9): 21606-21621. doi: 10.3934/math.20231101 |
[8] | Xiaobin Yao . Random attractors for non-autonomous stochastic plate equations with multiplicative noise and nonlinear damping. AIMS Mathematics, 2020, 5(3): 2577-2607. doi: 10.3934/math.2020169 |
[9] | Xiao Bin Yao, Chan Yue . Asymptotic behavior of plate equations with memory driven by colored noise on unbounded domains. AIMS Mathematics, 2022, 7(10): 18497-18531. doi: 10.3934/math.20221017 |
[10] | Li Yang . Pullback random attractors of stochastic strongly damped wave equations with variable delays on unbounded domains. AIMS Mathematics, 2021, 6(12): 13634-13664. doi: 10.3934/math.2021793 |
As of August 2021, COVID-19 is still spreading in Japan. Vaccination, one of the key measures to bring COVID-19 under control, began in February 2021. Previous studies have reported that COVID-19 vaccination reduces the number of infections and mortality rates. However, simulations of spreading infection have suggested that vaccination in Japan is insufficient. Therefore, we developed a susceptible–infected–recovered–vaccination1–vaccination2–death model to verify the effect of the first and second vaccination doses on reducing the number of infected individuals in Japan; this includes an infection simulation. The results confirm that appropriate vaccination measures will sufficiently reduce the number of infected individuals and reduce the mortality rate.
Lattice dynamical systems arise from a variety of applications in electrical engineering, biology, chemical reaction, pattern formation and so on, see, e.g., [4,7,14,19,33]. Many researchers have discussed broadly the deterministic models in [6,12,34,39], etc. Stochastic lattice equations, driven by additive independent white noise, was discussed for the first time in [2], followed by extensions in [8,13,15,16,21,23,27,32,35,36,37,38,40].
In this paper, we will study the long term behavior of the following second order non-autonomous stochastic lattice system driven by additive white noise: for given τ∈R, t>τ and i∈Z,
{¨u+νA˙u+h(˙u)+Au+λu+f(u)=g(t)+a˙ω(t),u(τ)=(uτi)i∈Z=uτ,˙u(τ)=(u1τi)i∈Z=u1τ, | (1.1) |
where u=(ui)i∈Z is a sequence in l2, ν and λ are positive constants, ˙u=(˙ui)i∈Z and ¨u=(¨ui)i∈Z denote the fist and the second order time derivatives respectively, Au=((Au)i)i∈Z, A˙u=((A˙u)i)i∈Z, A is a linear operators defined in (2.2), a=(ai)i∈Z∈l2, f(u)=(fi(ui))i∈Z and h(˙u)=(hi(˙ui))i∈Z satisfy certain conditions, g(t)=(gi(t))i∈Z∈L2loc(R,l2) is a given time dependent sequence, and ω(t)=W(t,ω) is a two-sided real-valued Wiener process on a probability space.
The approximation we use in the paper was first proposed in [18,22] where the authors investigated the chaotic behavior of random equations driven by Gδ(θtω). Since then, their work was extended by many scholars. To the best of my knowledge, there are three forms of Wong-Zakai approximations Gδ(θtω) used recenly, Euler approximation of Brownian [3,10,17,20,25,28,29,30], Colored noise [5,11,26,31] and Smoothed approximation of Brownian motion by mollifiers [9]. In this paper, we will focus on Euler approximation of Brownian and compare the long term behavior of system (1.1) with pathwise deterministic system given by
{¨uδ+νA˙uδ+h(˙uδ)+Auδ+λuδ+f(uδ)=g(t)+aGδ(θtω),uδ(τ)=(uδτi)i∈Z=uδτ,˙uδ(τ)=(uδ,1τi)i∈Z=uδ,1τ, | (1.2) |
for δ∈R with δ≠0, τ∈R, t>τ and i∈Z, where Gδ(θtω) is defined in (3.2). Note that the solution of system (1.2) is written as uδ to show its dependence on δ.
This paper is organized as follows. In Section 2, we prove the existence and uniqueness of random attractors of system (1.1). Section 3 is devoted to consider the the Wong-Zakai approximations associated with system (1.1). In Section 4, we establish the convergence of solutions and attractors for approximate system (1.2) when δ→0.
Throughout this paper, the letter c and ci(i=1,2,…) are generic positive constants which may change their values from line to line.
In this section, we will define a continuous cocycle for second order non-autonomous stochastic lattice system (1.1), and then prove the existence and uniqueness of pullback attractors.
A standard Brownian motion or Wiener process (Wt)t∈R (i.e., with two-sided time) in R is a process with W0=0 and stationary independent increments satisfying Wt−Ws∼N(0,|t−s|I). F is the Borel σ-algebra induced by the compact-open topology of Ω, and P is the corresponding Wiener measure on (Ω,F), where
Ω={ω∈C(R,R):ω(0)=0}, |
the probability space (Ω,F,P) is called Wiener space. Define the time shift by
θtω(⋅)=ω(⋅+t)−ω(t),ω∈Ω, t∈R. |
Then (Ω,F,P,{θt}t∈R) is a metric dynamical system (see [1]) and there exists a {θt}t∈R-invariant subset ˜Ω⊆Ω of full measure such that for each ω∈Ω,
ω(t)t→0ast→±∞. | (2.1) |
For the sake of convenience, we will abuse the notation slightly and write the space ˜Ω as Ω.
We denote by
lp={u|u=(ui)i∈Z,ui∈R, ∑i∈Z|ui|p<+∞}, |
with the norm as
‖u‖pp=∑i∈Z|ui|p. |
In particular, l2 is a Hilbert space with the inner product (⋅,⋅) and norm ‖⋅‖ given by
(u,v)=∑i∈Zuivi,‖u‖2=∑i∈Z|ui|2, |
for any u=(ui)i∈Z, v=(vi)i∈Z∈l2.
Define linear operators B, B∗, and A acting on l2 in the following way: for any u=(ui)i∈Z∈l2,
(Bu)i=ui+1−ui,(B∗u)i=ui−1−ui, |
and
(Au)i=2ui−ui+1−ui−1. | (2.2) |
Then we find that A=BB∗=B∗B and (B∗u,v)=(u,Bv) for all u,v∈l2.
Also, we let Fi(s)=∫s0fi(r)dr, h(˙u)=(hi(˙ui))i∈Z, f(u)=(fi(ui))i∈Z with fi,hi∈C1(R,R) satisfy the following assumptions:
|fi(s)|≤α1(|s|p+|s|), | (2.3) |
sfi(s)≥α2Fi(s)≥α3|s|p+1, | (2.4) |
and
hi(0)=0,0<h1≤h′i(s)≤h2,∀s∈R, | (2.5) |
where p>1, αi and hj are positive constants for i=1,2,3 and j=1,2.
In addition, we let
β=h1λ4λ+h22,β<1ν, | (2.6) |
and
σ=h1λ√4λ+h22(h2+√4λ+h22). | (2.7) |
For any u,v∈l2, we define a new inner product and norm on l2 by
(u,v)λ=(1−νβ)(Bu,Bv)+λ(u,v),‖u‖2λ=(u,u)λ=(1−νβ)‖Bu‖2+λ‖u‖2. |
Denote
l2=(l2,(⋅,⋅),‖⋅‖),l2λ=(l2,(⋅,⋅)λ,‖⋅‖λ). |
Then the norms ‖⋅‖ and ‖⋅‖λ are equivalent to each other.
Let E=l2λ×l2 endowed with the inner product and norm
(ψ1,ψ2)E=(u(1),u(2))λ+(v(1),v(2)),‖ψ‖2E=‖u‖2λ+‖v‖2, |
for ψj=(u(j),v(j))T=((u(j)i),(v(j)i))Ti∈Z∈E, j=1,2,ψ=(u,v)T=((ui),(vi))Ti∈Z∈E.
A family D={D(τ,ω):τ∈R,ω∈Ω} of bounded nonempty subsets of E is called tempered (or subexponentially growing) if for every ϵ>0, the following holds:
limt→−∞eϵt‖D(τ+t,θtω)‖2=0, |
where ‖D‖=supx∈D‖x‖E. In the sequel, we denote by D the collection of all families of tempered nonempty subsets of E, i.e.,
D={D={D(τ,ω):τ∈R,ω∈Ω}:Dis tempered inE}. |
The following conditions will be needed for g when deriving uniform estimates of solutions, for every τ∈R,
∫τ−∞eγs‖g(s)‖2ds<∞, | (2.8) |
and for any ς>0
limt→−∞eςt∫0−∞eγs‖g(s+t)‖2ds=0, | (2.9) |
where γ=min{σ2,α2βp+1}.
Let ˉv=˙u+βu and ˉφ=(u,ˉv)T, then system (1.1) can be rewritten as
˙ˉφ+L1(ˉφ)=H1(ˉφ)+G1(ω), | (2.10) |
with initial conditions
ˉφτ=(uτ,ˉvτ)T=(uτ,u1τ+βuτ)T, |
where
L1(ˉφ)=(βu−ˉv(1−νβ)Au+νAˉv+λu+β2u−βˉv)+(0h(ˉv−βu)), |
H1(ˉφ)=(0−f(u)+g(t)),G1(ω)=(0a˙ω(t)). |
Denote
v(t)=ˉv(t)−aω(t)andφ=(u,v)T. |
By (2.10) we have
˙φ+L(φ)=H(φ)+G(ω), | (2.11) |
with initial conditions
φτ=(uτ,vτ)T=(uτ,u1τ+βuτ−aω(τ))T, |
where
L(φ)=(βu−v(1−νβ)Au+νAv+λu+β2u−βv)+(0h(v−βu+aω(t))), |
H(φ)=(0−f(u)+g(t)),G(ω)=(aω(t)βaω(t)−νAaω(t)). |
Note that system (2.11) is a deterministic functional equation and the nonlinearity in (2.11) is locally Lipschitz continuous from E to E. Therefore, by the standard theory of functional differential equations, system (2.11) is well-posed. Thus, we can define a continuous cocycle Φ0:R+×R×Ω×E→E associated with system (2.10), where for τ∈R, t∈R+ and ω∈Ω
Φ0(t,τ,ω,ˉφτ)=ˉφ(t+τ,τ,θ−τω,ˉφτ)=(u(t+τ,τ,θ−τω,uτ),ˉv(t+τ,τ,θ−τω,ˉvτ))T=(u(t+τ,τ,θ−τω,uτ),v(t+τ,τ,θ−τω,vτ)+a(ω(t)−ω(−τ)))T=φ(t+τ,τ,θ−τω,φτ)+(0,a(ω(t)−ω(−τ)))T, |
where vτ=ˉvτ+aω(−τ).
Lemma 2.1. Suppose that (2.3)–(2.8) hold. Then for every τ∈R, ω∈Ω, and T>0, there exists c=c(τ,ω,T)>0 such that for allt∈[τ,τ+T], the solution φ of system (2.11) satisfies
‖φ(t,τ,ω,φτ)‖2E+∫tτ‖φ(s,τ,ω,φτ)‖2Eds≤c∫tτ(‖g(s)‖2+|ω(s)|2+|ω(s)|p+1)ds+c(‖φτ‖2E+2∑i∈ZFi(uτ,i)). |
Proof. Taking the inner product (⋅,⋅)E on both side of the system (2.11) with φ, it follows that
12ddt‖φ‖2E+(L(φ),φ)E=(H(φ),φ)E+(G(ω),φ)E. | (2.12) |
For the second term on the left-hand side of (2.12), we have
(L(φ),φ)E=β‖u‖2λ+β2(u,v)−β‖v‖2+ν(Av,v)+(h(v−βu+aω(t)),v). |
By the mean value theorem and (2.5), there exists ξi∈(0,1) such that
β2(u,v)+(h(v−βu+aω(t)),v)=β2(u,v)+∑i∈Zh′i(ξi(vi−βui+aiω(t)))(vi−βui+aiω(t))vi≥(β2−h2β)‖u‖‖v‖+h1‖v‖2−h2|(aω(t),v)|. |
Then
(L(φ),φ)E−σ‖φ‖2E−h12‖v‖2≥(β−σ)‖u‖2λ+(h12−β−σ)‖v‖2−βh2√λ‖u‖λ‖v‖−h2|(aω(t),v)|, |
which along with (2.6) and (2.7) implies that
(L(φ),φ)E≥σ‖φ‖2E+h12‖v‖2−σ+h16‖v‖2−c|ω(t)|2‖a‖2. | (2.13) |
As to the first term on the right-hand side of (2.12), by (2.3) and (2.4) we get
(H(φ),φ)E=(−f(u),˙u+βu−aω(t))+(g(t),v)≤−ddt(∑i∈ZFi(ui))−α2β∑i∈ZFi(ui)+α1∑i∈Z(|ui|p+|ui|)|aiω(t)|+(g(t),v)≤−ddt(∑i∈ZFi(ui))−α2βp+1∑i∈ZFi(ui)+c|ω(t)|p+1‖a‖p+1+σλ4‖u‖2+c‖a‖2|ω(t)|2+σ+h16‖v‖2+c‖g(t)‖2. | (2.14) |
The last term of (2.12) is bounded by
(G(ω),φ)E=ω(t)(a,u)λ+βω(t)(a,v)−νω(t)(Aa,v)≤σ4‖u‖2λ+1σ‖a‖2λ|ω(t)|2+σ+h16‖v‖2+c|ω(t)|2‖a‖2. | (2.15) |
It follows from (2.12)–(2.15) that
ddt(‖φ‖2E+2∑i∈ZFi(ui))+γ(‖φ‖2E+2∑i∈ZFi(ui))+γ‖φ‖2E≤c(‖g(t)‖2+|ω(t)|2+|ω(t)|p+1), | (2.16) |
where γ=min{σ2,α2βp+1}. Multiplying (2.16) by eγt and then integrating over (τ,t) with t≥τ, we get for every ω∈Ω
‖φ(t,τ,ω,φτ)‖2E+γ∫tτeγ(s−t)‖φ(s,τ,ω,φτ)‖2Eds≤eγ(τ−t)(‖φτ‖2E+2∑i∈ZFi(uτ,i))+c∫tτeγ(s−t)(‖g(s)‖2+|ω(s)|2+|ω(s)|p+1)ds, | (2.17) |
which implies desired result.
Lemma 2.2. Suppose that (2.3)–(2.9) hold. Then the continuous cocycle Φ0 associated with system (2.10) has a closed measurable D-pullback absorbing set K0={K0(τ,ω):τ∈R,ω∈Ω}∈D, where for every τ∈R and ω∈Ω
K0(τ,ω)={ˉφ∈E:‖ˉφ‖2E≤R0(τ,ω)}, | (2.18) |
where ˉφτ−t∈D(τ−t,θ−tω) and R0(τ,ω) is given by
R0(τ,ω)=c+c|ω(−τ)|2+c∫0−∞eγs(‖g(s+τ)‖2+|ω(s)−ω(−τ)|2+|ω(s)−ω(−τ)|p+1)ds, | (2.19) |
where c is a positive constant independent of τ, ω and D.
Proof. By (2.17), we get for every τ∈R, t∈R+ and ω∈Ω
‖φ(τ,τ−t,θ−τω,φτ−t)‖2E+γ∫ττ−teγ(s−τ)‖φ(s,τ−t,θ−τω,φτ−t)‖2Eds≤e−γt(‖φτ−t‖2E+2∑i∈ZFi(uτ−t,i))+c∫ττ−teγ(s−τ)(‖g(s)‖2+|ω(s−τ)−ω(−τ)|2+|ω(s−τ)−ω(−τ)|p+1)ds≤e−γt(‖φτ−t‖2E+2∑i∈ZFi(uτ−t,i))+c∫0−teγs(‖g(s+τ)‖2+|ω(s)−ω(−τ)|2+|ω(s)−ω(−τ)|p+1)ds. | (2.20) |
By (2.1) and (2.8), the last integral on the right-hand side of (2.20) is well defined. For any s≥τ−t,
ˉφ(s,τ−t,θ−τω,ˉφτ−t)=φ(s,τ−t,θ−τω,φτ−t)+(0,a(ω(s−τ)−ω(−τ)))T, |
which along with (2.20) implies that
‖ˉφ(τ,τ−t,θ−τω,ˉφτ−t)‖2E+γ∫ττ−teγ(s−τ)‖ˉφ(s,τ−t,θ−τω,ˉφτ−t)‖2Eds≤2‖φ(τ,τ−t,θ−τω,φτ−t)‖2E+2γ∫ττ−teγ(s−τ)‖φ(s,τ−t,θ−τω,φτ−t)‖2Eds+2‖a‖2(|ω(−τ)|2+γ∫ττ−teγ(s−τ)|ω(s−τ)−ω(−τ)|2ds)≤4e−γt(‖ˉφτ−t‖2E+‖a‖2|ω(−t)−ω(−τ)|2+∑i∈ZFi(uτ−t,i))+c|ω(−τ)|2+c∫0−∞eγs(‖g(s+τ)‖2+|ω(s)−ω(−τ)|2+|ω(s)−ω(−τ)|p+1)ds. | (2.21) |
By (2.3) and (2.4) we have
∑i∈ZFi(uτ−t,i)≤1α2∑i∈Zfi(uτ−t,i)uτ−t,i≤1α2max−‖uτ−t‖≤s≤‖uτ−t‖|f′i(s)|‖uτ−t‖2. | (2.22) |
Using ˉφτ−t∈D(τ−t,θ−tω), (2.1) and (2.22), we find
lim supt→+∞4e−γt(‖ˉφτ−t‖2E+‖a‖2|ω(−t)−ω(−τ)|2+∑i∈ZFi(uτ−t,i))=0, | (2.23) |
which along with (2.21) implies that there exists T=T(τ,ω,D)>0 such that for all t≥T,
‖ˉφ(τ,τ−t,θ−τω,ˉφτ−t)‖2E+γ∫ττ−teγ(s−τ)‖ˉφ(s,τ−t,θ−τω,ˉφτ−t)‖2Eds≤c+c|ω(−τ)|2+c∫0−∞eγs(‖g(s+τ)‖2+|ω(s)−ω(−τ)|2+|ω(s)−ω(−τ)|p+1)ds, | (2.24) |
where c is a positive constant independent of τ, ω and D. Note that K0 given by (2.18) is closed measurable random set in E. Given τ∈R, ω∈Ω, and D∈D, it follows from (2.24) that for all t≥T,
Φ0(t,τ−t,θ−tω,D(τ−t,θ−tω))⊆K0(τ,ω), | (2.25) |
which implies that K0 pullback attracts all elements in D. By (2.1) and (2.9), one can easily check that K0 is tempered, which along with (2.25) completes the proof.
Next, we will get uniform estimates on the tails of solutions of system (2.10).
Lemma 2.3. Suppose that (2.3)–(2.9) hold. Then for every τ∈R, ω∈Ω, D={D(τ,ω):τ∈R,ω∈Ω}∈D and ε>0, there exist T=T(τ,ω,D,ε)>0 and N=N(τ,ω,ε)>0 such that for allt≥T, the solution ˉφ of system (2.10) satisfies
∑|i|≥N|ˉφi(τ,τ−t,θ−τω,ˉφτ−t,i)|2E≤ε, |
where ˉφτ−t∈D(τ−t,θ−tω) and |ˉφi|2E=(1−νβ)|Bu|2i+λ|ui|2+|ˉvi|2.
Proof. Let η be a smooth function defined on R+ such that 0≤η(s)≤1 for all s∈R+, and
η(s)={0,0≤s≤1;1,s≥2. |
Then there exists a constant C0 such that |η′(s)|≤C0 for s∈R+. Let k be a fixed positive integer which will be specified later, and set x=(xi)i∈Z, y=(yi)i∈Z with xi=η(|i|k)ui, yi=η(|i|k)vi. Note ψ=(x,y)T=((xi),(yi))Ti∈Z. Taking the inner product of system (2.11) with ψ, we have
(˙φ,ψ)E+(L(φ),ψ)E=(H(φ),ψ)E+(G,ψ)E. | (2.26) |
For the first term of (2.26), we have
(˙φ,ψ)E=(1−νβ)∑i∈Z(B˙u)i(Bx)i+λ∑i∈Z˙uixi+∑i∈Z˙viyi=12ddt∑i∈Zη(|i|k)|φi|2E+(1−νβ)∑i∈Z(B˙u)i((Bx)i−η(|i|k)(Bu)i)≥12ddt∑i∈Zη(|i|k)|φi|2E−(1−νβ)C0k∑i∈Z|(B(v−βu+aω(t))i||ui+1|≥12ddt∑i∈Zη(|i|k)|φi|2E−ck‖φ‖2E−ck|ω(t)|2‖a‖2, | (2.27) |
where |φi|2E=(1−νβ)|Bu|2i+λ|ui|2+|vi|2. As to the second term on the left-hand side of (2.26), we get
(L(φ),ψ)E=β(1−νβ)(Au,x)+(1−νβ)((Au,y)−(Av,x))+ν(Av,y)+λβ(u,x)+β2(u,y)−β(v,y)+(h(v−βu+aω(t)),y). |
It is easy to check that
(Au,x)=∑i∈Z(Bu)i(η(|i|k)(Bu)i+(Bx)i−η(|i|k)(Bu)i)≥∑i∈Zη(|i|k)|Bu|2i−2C0k‖u‖2, |
(Av,y)=∑i∈Z(Bv)i(η(|i|k)(Bv)i+(By)i−η(|i|k)(Bv)i)≥∑i∈Zη(|i|k)|Bv|2i−2C0k‖v‖2, |
and
(Au,y)−(Av,x)≥−C0k∑i∈Z|(Bu)i||vi+1|−C0k∑i∈Z|(Bv)i||ui+1|≥−2C0k(‖u‖2+‖v‖2). |
By the mean value theorem and (2.5), there exists ξi∈(0,1) such that
β2(u,y)+(h(v−βu+aω(t)),y)=β2∑i∈Zη(|i|k)uivi+∑i∈Zh′i(ξi(vi−βui+aiω(t)))(vi−βui+aiω(t))η(|i|k)vi≥β(β−h2)∑i∈Zη(|i|k)|uivi|+h1∑i∈Zη(|i|k)|vi|2−h2∑i∈Zη(|i|k)|viaiω(t)|. |
Then
(L(φ),φ)E−σ∑i∈Zη(|i|k)|φi|2E−h12∑i∈Zη(|i|k)|vi|2≥(β−σ)∑i∈Zη(|i|k)((1−νβ)|Bu|2i+λu2i)+(h12−β−σ)∑i∈Zη(|i|k)|vi|2−βh2√λ∑i∈Zη(|i|k)|vi|((1−νβ)(Bu)2i+λ|ui|2)12−h2∑i∈Zη(|i|k)|viaiω(t)|−ck‖φ‖2E, |
which along with (2.6) and (2.7) implies that
(L(φ),φ)E≥σ∑i∈Zη(|i|k)|φi|2E+h12∑i∈Zη(|i|k)|vi|2−ck‖φ‖2E−h2∑i∈Zη(|i|k)|viaiω(t)|≥σ∑i∈Zη(|i|k)|φi|2E+h16∑i∈Zη(|i|k)|vi|2−ck‖φ‖2E−c∑i∈Zη(|i|k)|ai|2|ω(t)|2. | (2.28) |
As to the first term on the right-hand side of (2.26), by (2.3) and (2.4)we get
(H(φ),ψ)E=−∑i∈Zη(|i|k)fi(ui)(˙ui+βui−aiω(t))+∑i∈Zη(|i|k)gi(t)vi≤−ddt(∑i∈Zη(|i|k)Fi(ui))−α2βp+1∑i∈Zη(|i|k)Fi(ui)+c∑i∈Zη(|i|k)|ω(t)|p+1|ai|p+1+σλ4∑i∈Zη(|i|k)|ui|2+c∑i∈Zη(|i|k)|ai|2|ω(t)|2+σ6∑i∈Zη(|i|k)|vi|2+c∑i∈Zη(|i|k)|gi(t)|2. | (2.29) |
For the last term of (2.26), we have
(G,ψ)E=ω(t)(a,x)λ+βω(t)(a,y)−νω(t)(Aa,y)=ω(t)(1−νβ)(Ba,Bx)−νω(t)(Ba,By)+λω(t)(a,x)+βω(t)(a,y), | (2.30) |
As to the first two terms on the right-hand side of (2.30), we get
ω(t)(1−νβ)(Ba,Bx)=ω(t)(1−νβ)∑i∈Z(ai+1−ai)(η(|i+1|k)ui+1−η(|i|k)ui)≤(∑i∈Zη(|i+1|k)u2i+1)12(∑i∈Zη(|i+1|k)(ω(t)(1−νβ)(ai+1−ai))2)12+(∑i∈Zη(|i|k)u2i)12(∑i∈Zη(|i|k)(ω(t)(1−νβ)(ai+1−ai))2)12≤σλ8∑i∈Zη(|i|k)u2i+c|ω(t)|2∑|i|≥ka2i, | (2.31) |
and
−νω(t)(Ba,By)=−νω(t)∑i∈Z(ai+1−ai)(η(|i+1|k)vi+1−η(|i|k)vi)≤σ6∑i∈Zη(|i|k)v2i+c|ω(t)|2∑|i|≥ka2i. | (2.32) |
The last two terms of (2.30) is bounded by
λω(t)(a,x)+βω(t)(a,y)≤σλ8∑i∈Zη(|i|k)u2i+σ+h16∑i∈Zη(|i|k)v2i+c|ω(t)|2∑|i|≥ka2i. | (2.33) |
It follows from (2.26)–(2.33) that
ddt(∑i∈Zη(|i|k)(|φi|2E+2Fi(ui)))+γ(∑i∈Zη(|i|k)(|φi|2E+2Fi(ui)))+γ∑i∈Zη(|i|k)|φ|2E≤ck‖φ‖2E+ck|ω(t)|2+c∑|i|≥k|ai|p+1|ω(t)|p+1+c∑|i|≥k|gi(t)|2+c∑|i|≥k|ai|2|ω(t)|2, | (2.34) |
where γ=min{σ2,α2βp+1}. Multiplying (2.34) by eγt, replacing ω by θ−τω and integrating on (τ−t,τ) with t∈R+, we get for every ω∈Ω
∑i∈Zη(|i|k)(|φi(τ,τ−t,θ−τω,φτ−t,i)|2E+2Fi(ui(τ,τ−t,θ−τω,uτ−t,i)))≤e−γt(∑i∈Zη(|i|k)(|φτ−t,i|2E+2Fi(uτ−t,i)))+ck∫ττ−teγ(s−τ)‖φ(s,τ−t,θ−τω,φτ−t)‖2Eds+ck∫0−∞eγs|ω(s)−ω(−τ)|2ds+c∑|i|≥k|ai|p+1∫0−∞eγs|ω(s)−ω(−τ)|p+1ds+c∑|i|≥k|ai|2∫0−∞eγs|ω(s)−ω(−τ)|2ds+c∫0−∞eγs∑|i|≥k|gi(s+τ)|2ds. | (2.35) |
For any s≥τ−t,
ˉφ(s,τ−t,θ−τω,ˉφτ−t)=φ(s,τ−t,θ−τω,φτ−t)+(0,a(ω(s−τ)−ω(−τ)))T, |
which along with (2.35) implies that
∑i∈Zη(|i|k)(|ˉφi(τ,τ−t,θ−τω,ˉφτ−t,i)|2E+2Fi(ui(τ,τ−t,θ−τω,uτ−t,i)))≤4e−γt(∑i∈Zη(|i|k)(|ˉφτ−t,i|2E+|ai|2|ω(−t)−ω(−τ)|2+Fi(uτ−t,i)))+ck∫ττ−teγ(s−τ)‖ˉφ(s,τ−t,θ−τω,ˉφτ−t)‖2Eds+ck∫0−∞eγs|ω(s)−ω(−τ)|2ds+c∑|i|≥k|ai|p+1∫0−∞eγs|ω(s)−ω(−τ)|p+1ds+c∑|i|≥k|ai|2∫0−∞eγs|ω(s)−ω(−τ)|2ds+c∫0−∞eγs∑|i|≥k|gi(s+τ)|2ds+2∑|i|≥k|ai|2|ω(−τ)|2. | (2.36) |
By (2.1) and (2.8), the last four integrals in (2.36) are well defined. By (2.3) and (2.4), we obtain
∑i∈Zη(|i|k)Fi(ui,τ−t)≤1α2∑i∈Zη(|i|k)fi(uτ−t,i)uτ−t,i≤1α2max−‖uτ−t‖≤s≤‖uτ−t‖|f′i(s)|‖uτ−t‖2, |
which along with ˉφτ−t∈D(τ−t,θ−tω) and (2.1) implies that
lim supt→+∞4e−γt(∑i∈Zη(|i|k)(|ˉφτ−t,i|2E+|ai|2|ω(−t)−ω(−τ)|2+Fi(uτ−t,i)))=0. |
Then there exists T1=T1(τ,ω,D,ε)>0 such that for all t≥T1,
4e−γt(∑i∈Zη(|i|k)(|ˉφτ−t,i|2E+|ai|2|ω(−t)−ω(−τ)|2+Fi(uτ−t,i)))≤ε4. | (2.37) |
By (2.1) and (2.24), there exist T2=T2(τ,ω,D,ε)>T1 and N1=N1(τ,ω,ε)>0 such that for all t≥T2 and k≥N1
ck∫ττ−teγ(s−τ)‖ˉφ(s,τ−t,θ−τω,ˉφτ−t)‖2Eds+ck∫0−∞eγs|ω(s)−ω(−τ)|2ds≤ε4. | (2.38) |
By (2.8), there exists N2=N2(τ,ω,ε)>N1 such that for all k≥N2,
2∑|i|≥k|ai|2|ω(−τ)|2+c∫0−∞eγs∑|i|≥k|gi(s+τ)|2ds≤ε4. | (2.39) |
By (2.1) again, we find that there exists N3=N3(τ,ω,ε)>N2 such that for all k≥N3,
c∑|i|≥k|ai|p+1∫0−∞eγs|ω(s)−ω(−τ)|p+1ds+c∑|i|≥k|ai|2∫0−∞eγs|ω(s)−ω(−τ)|2ds≤ε4. | (2.40) |
Then it follows from (2.36)–(2.40) that for all t≥T2 and k≥N3
∑|i|≥2k|ˉφi(τ,τ−t,θ−τω,ˉφτ−t,i)|2E≤∑i∈Zη(|i|k)|ˉφi(τ,τ−t,θ−τω,ˉφτ−t,i)|2E≤ε. |
This concludes the proof.
As a consequence of Lemma 2.2 and Lemma 2.3, we get the existence of D-pullback attractors for Φ0 immediately.
Theorem 2.1. Suppose that (2.3)–(2.9) hold. Then the continuous cocycle Φ0 associated with system (2.10) has a unique D-pullback attractors A0={A0(τ,ω):τ∈R, ω∈Ω}∈D in E.
In this section, we will approximate the solutions of system (1.1) by the pathwise Wong-Zakai approximated system (1.2). Given δ≠0, define a random variable Gδ by
Gδ(ω)=ω(δ)δ,for allω∈Ω. | (3.1) |
From (3.1) we find
Gδ(θtω)=ω(t+δ)−ω(t)δand∫t0Gδ(θsω)ds=∫t+δtω(s)δds+∫0δω(s)δds. | (3.2) |
By (3.2) and the continuity of ω we get for all t∈R,
limδ→0∫t0Gδ(θsω)ds=ω(t). | (3.3) |
Note that this convergence is uniform on a finite interval as stated below.
Lemma 3.1. ([17]). Let τ∈R, ω∈Ω and T>0. Then for every ε>0, there exists δ0=δ0(ε,τ,ω,T)>0 such that for all 0<|δ|<δ0 and t∈[τ,τ+T],
|∫t0Gδ(θsω)ds−ω(t)|<ε. |
By Lemma 3.1, we find that there exist c=c(τ,ω,T)>0 and ˜δ0=˜δ0(τ,ω,T)>0 such that for all 0<|δ|<˜δ0 and t∈[τ,τ+T],
|∫t0Gδ(θsω)ds|≤c. | (3.4) |
By (3.3) we find that Gδ(θtω) is an approximation of the white noise in a sense. This leads us to consider system (1.2) as an approximation of system (1.1).
Let ˉvδ=˙uδ+βuδ and ˉφδ=(uδ,ˉvδ), the system (1.2) can be rewritten as
˙ˉφδ+Lδ,1(ˉφδ)=Hδ,1(ˉφδ)+Gδ,1(ω), | (3.5) |
with initial conditions
ˉφδ,τ=(uδτ,ˉvδτ)T=(uδτ,uδ,1τ+βuδτ)T, |
where
Lδ,1(ˉφ)=(βuδ−ˉvδ(1−νβ)Auδ+νAˉvδ+λuδ+β2uδ−βˉvδ)+(0h(ˉvδ−βuδ)), |
Hδ,1(¯φδ)=(0−f(uδ)+g(t)),Gδ,1(ω)=(0aGδ(θtω)). |
Denote
vδ(t)=ˉvδ(t)−a∫t0Gδ(θsω)dsandφδ=(uδ,vδ)T. |
By (3.5) we have
˙φδ+Lδ(φδ)=Hδ(φδ)+Gδ(ω), | (3.6) |
with initial conditions
φδ,τ=(uδτ,vδτ)T=(uδτ,uδ,1τ+βuδτ−a∫τ0Gδ(θsω)ds)T, |
where
Lδ(φδ)=(βuδ−vδ(1−νβ)Auδ+νAvδ+λuδ+β2uδ−βvδ)+(0h(vδ−βuδ+a∫t0Gδ(θsω)ds)), |
Hδ(φδ)=(0−f(uδ)+g(t)),Gδ(ω)=(a∫t0Gδ(θsω)dsβa∫t0Gδ(θsω)ds−νAa∫t0Gδ(θsω)ds). |
Note that system (3.6) is a deterministic functional equation and the nonlinearity in (3.6) is locally Lipschitz continuous from E to E. Therefore, by the standard theory of functional differential equations, system (3.6) is well-posed. Thus, we can define a continuous cocycle Φδ:R+×R×Ω×E→E associated with system (3.5), where for τ∈R, t∈R+ and ω∈Ω
Φδ(t,τ,ω,ˉφδ,τ)=ˉφδ(t+τ,τ,θ−τω,ˉφδ,τ)=(uδ(t+τ,τ,θ−τω,uδτ),ˉvδ(t+τ,τ,θ−τω,ˉvδτ))T=(uδ(t+τ,τ,θ−τω,uδτ),vδ(t+τ,τ,θ−τω,vδτ)+a∫t−τGδ(θsω)ds)T=φδ(t+τ,τ,θ−τω,φδ,τ)+(0,a∫t−τGδ(θsω)ds)T, |
where vδτ=ˉvδτ−a∫0−τGδ(θsω)ds.
For later purpose, we now show the estimates on the solutions of system (3.6) on a finite time interval.
Lemma 3.2. Suppose that (2.3)–(2.8) hold. Then for every τ∈R, ω∈Ω, and T>0, there exist δ0=δ0(τ,ω,T)>0 and c=c(τ,ω,T)>0 such that for all 0<|δ|<δ0 andt∈[τ,τ+T], the solution φδ of system (3.6) satisfies
‖φδ(t,τ,ω,φδ,τ)‖2E+∫tτ‖φδ(s,τ,ω,φδ,τ)‖2Eds≤c(‖φδ,τ‖2E+2∑i∈ZFi(uδτ,i))+c∫tτ(‖g(s)‖2+|∫s0Gδ(θlω)dl|2+|∫s0Gδ(θlω)dl|p+1|)ds. |
Proof. Taking the inner product (⋅,⋅)E on both side of the system (3.6) with φδ, it follows that
12ddt‖φδ‖2E+(Lδ(φδ),φδ)E=(Hδ(φδ),φδ)E+(Gδ(ω),φδ)E. | (3.7) |
By the similar calculations in (2.13)–(2.15), we get
(Lδ(φδ),φδ)E≥σ‖φδ‖2E+h12‖vδ‖2−σ+h16‖vδ‖2−c|∫t0Gδ(θsω)ds|2‖a‖2, | (3.8) |
(Hδ(φδ),φδ)E≤−ddt(∑i∈ZFi(uδi))−α2βp+1∑i∈ZFi(uδi)+c|∫t0Gδ(θsω)ds|p+1‖a‖p+1+σλ4‖uδ‖2+c‖a‖2|∫t0Gδ(θsω)ds|2+c‖g(t)‖2+σ+h16‖vδ‖2, | (3.9) |
and
(Gδ(ω),φδ)E≤σ4‖uδ‖2λ+c‖a‖2|∫t0Gδ(θsω)ds|2+σ+h16‖vδ‖2. | (3.10) |
It follows from (3.7)–(3.10) that
ddt(‖φδ‖2E+2∑i∈ZFi(uδi))+γ(‖φδ‖2E+2∑i∈ZFi(uδi))+γ‖φδ‖2E≤c(‖g(t)‖2+|∫t0Gδ(θsω)ds|2+|∫t0Gδ(θsω)ds|p+1), | (3.11) |
where γ=min{σ2,α2βp+1}. Multiplying (3.11) by eγt and integrating on (τ,t) with t≥τ, we get for every ω∈Ω
‖φδ(t,τ,ω,φδ,τ)‖2E+γ∫tτeγ(s−t)‖φδ(s,τ,ω,φδ,τ)‖2Eds≤eγ(τ−t)(‖φδ,τ‖2E+2∑i∈ZFi(uδτ,i))+c∫tτeγ(s−t)(‖g(s)‖2+|∫s0Gδ(θlω)dl|2+|∫s0Gδ(θlω)dl|p+1)ds, |
which implies the desired result.
In what follows, we derive uniform estimates on the solutions of system (3.5) when t is sufficiently large.
Lemma 3.3. Suppose that (2.3)–(2.8) hold. Then for every δ≠0, τ∈R, ω∈Ω, and D={D(τ,ω):τ∈R,ω∈Ω}∈D, there exists T=T(τ,ω,D,δ)>0 such that for allt≥T, the solution ˉφδ of system (3.5) satisfies
‖ˉφδ(τ,τ−t,θ−τω,ˉφδ,τ−t)‖2E+γ∫ττ−teγ(s−τ)‖ˉφδ(s,τ−t,θ−τω,ˉφδ,τ−t)‖2Eds≤Rδ(τ,ω), |
where ˉφδ,τ−t∈D(τ−t,θ−tω) and Rδ(τ,ω) is given by
Rδ(τ,ω)=c∫0−∞eγs(‖g(s+τ)‖2+|∫s−τGδ(θlω)dl|2+|∫s−τGδ(θlω)dl|p+1)ds+c+c|∫0−τGδ(θlω)dl|2, | (3.12) |
where c is a positive constant independent of τ, ω and δ.
Proof. Multiplying (3.11) by eγt, replacing ω by θ−τω and integrating on (τ−t,τ) with t∈R+, we get for every ω∈Ω
‖φδ(τ,τ−t,θ−τω,φδ,τ−t)‖2E+2∑i∈ZFi(uδi(τ,τ−t,θ−τω,uδτ−t,i))+γ∫ττ−teγ(s−τ)‖φδ(s,τ−t,θ−τω,φδ,τ−t)‖2Eds≤e−γt(‖φδ,τ−t‖2E+2∑i∈ZFi(uδτ−t,i))+c∫0−∞eγs(‖g(s+τ)‖2+|∫s−τGδ(θlω)dl|2+|∫s−τGδ(θlω)dl|p+1)ds. | (3.13) |
By (2.1), (2.8) and (3.2), the last integral on the right-hand side of (3.13) is well defined. For any s≥τ−t,
ˉφδ(s,τ−t,θ−τω,ˉφδ,τ−t)=φδ(s,τ−t,θ−τω,φδ,τ−t)+(0,a∫s0Gδ(θl−τω)dl)T, |
which along with (3.13) shows that
‖ˉφδ(τ,τ−t,θ−τω,ˉφδ,τ−t)‖2E+γ∫ττ−teγ(s−τ)‖ˉφδ(s,τ−t,θ−τω,ˉφτ−t)‖2Eds≤4e−γt(‖ˉφδ,τ−t‖2E+‖a‖2|∫−t−τGδ(θlω)dl|2+∑i∈ZFi(uτ−t,i))+c|∫0−τGδ(θlω)dl|2+c∫0−∞eγs(‖g(s+τ)‖2+|∫s−τGδ(θlω)dl|2+|∫s−τGδ(θlω)dl|p+1)ds, | (3.14) |
Note that (2.3) and (2.4) implies that
∑i∈ZFi(uδτ−t,i)≤1α2∑i∈Zfi(uδτ−t,i)uδτ−t,i≤1α2max−‖uδτ−t‖≤s≤‖uδτ−t‖|f′i(s)|‖uδτ−t‖2, |
which along with ˉφδ,τ−t∈D(τ−t,θ−tω), (2.1) and (3.2) implies that
lim supt→+∞4e−γt(‖ˉφδ,τ−t‖2E+‖a‖2|∫−t−τGδ(θlω)dl|2+∑i∈ZFi(uτ−t,i))=0. | (3.15) |
Then (3.14) and (3.15) can imply the desired estimates.
Next, we show that system (3.5) has a D-pullback absorbing set.
Lemma 3.4. Suppose that (2.3)–(2.9) hold. Then the continuous cocycle Φδ associated with system (3.5) has a closed measurable D-pullback absorbing set Kδ={Kδ(τ,ω):τ∈R,ω∈Ω}∈D, where for every τ∈R and ω∈Ω
Kδ(τ,ω)={ˉφδ∈E:‖ˉφδ‖2E≤Rδ(τ,ω)}, | (3.16) |
where Rδ(τ,ω) is given by (3.12).In addition, we have for every τ∈R and ω∈Ω
limδ→0Rδ(τ,ω)=R0(τ,ω), | (3.17) |
where R0(τ,ω) is defined in (2.19).
Proof. Note Kδ given by (3.16) is closed measurable random set in E. Given τ∈R, ω∈Ω, and D∈D, it follows from Lemma 3.3 that there exists T0=T0(τ,ω,D,δ) such that for all t≥T0,
Φδ(t,τ−t,θ−tω,D(τ−t,θ−tω))⊆Kδ(τ,ω), |
which implies that Kδ pullback attracts all elements in D. By (2.1), (2.8) and (3.2), we can prove Kδ(τ,ω) is tempered. The convergence (3.17) can be obtained by Lebesgue dominated convergence as in [17].
We are now in a position to derive uniform estimates on the tail of solutions of system (3.5).
Lemma 3.5. Suppose that (2.3)–(2.8) hold. Then for every τ∈R, ω∈Ω and ε>0, there exist δ0=δ0(ω)>0, T=T(τ,ω,ε)>0 and N=N(τ,ω,ε)>0 such that for allt≥T and 0<|δ|<δ0, the solution ˉφδ of system (3.5) satisfies
∑|i|≥N|ˉφδ,i(τ,τ−t,θ−τω,ˉφδ,τ−t,i)|2E≤ε, |
where ˉφδ,τ−t∈Kδ(τ−t,θ−tω) and |ˉφδ,i|2E=(1−νβ)|Buδ|2i+λ|uδi|2+|ˉvδi|2.
Proof. Let η be a smooth function defined in Lemma 2.3, and set x=(xi)i∈Z, y=(yi)i∈Z with xi=η(|i|k)uδi, yi=η(|i|k)vδi. Note ψ=(x,y)T=((xi),(yi))Ti∈Z. Taking the inner product of system (3.6) with ψ, we have
(˙φδ,ψ)E+(Lδ(φδ),ψ)E=(Hδ(φδ),ψ)E+(Gδ,ψ)E. | (3.18) |
For the first term of (3.18), we have
(˙φδ,ψ)E=(1−νβ)∑i∈Z(B˙uδ)i(Bx)i+λ∑i∈Z˙uδixi+∑i∈Z˙vδiyi=12ddt∑i∈Zη(|i|k)|φδ,i|2E+(1−νβ)∑i∈Z(B˙uδ)i((Bx)i−η(|i|k)(Buδ)i)≥12ddt∑i∈Zη(|i|k)|φδ,i|2E−(1−νβ)C0k∑i∈Z|B(vδ−βuδ+a∫t0Gδ(θsω)ds)|i|uδi+1|≥12ddt∑i∈Zη(|i|k)|φδ,i|2E−ck‖φδ‖2E−ck|∫t0Gδ(θsω)ds|2‖a‖2, | (3.19) |
where |φδ,i|2E=(1−νβ)|Buδ|2i+λ|uδi|2+|vδi|2. By the similar calculations in (2.28)–(2.33), we get
(Lδ(φδ),ψ)E≥σ∑i∈Zη(|i|k)|φδ,i|2E+h16∑i∈Zη(|i|k)|vδi|2−ck‖φδ‖2E−c∑i∈Zη(|i|k)|ai|2|∫t0Gδ(θsω)ds|2, | (3.20) |
(Hδ(φδ),ψ)E≤−ddt(∑i∈Zη(|i|k)Fi(uδi))−α2βp+1∑i∈Zη(|i|k)Fi(uδi)+σλ4∑i∈Zη(|i|k)|uδi|2+σ6∑i∈Zη(|i|k)|vδi|2+c∑i∈Zη(|i|k)|gi(t)|2+c∑i∈Zη(|i|k)|ai|2|∫t0Gδ(θsω)ds|2+c∑i∈Zη(|i|k)|ai|p+1|∫t0Gδ(θsω)ds|p+1, | (3.21) |
and
(Gδ,ψ)E=(1−νβ)∫t0Gδ(θsω)ds(Bx,Ba)λ+β∫t0Gδ(θsω)ds(y,a)≤σλ4∑i∈Zη(|i|k)|uδi|2+(h16+σ3)∑i∈Zη(|i|k)|vδi|2+c|∫t0Gδ(θsω)ds|2∑i∈Zη(|i|k)|ai|2. | (3.22) |
It follows from (3.18)–(3.22) that
ddt(∑i∈Zη(|i|k)(|φδ,i|2E+2Fi(uδi)))+γ(∑i∈Zη(|i|k)(|φδ,i|2E+2Fi(uδi)))+γ∑i∈Zη(|i|k)|φδ,i|2E≤ck‖φδ‖2E+ck|∫t0Gδ(θsω)ds|2+c∑|i|≥k|gi(t)|2+c∑|i|≥k|ai|p+1|∫t0Gδ(θsω)ds|p+1+c∑|i|≥k|ai|2|∫t0Gδ(θsω)ds|2, | (3.23) |
where γ=min{σ2,α2βp+1}. Multiplying (3.23) by eγt, replacing ω by θ−τω and integrating on (τ−t,τ) with t∈R+, we get for every ω∈Ω
∑i∈Zη(|i|k)(|φδ,i(τ,τ−t,θ−τω,φδ,τ−t,i)|2E+2Fi(uδi(τ,τ−t,θ−τω,uδτ−t,i)))≤e−γt∑i∈Zη(|i|k)(|φδ,τ−t,i|2E+2Fi(uδτ−t,i))+ck∫ττ−teγ(s−τ)‖φδ(s,τ−t,θ−τω,φδ,τ−t)‖2Eds+ck∫0−∞eγs|∫s−τGδ(θlω)dl|2ds+c∫0−∞eγs∑|i|≥k|gi(s+τ)|2ds+c∑|i|≥k|ai|2∫0−∞eγs|∫s−τGδ(θlω)dl|2ds+c∑|i|≥k|ai|p+1∫0−∞eγs|∫s−τGδ(θlω)dl|p+1ds. | (3.24) |
For any s≥τ−t,
ˉφδ(s,τ−t,θ−τω,ˉφδ,τ−t)=φδ(s,τ−t,θ−τω,φδ,τ−t)+(0,a∫s0Gδ(θl−τω)dl)T, |
which along with (3.24) shows that
∑i∈Zη(|i|k)|ˉφδ,i(τ,τ−t,θ−τω,ˉφδ,τ−t,i)|2E≤2∑i∈Zη(|i|k)|φδ,i(τ,τ−t,θ−τω,φδ,τ−t,i)|2E+2∑i∈Zη(|i|k)|ai∫τ0Gδ(θl−τω)dl|2≤2∑|i|≥k|ai∫0−τGδ(θlω)dl|2+4e−γt∑i∈Zη(|i|k)(|ˉφδ,τ−t,i|2E+|ai∫−t−τGδ(θlω)dl|2+Fi(uδτ−t,i))+ck∫ττ−teγ(s−τ)‖ˉφδ(s,τ−t,θ−τω,ˉφδ,τ−t)‖2Eds+ck∫0−∞eγs|∫s−τGδ(θlω)dl|2ds+c∫0−∞eγs∑|i|≥k|gi(s+τ)|2ds+c∑|i|≥k|ai|2∫0−∞eγs|∫s−τGδ(θlω)dl|2ds+c∑|i|≥k|ai|p+1∫0−∞eγs|∫s−τGδ(θlω)dl|p+1ds. | (3.25) |
By (2.1) and (2.8), the last four integrals on the right-hand side of (3.24) are well defined. Note that (2.3) and (2.4) implies that
∑i∈Zη(|i|k)Fi(uδτ−t,i)≤1α2∑i∈Zη(|i|k)fi(uδτ−t,i)uδτ−t,i≤1α2max−‖uδτ−t‖≤s≤‖uδτ−t‖|f′i(s)|‖uδτ−t‖2. |
Since \bar{\varphi}_{\delta, \tau-t}\in K_{\delta}(\tau-t, \theta_{-t}\omega) , we find
\begin{equation} \begin{split}\nonumber \limsup\limits_{t\rightarrow +\infty}e^{-\gamma t}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\bar{\varphi}_{\delta,\tau-t,i}|^{2}_{E}\leq\limsup\limits_{t\rightarrow +\infty}e^{-\gamma t}\|K_{\delta}(\tau-t,\theta_{-t}\omega)\|^{2}_{E} = 0, \end{split} \end{equation} |
which along with (2.1) and (3.2) shows that there exist T_{1} = T_{1}(\tau, \omega, \varepsilon) > 0 and \delta_{0} > 0 such that for all t\geq T_{1} and 0 < |\delta| < \delta_{0} ,
\begin{equation} \begin{split} 4e^{-\gamma t}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\Big(|\bar{\varphi}_{\delta,\tau-t,i}|^{2}_{E}+|a_{i}\int_{-\tau}^{-t}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}+ F_{i}(u_{\tau-t,i}^{\delta})\Big)\leq\frac{\varepsilon}{4}. \end{split} \end{equation} | (3.26) |
By Lemma 3.3, (2.1) and (3.2), there exist T_{2} = T_{2}(\tau, \omega, \varepsilon) > T_{1} and N_{1} = N_{1}(\tau, \varepsilon) > 0 such that for all t\geq T_{2} , k\geq N_{1} and 0 < |\delta| < \delta_{0}
\begin{equation} \begin{split} \frac{c}{k}\int^{\tau}_{\tau-t}e^{\gamma(s-\tau)}\|\bar{\varphi}_{\delta}(s,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau-t})\|^{2}_{E}ds+\frac{c}{k}\int^{0}_{-\infty}e^{\gamma s}|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}ds\leq\frac{\varepsilon}{4}. \end{split} \end{equation} | (3.27) |
By (2.8), there exists N_{2} = N_{2}(\tau, \varepsilon) > N_{1} such that for all k\geq N_{2} ,
\begin{equation} \begin{split} 2\sum\limits_{|i|\geq k}|a_{i}\int_{-\tau}^{0}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}+c\int_{-\infty}^{0}e^{\gamma s}\sum\limits_{|i|\geq k}|g_{i}(s+\tau)|^{2}ds\leq\frac{\varepsilon}{4}. \end{split} \end{equation} | (3.28) |
By (2.1) and (3.2) again, we find that there exists N_{3} = N_{3}(\tau, \varepsilon) > N_{2} such that for all k\geq N_{3} and 0 < |\delta| < \delta_{0} ,
\begin{equation} \begin{split} c\sum\limits_{|i|\geq k}|a_{i}|^{p+1}\int_{-\infty}^{0}e^{\gamma s}|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{p+1}ds +c\sum\limits_{|i|\geq k}|a_{i}|^{2}\int_{-\infty}^{0}e^{\gamma s}|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}ds \leq\frac{\varepsilon}{4}. \end{split} \end{equation} | (3.29) |
Then it follows from (3.25)–(3.29) that for all t\geq T_{2} , k\geq N_{3} and 0 < |\delta| < \delta_{0} ,
\begin{equation} \begin{split}\nonumber \sum\limits_{|i|\geq 2k}|\bar{\varphi}_{\delta,i}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau-t,i})|^{2}_{E} \leq\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\bar{\varphi}_{\delta,i}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau-t,i})|^{2}_{E} \leq\varepsilon. \end{split} \end{equation} |
This concludes the proof.
By Lemma 3.4, \Phi_{\delta} has a closed \mathcal{D} -pullback absorbing set, and Lemma 3.5 shows that \Phi_{\delta} is asymptotically null in E with respect to \mathcal{D} . Therefore, we get the existence of \mathcal{D} -pullback attractors for \Phi_{\delta} .
Lemma 3.6. Suppose that (2.3)–(2.9) hold. Then the continuous cocycle \Phi_{\delta} associated with (3.5) has a unique \mathcal{D} -pullback attractors \mathcal{A}_{\delta} = \{\mathcal{A}_{\delta}(\tau, \omega):\tau\in\mathbb{R} , \omega\in\Omega\}\in \mathcal{D} in E .
For the attractor \mathcal{A}_{\delta} of \Phi_{\delta} , we have the uniform compactness as showed below.
Lemma 3.7. Suppose that (2.3)–(2.9) hold. Then for every \tau\in\mathbb{R} , \omega\in\Omega , there exists \delta_{0} = \delta_{0}(\omega) > 0 such that \mathop{\bigcup}\limits_{0 < |\delta| < \delta_{0}}\mathcal{A}_{\delta}(\tau, \omega) is precompact in E .
Proof. Given \varepsilon > 0 , we will prove that \mathop{\bigcup}\limits_{0 < |\delta| < \delta_{0}}\mathcal{A}_{\delta}(\tau, \omega) has a finite covering of balls of radius less than \varepsilon . By (3.2) we have
\begin{equation} \begin{split} \int^{0}_{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl = -\int^{s+\delta}_{s}\frac{\omega(l)}{\delta}dl+\int^{\delta}_{0}\frac{\omega(l)}{\delta}dl. \end{split} \end{equation} | (3.30) |
By \lim_{\delta\rightarrow0}\int^{\delta}_{0}\frac{\omega(r)}{\delta}dr = 0 , there exists \delta_{1} = \delta_{1}(\omega) > 0 such that for all 0 < |\delta| < \delta_{1} ,
\begin{equation} \begin{split} |\int^{\delta}_{0}\frac{\omega(l)}{\delta}dl|\leq1. \end{split} \end{equation} | (3.31) |
Similarly, there exists l_{1} between s and s+\delta such that \int^{s+\delta}_{s}\frac{\omega(l)}{\delta}dl = \omega(l_{1}) , which along with (2.1) implies that there exists T_{1} = T_{1}(\omega) < 0 such that for all s\leq T_{1} and |\delta|\leq1 ,
\begin{equation} \begin{split} |\int^{s+\delta}_{s}\frac{\omega(l)}{\delta}dl|\leq 1-s. \end{split} \end{equation} | (3.32) |
Let \delta_{2} = \min\{\delta_{1}, 1\} . By (3.30)–(3.32) we get for all 0 < |\delta| < \delta_{2} and s\leq T_{1} ,
\begin{equation} \begin{split} |\int^{0}_{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl| < 2-s. \end{split} \end{equation} | (3.33) |
By (3.4), there exist \delta_{0} = \delta_{0}(\omega)\in(0, \delta_{2}) and c_{1}(\omega) > 0 such that for all 0 < |\delta|\leq\delta_{0} and T_{1}\leq s\leq0 ,
\begin{equation} \begin{split}\nonumber |\int^{0}_{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|\leq c_{1}(\omega), \end{split} \end{equation} |
which along with (3.33) implies that for all 0 < |\delta| < \delta_{0} and s\leq0 ,
\begin{equation} \begin{split} |\int^{0}_{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|\leq -s+c_{2}(\omega), \end{split} \end{equation} | (3.34) |
where c_{2}(\omega) = 2+c_{1}(\omega) . Denote by
\begin{equation} \begin{split}\nonumber B(\tau,\omega) = \{\bar{\varphi}_{\delta}\in E:\|\bar{\varphi}_{\delta}\|^{2}\leq R(\tau,\omega)\}, \end{split} \end{equation} |
and
\begin{equation} \begin{split} R(\tau,\omega) = &c\int_{-\infty}^{0}e^{\gamma s}\Big(\|g(s+\tau)\|^{2}+2(c_{2}-s)^{2}+2(|\tau|+c_{2})^{2}+2^{p}(c_{2}-s)^{p+1}+2^{p}(|\tau|+c_{2})^{p+1}\Big)ds\\ &\quad+c+2c(|\tau|+c_{2})^{2}, \end{split} \end{equation} | (3.35) |
with c and c_{2} being as in (3.12) and (3.34). By (3.12) and (3.35) we find that for all 0 < |\delta| < \delta_{0} ,
\begin{equation} \begin{split} R_{\delta}(\tau,\omega)\leq R(\tau,\omega). \end{split} \end{equation} | (3.36) |
By (3.35) and (3.36), we find that K_{\delta}(\tau, \omega)\subseteq B(\tau, \omega) for all 0 < |\delta| < \delta_{0} , \tau\in\mathbb{R} and \omega\in\Omega . Therefore, for every \tau\in\mathbb{R} , \omega\in\Omega ,
\begin{equation} \begin{split} \bigcup\limits_{0 < |\delta| < \delta_{0}}\mathcal{A}_{\delta}(\tau,\omega)\subseteq\bigcup\limits_{0 < |\delta| < \delta_{0}}K_{\delta}(\tau,\omega) \subseteq B(\tau,\omega). \end{split} \end{equation} | (3.37) |
By Lemma 3.5, there exist T = T(\tau, \omega, \varepsilon) > 0 and N = N(\tau, \omega, \varepsilon) > 0 such that for all t\geq T and 0 < |\delta| < \delta_{0} ,
\begin{equation} \begin{split} \sum\limits_{|i|\geq N}|\bar{\varphi}_{\delta,i}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau-t,i})|^{2}_{E}\leq\frac{\varepsilon}{4}, \end{split} \end{equation} | (3.38) |
for any \bar{\varphi}_{\delta, \tau-t}\in K_{\delta}(\tau-t, \theta_{-t}\omega) . By (3.38) and the invariance of \mathcal{A}_{\delta} , we obtain
\begin{equation} \begin{split} \sum\limits_{|i|\geq N}|\bar{\varphi}_{i}|^{2}_{E}\leq\frac{\varepsilon}{4},\; \; \text{for all}\; \bar{\varphi} = (\bar{\varphi}_{i})_{i\in\mathbb{Z}}\in\bigcup\limits_{0 < |\delta| < \delta_{0}}\mathcal{A}_{\delta}(\tau,\omega). \end{split} \end{equation} | (3.39) |
We find that (3.37) implies the set \{(\bar{\varphi}_{i})_{|i| < N}:\bar{\varphi}\in \mathop{\bigcup}\limits_{0 < |\delta| < \delta_{0}}\mathcal{A}_{\delta}(\tau, \omega)\} is bounded in a finite dimensional space and hence is precompact. This along with (3.39) implies \mathop{\bigcup}\limits_{0 < |\delta| < \delta_{0}}\mathcal{A}_{\delta}(\tau, \omega) has a finite covering of balls of radius less than \varepsilon in E . This completes the proof.
In this section, we will study the limiting of solutions of (3.5) as \delta\rightarrow0 . Hereafter, we need an additional condition on f : For all i\in\mathbb{Z} and s\in\mathbb{R} ,
\begin{equation} \begin{split} |f'_{i}(s)|\leq\alpha_{4}|s|^{p-1}+\kappa_{i}, \end{split} \end{equation} | (4.1) |
where \alpha_{4} is a positive constant, \kappa = (\kappa_{i})_{i\in\mathbb{Z}}\in l^{2} and p > 1 .
Lemma 4.1. Suppose that (2.3)–(2.7) and (4.1) hold. Let \bar{\varphi} and \bar{\varphi}_{\delta} are the solutions of (2.10) and (3.5), respectively. Then for every \tau\in\mathbb{R} , \omega\in\Omega , T > 0 and \varepsilon\in(0, 1) , there exist \delta_{0} = \delta_{0}(\tau, \omega, T, \varepsilon) > 0 and c = c(\tau, \omega, T) > 0 such that for all t\in[\tau, \tau+T] and 0 < |\delta| < \delta_{0} ,
\begin{equation} \begin{split}\nonumber \|\bar{\varphi}_{\delta}(t,\tau,\omega,\bar{\varphi}_{\delta,\tau})-\bar{\varphi}(t,\tau,\omega,\bar{\varphi}_{\tau})\|^{2}_{E} \leq 2e^{c(t-\tau)}\|\bar{\varphi}_{\delta,\tau}-\bar{\varphi}_{\tau}\|^{2}_{E}+c\varepsilon. \end{split} \end{equation} |
Proof. Let \tilde{\varphi} = \varphi_{\delta}-\varphi and \tilde{\varphi} = (\tilde{u}, \tilde{v})^{T} , where \tilde{u} = u^{\delta}-u , \tilde{v} = v^{\delta}-v , \varphi and \varphi_{\delta} are the solutions of (2.11) and (3.6), respectively. By (2.11) and (3.6) we get
\begin{equation} \begin{split} \dot{\tilde{\varphi}}+\tilde{L}(\tilde{\varphi}) = \tilde{H}(\tilde{\varphi})+\tilde{G}(\omega), \end{split} \end{equation} | (4.2) |
where
\begin{equation} \begin{aligned}\nonumber \tilde{L}(\tilde{\varphi})& = \left( \begin{array}{ccc} \beta \tilde{u}-\tilde{v}\\ (1-\nu\beta)A\tilde{u}+\nu A\tilde{v}+\lambda \tilde{u} +\beta^{2} \tilde{u}-\beta\tilde{v} \end{array} \right)\\ &\quad+ \left( \begin{array}{ccc} 0 \\ h\big(v^{\delta}-\beta u^{\delta}+a\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds\big)-h\big(v-\beta u+a\omega(t)\big) \end{array} \right), \end{aligned} \end{equation} |
\begin{equation} \begin{aligned}\nonumber \tilde{H}(\tilde{\varphi}) = \left( \begin{array}{ccc} 0 \\ -f(u^{\delta})+f(u) \end{array} \right),\; \; \; \; \tilde{G}(\omega) = \left( \begin{array}{ccc} a\big(\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t)\big)\\ (\beta a-\nu Aa)\big(\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t)\big) \end{array} \right). \end{aligned} \end{equation} |
Taking the inner product of (4.2) with \tilde{\varphi} in E , we have
\begin{equation} \begin{split} \frac{1}{2}\frac{d}{dt}\|\tilde{\varphi}\|^{2}_{E}+(\tilde{L}(\tilde{\varphi}),\tilde{\varphi})_{E} = (\tilde{H}(\tilde{\varphi}),\tilde{\varphi})_{E}+(\tilde{G}(\omega),\tilde{\varphi})_{E}. \end{split} \end{equation} | (4.3) |
For the second term on the left-hand side of (4.3), using the similar calculations in (2.13) we have
\begin{equation} \begin{split} (\tilde{L}(\tilde{\varphi}),\tilde{\varphi})_{E}&\geq\sigma\|\tilde{\varphi}\|_{E}^{2}+\frac{h_{1}}{2}\|\tilde{v}\|^{2} -h_{2}|\big(a(\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t)),\tilde{v}\big)|\\ &\geq\sigma\|\tilde{\varphi}\|_{E}^{2}+\frac{h_{1}}{4}\|\tilde{v}\|^{2} -c|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t))|^{2}\|a\|^{2}. \end{split} \end{equation} | (4.4) |
For the first term on the right-hand side of (4.3), by (4.1) we get
\begin{equation} \begin{split} (f(u)-f(u^{\delta}),\tilde{v})& = \sum\limits_{i\in\mathbb{Z}}(f_{i}(u_{i})-f_{i}(u^{\delta}_{i}))\tilde{v}_{i} = \frac{1}{h_{1}}\sum\limits_{i\in\mathbb{Z}}|f_{i}(u_{i})-f_{i}(u^{\delta}_{i})|^{2}+\frac{h_{1}}{4}\sum\limits_{i\in\mathbb{Z}}|\tilde{v}_{i}|^{2}\\ &\leq c(\|\varphi\|^{2p-2}_{E}+\|\varphi_{\delta}\|^{2p-2}_{E})\|\tilde{\varphi}\|^{2}_{E}+\frac{h_{1}}{4}\|\tilde{v}\|^{2}+\frac{2\|\kappa\|^{2}}{h_{1}\lambda}\|\tilde{\varphi}\|^{2}_{E}. \end{split} \end{equation} | (4.5) |
As to the last term of (4.3), we have
\begin{equation} \begin{split} &\big(a(\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t)),\tilde{u}\big)_{\lambda} +\big((\beta a-\nu Aa)(\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t)),\tilde{v}\big)\\ &\leq\sigma\|\tilde{u}\|^{2}_{\lambda}+\frac{1}{4\sigma}|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t)|^{2}\|a\|^{2}_{\lambda} +\sigma\|\tilde{v}\|^{2}+c|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t)|^{2}\|a\|^{2}. \end{split} \end{equation} | (4.6) |
It follows from (4.3)–(4.6) that
\begin{equation} \begin{split} \frac{d}{dt}\|\tilde{\varphi}\|^{2}_{E}\leq c(\|\varphi\|^{2p-2}_{E}+\|\varphi_{\delta}\|^{2p-2}_{E}+1)\|\tilde{\varphi}\|^{2}_{E}+c|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t)|^{2}. \end{split} \end{equation} | (4.7) |
By Lemma 2.1 and Lemma 3.2, there exists \delta_{1} = \delta_{1}(\tau, \omega, T) > 0 and c_{1} = c_{1}(\tau, \omega, T) > 0 such that for all 0 < |\delta| < \delta_{1} and t\in[\tau, \tau+T] ,
\begin{equation} \begin{split}\nonumber \|\varphi_{\delta}(t,\tau,\omega,\varphi_{\delta,\tau})\|^{2}_{E}+\|\varphi(t,\tau,\omega,\varphi_{\tau})\|^{2}_{E}\leq c_{1}, \end{split} \end{equation} |
which along with (4.7) shows that for all 0 < |\delta| < \delta_{1} and t\in[\tau, \tau+T]
\begin{equation} \begin{split} \frac{d}{dt}\|\tilde{\varphi}\|^{2}_{E}\leq c\|\tilde{\varphi}\|^{2}_{E}+c|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t)|^{2}. \end{split} \end{equation} | (4.8) |
Applying Gronwall's inequality and Lemma 3.1 to (4.8), we see that for every \varepsilon\in(0, 1) , there exists \delta_{0} = \delta_{0}(\tau, \omega, T, \varepsilon)\in(0, \delta_{1}) such that for all 0 < |\delta| < \delta_{0} and t\in[\tau, \tau+T]
\begin{equation} \begin{split} \|\tilde{\varphi}(t,\tau,\omega,\tilde{\varphi}_{\tau})\|^{2}_{E}\leq e^{c(t-\tau)}\|\tilde{\varphi}_{\tau}\|^{2}_{E}+c\varepsilon. \end{split} \end{equation} | (4.9) |
On the other hand, we have
\begin{equation} \begin{split}\nonumber \bar{\varphi}_{\delta}(t,\tau,\omega,\bar{\varphi}_{\delta,\tau})-\bar{\varphi}(t,\tau,\omega,\bar{\varphi}_{\tau}) = \tilde{\varphi}+\big(0,a(\int^{t}_{0}\mathcal{G}_{\delta}(\theta_{s})ds-\omega(t))\big)^{T}, \end{split} \end{equation} |
which along with (4.9) implies the desired result.
Finally, we establish the upper semicontinuity of random attractors as \delta\rightarrow0 .
Theorem 4.1. Suppose that (2.3)–(2.9) and (4.1) hold. Then for every \tau\in\mathbb{R} and \omega\in\Omega ,
\begin{equation} \begin{split} \lim\limits_{\delta\rightarrow0}d_{E}(\mathcal{A}_{\delta}(\tau,\omega),\mathcal{A}_{0}(\tau,\omega)) = 0, \end{split} \end{equation} | (4.10) |
where d_{E}(\mathcal{A}_{\delta}(\tau, \omega), \mathcal{A}_{0}(\tau, \omega)) = \mathop{\sup}\limits_{x\in\mathcal{A}_{\delta}(\tau, \omega)}\mathop{\inf}\limits_{y\in\mathcal{A}_{0}(\tau, \omega)}\|x-y\|_{E} .
Proof. Let \delta_{n}\rightarrow0 and \bar{\varphi}_{\delta_{n}, \tau}\rightarrow \bar{\varphi}_{\tau} in E . Then by Lemma 4.1, we find that for all \tau\in\mathbb{R} , t\geq0 and \omega\in\Omega ,
\begin{equation} \begin{split} \Phi_{\delta_{n}}(t,\tau,\omega,\bar{\varphi}_{\delta_{n},\tau})\rightarrow \Phi_{0}(t,\tau,\omega,\bar{\varphi}_{\tau}) \; \; \text{in}\; \; E. \end{split} \end{equation} | (4.11) |
By (3.16)–(3.17) we have, for all \tau\in\mathbb{R} and \omega\in\Omega ,
\begin{equation} \begin{split} \lim\limits_{\delta\rightarrow0}\|K_{\delta}(\tau,\omega)\|_{E}^{2}\leq R_{0}(\tau,\omega). \end{split} \end{equation} | (4.12) |
Then by (4.11), (4.12) and Lemma 3.7, (4.10) follows from Theorem 3.1 in [24] immediately.
In this paper we use similar idea in [30] but apply to second order non-autonomous stochastic lattice dynamical systems with additive noise. we establish the convergence of solutions of Wong-zakai approximations and the upper semicontinuity of random attractors of the approximate random system as the step-length of the Wiener shift approaches zero. In addition, as to the second order non-autonomous stochastic lattice dynamical systems with multiplicative noise, we can use the similar method in [29] to get the corresponding results.
The authors would like to thank anonymous referees and editors for their valuable comments and constructive suggestions.
The authors declare no conflict of interest.
[1] |
G. Buomprisco, S. Ricci, R. Perri, S. De Sio, Health and telework: New challenges after COVID-19 pandemic, Eur. J. Environ. Public Health, 5 (2021), doi: 10.21601/ejeph/9705 doi: 10.21601/ejeph/9705
![]() |
[2] |
T. Sekizuka, K. Itokawa, K. Yatsu, R. Tanaka, M. Hashino, T. Kawano-Sugaya, et al., COVID-19 genome surveillance at international airport quarantine stations in Japan, J. Travel Med., 28 (2021), doi: 10.1093/jtm/taaa217 doi: 10.1093/jtm/taaa217
![]() |
[3] |
N. Ahmed, R. A. Michelin, W. Xue, S. Ruj, R. Malaney, S. S. Kanhere, et al., A survey of COVID-19 contact tracing apps, IEEE Access, 8 (2020), 134577–134601, DOI: 10.1109/ACCESS.2020.3010226 doi: 10.1109/ACCESS.2020.3010226
![]() |
[4] |
P. Supasa, D. Zhou, W. Dejnirattisai, C. Liu, A. J. Mentzer, H. M. Ginn, et al., Reduced neutralization of SARS-CoV-2 B. 1.1. 7 variant by convalescent and vaccine sera, Cell, 184 (2021), 2201–2211, doi: 10.1016/j.cell.2021.02.033 doi: 10.1016/j.cell.2021.02.033
![]() |
[5] |
C. Liu, H. M. Ginn, W. Dejnirattisai, P. Supasa, B. Wang, A. Tuekprakhon, et al., Reduced neutralization of SARS-CoV-2 B. 1.617 by vaccine and convalescent serum, Cell, 184 (2021), 4220–4236, doi: 10.1016/j.cell.2021.06.020 doi: 10.1016/j.cell.2021.06.020
![]() |
[6] | J. B. Dunham, An agent-based spatially explicit epidemiological model in MASON, J. Artif. Soc. Social Simul., 9 (2005). |
[7] |
F. Yang, Q. Yang, X. Liu, P. Wang, SIS evolutionary game model and multi-agent simulation of an infectious disease emergency, Technol. Health Care, 23 (2015), 603–613. doi: 10.3233/THC-150999
![]() |
[8] |
C. Hou, J. Chen, Y. Zhou, L. Hua, J. Yuan, S. He, et al., The effectiveness of quarantine in Wuhan city against coronavirus disease 2019 (COVID-19): A well-mixed SEIR model analysis, J. Med. Virol., 92 (2020), 841–848, doi: 10.1002/jmv.25827 doi: 10.1002/jmv.25827
![]() |
[9] |
Z. Liu, P. Magal, G. Webb, Predicting the number of reported and unreported cases of COVID-19 epidemics in China, South Korea, Italy, France, Germany, and the United Kingdom, J. Theor. Biol., 509 (2020), doi: 10.1016/j.jtbi.2020.110501 doi: 10.1016/j.jtbi.2020.110501
![]() |
[10] |
H. Wang, N. Yamamoto, Using a partial differential equation with Google Mobility data to predict COVID-19 in Arizona, Math. Biosci. Eng., 17 (2020), 4891–4904, doi: 10.3934/mbe.2020266 doi: 10.3934/mbe.2020266
![]() |
[11] |
I. F. F. dos Santos, G. M. A. Almeida, F. A. B. F. de Moura, Adaptive SIR model for propagation of SARS-CoV-2 in Brazil, Phys. A, 569 (2021), doi: 10.1016/j.physa.2021.125773 doi: 10.1016/j.physa.2021.125773
![]() |
[12] |
S. Kurahashi, Estimating effectiveness of preventing measures for 2019 novel coronavirus diseases (COVID-19), Trans. Jpn. Soc. Artif. Intell., 35 (2020), D-K28-1, doi: 10.1527/tjsai.D-K28 doi: 10.1527/tjsai.D-K28
![]() |
[13] |
M. Niwa, Y. Hara, S. Sengoku, K. Kodama, Effectiveness of social measures against COVID-19 outbreaks in several Japanese regions analyzed by system dynamic modeling, SSRN, 3653579 (2020), doi: 10.2139/ssrn.3653579 doi: 10.2139/ssrn.3653579
![]() |
[14] |
Y. Omae, Y. Kakimoto, J. Toyotani, K. Hara, Y. Gon, H. Takahashi, Impact of removal strategies of stay-at-home orders on the number of COVID-19 infectors and people leaving their homes, Int. J. Innov. Comput. Inf. Control, 17 (2021), 1055–1065, doi: 10.24507/ijicic.17.03.1055 doi: 10.24507/ijicic.17.03.1055
![]() |
[15] |
Y. Omae, Y. Kakimoto, J. Toyotani, K. Hara, Y. Gon, H. Takahashi, SIR model-based verification of effect of COVID-19 Contact-Confirming Application (COCOA) on reducing infectors in Japan, Math. Biosci. Eng., 18 (2021), 6506–6526, doi: 10.3934/mbe.2021323 doi: 10.3934/mbe.2021323
![]() |
[16] | G. L. Vasconcelos, A. M. S. Macêdo, G. C. Duarte-Filho, A. A. Brum, R. Ospina, F. A. G. Almeida, Power law behaviour in the saturation regime of fatality curves of the COVID-19 pandemic, Sci. Rep., 11 (2021), article number: 4619, doi: 10.1038/s41598-021-84165-1 |
[17] | A. M. S. Macêdo, A. A. Brum, G. C. Duarte-Filho, F. A. G. Almeida, R. Ospina, G. L. Vasconcelos, A comparative analysis between a SIRD compartmental model and the Richards growth model, medRxiv, doi: 10.1101/2020.08.04.20168120 |
[18] |
A. B. Vogel, I. Kanevsky, Y. Che, et al., BNT162b vaccines protect rhesus macaques from SARS-CoV-2, Nature, 592 (2021), 283–289, doi: 10.1038/s41586-021-03275-y doi: 10.1038/s41586-021-03275-y
![]() |
[19] |
N. Doria-Rose, M. S. Suthar, M. Makowski, S. O'Connell, A. B. McDermott, B. Flach, et al., Antibody persistence through 6 months after the second dose of mRNA-1273 vaccine for Covid-19, N. Engl. J. Med., 384 (2021), 2259–2261, doi: 10.1056/NEJMc2103916 doi: 10.1056/NEJMc2103916
![]() |
[20] |
M. Scully, D. Singh, R. Lown, A. Poles, T. Solomon, M. Levi, et al., Pathologic antibodies to platelet factor 4 after ChAdOx1 nCoV-19 vaccination, N. Engl. J. Med., 384 (2021), 2202–2211, doi: 10.1056/NEJMoa2105385 doi: 10.1056/NEJMoa2105385
![]() |
[21] | Ministry of Health, Labour, and Welfare, COVID-19 Vaccine, Available from: https://www.mhlw.go.jp/stf/covid-19/vaccine.html |
[22] | Government Chief Information Officers' Portal, Japan, Information of COVID-19 vaccine in Japan, Available from: https://cio.go.jp/c19vaccine_dashboard |
[23] | W. K. Wong, F. H. Juwono, T. H. Chua, Sir simulation of covid-19 pandemic in malaysia: will the vaccination program be effective?, (2021), arXiv preprint arXiv: 2101.07494. https://arXiv.org/abs/2101.07494 |
[24] |
S. Romero-Brufau, A. Chopra, R. Raskar, J. Subramanian, A. Singh, Y. Dong, et al., Public health impact of delaying second dose of BNT162b2 or mRNA-1273 covid-19 vaccine: Simulation agent based modeling study, Br. Med. J., 373 (2021), doi: 10.1136/bmj.n1087 doi: 10.1136/bmj.n1087
![]() |
[25] |
J. Li, P. Giabbanelli, Returning to a normal life via COVID-19 vaccines in the United States: a large-scale agent-based simulation study, JMIR Med. Inf., 9 (2021), e27419, doi: 10.2196/27419 doi: 10.2196/27419
![]() |
[26] | P. Kumar, V. S. Erturk, M. Murillo-Arcila, A new fractional mathematical modelling of COVID-19 with the availability of vaccine, Results Phys., 24 (2021), article number 104213, doi: 10.1016/j.rinp.2021.104213 |
[27] | R. Ghostine M. Gharamti, S. Hassrouny, I. Hoteit, An extended SEIR model with vaccination for forecasting the COVID-19 pandemic in Saudi Arabia using an ensemble Kalman filter, Mathematics, 9 (2021), article number 636, doi: 10.3390/math9060636 |
[28] |
R. Rifhat, Z. Teng, C. Wang, Extinction and persistence of a stochastic SIRV epidemic model with nonlinear incidence rate, Adv. Differ. Equ., 200 (2021), doi: 10.1186/s13662-021-03347-3 doi: 10.1186/s13662-021-03347-3
![]() |
[29] | M. O. Oke, O. M. Ogunmiloro, C. T. Akinwumi, R. A. Raji, Mathematical modeling and stability analysis of a SIRV epidemic model with non-linear force of infection and treatment, Commun. Math. Appl., 10 (2019), 717–731. |
[30] |
M. Ishikawa, Optimal strategies for vaccination using the stochastic SIRV model, Trans. Inst. Syst. Control Inf. Eng., 25 (2012), 343–348, doi: 10.5687/iscie.25.343 doi: 10.5687/iscie.25.343
![]() |
[31] |
X. Meng, Z. Cai, H. Dui, H. Cao, Vaccination strategy analysis with SIRV epidemic model based on scale-free networks with tunable clustering, IOP Conf. Ser. Mater. Sci. Eng., 1043 (2021), doi: 10.1088/1757-899X/1043/3/032012 doi: 10.1088/1757-899X/1043/3/032012
![]() |
[32] |
J. Farooq, M. A. Bazaz, A novel adaptive deep learning model of Covid-19 with focus on mortality reduction strategies, Chaos Soliton. Fract., 138 (2020), doi: 10.1016/j.chaos.2020.110148 doi: 10.1016/j.chaos.2020.110148
![]() |
[33] |
N. Dagan, N. Barda, E. Kepten, O. Miron, S. Perchik, M. A. Katz, et al., BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting, N. Engl. J. Med., 384 (2021), 1412–1423, doi: 10.1056/NEJMoa2101765 doi: 10.1056/NEJMoa2101765
![]() |
[34] |
M. Lounis, D. K. Bagal, Estimation of SIR model's parameters of COVID-19 in Algeria, Bull. Nat. Res. Centre, 44 (2020), 1–6, doi: 10.1186/s42269-020-00434-5 doi: 10.1186/s42269-020-00434-5
![]() |
[35] |
X. Geng, G. G. Katul, F. Gerges, E. Bou-Zeid, H. Nassif, M. C. Boufadel, A kernel-modulated SIR model for Covid-19 contagious spread from county to continent, Proc. Nat. Acad. Sci., 118 (2021), doi: 10.1073/pnas.2023321118 doi: 10.1073/pnas.2023321118
![]() |
[36] | Ministry of Health, Labour, and Welfare, Open data of positive result of COVID-19, (2021), Available from: https://www.mhlw.go.jp/content/pcr_positive_daily.csv |
[37] |
G. Kobayashi, S. Sugasawa, H. Tamae, T. Ozu, Predicting intervention effect for COVID-19 in Japan: State space modeling approach, Biosci. Trends, 14 (2020), 174–181, doi: 10.5582/bst.2020.03133 doi: 10.5582/bst.2020.03133
![]() |
[38] |
J. M. Dan, J. Mateus, Y. Kato, K. M. Hastie, E. D. Yu, C. E. Faliti, et al., Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection, Science, 371 (2021), doi: 10.1126/science.abf4063 doi: 10.1126/science.abf4063
![]() |
[39] |
J. Lopez Bernal, N. Andrews, C. Gower, E. Gallagher, R. Simmons, S. Thelwall, et al., Effectiveness of Covid-19 vaccines against the B. 1.617. 2 (delta) variant, N. Engl. J. Med., (2021), doi: 10.1056/NEJMoa2108891 doi: 10.1056/NEJMoa2108891
![]() |
[40] | The 44th Novel Coronavirus Expert Meeting (21 July 2021), Document 2–4, Available from: https://www.mhlw.go.jp/content/10900000/000809571.pdf |
[41] | Johns Hopkins University, COVID-19 data repository by the center for systems science and engineering (CSSE) at Johns Hopkins University, Available from: https://github.com/CSSEGISandData/COVID-19 |
1. | Ming Huang, Lili Gao, Lu Yang, Regularity of Wong-Zakai approximations for a class of stochastic degenerate parabolic equations with multiplicative noise, 2024, 0, 1937-1632, 0, 10.3934/dcdss.2024097 |