Loading [MathJax]/extensions/TeX/boldsymbol.js
Research article Special Issues

Fuzzy-interval inequalities for generalized preinvex fuzzy interval valued functions

  • In this paper, firstly we define the concept of h-preinvex fuzzy-interval-valued functions (h-preinvex FIVF). Secondly, some new Hermite-Hadamard type inequalities (H-H type inequalities) for h-preinvex FIVFs via fuzzy integrals are established by means of fuzzy order relation. Finally, we obtain Hermite-Hadamard Fejér type inequalities (H-H Fejér type inequalities) for h-preinvex FIVFs by using above relationship. To strengthen our result, we provide some examples to illustrate the validation of our results, and several new and previously known results are obtained.

    Citation: Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Juan L. G. Guirao, Taghreed M. Jawa. Fuzzy-interval inequalities for generalized preinvex fuzzy interval valued functions[J]. Mathematical Biosciences and Engineering, 2022, 19(1): 812-835. doi: 10.3934/mbe.2022037

    Related Papers:

    [1] Muhammad Bilal Khan, Pshtiwan Othman Mohammed, Muhammad Aslam Noor, Khadijah M. Abualnaja . Fuzzy integral inequalities on coordinates of convex fuzzy interval-valued functions. Mathematical Biosciences and Engineering, 2021, 18(5): 6552-6580. doi: 10.3934/mbe.2021325
    [2] Fankang Bu, Jun He, Haorun Li, Qiang Fu . Interval-valued intuitionistic fuzzy MADM method based on TOPSIS and grey correlation analysis. Mathematical Biosciences and Engineering, 2020, 17(5): 5584-5603. doi: 10.3934/mbe.2020300
    [3] Waqar Afzal, Najla M. Aloraini, Mujahid Abbas, Jong-Suk Ro, Abdullah A. Zaagan . Hermite-Hadamard, Fejér and trapezoid type inequalities using Godunova-Levin Preinvex functions via Bhunia's order and with applications to quadrature formula and random variable. Mathematical Biosciences and Engineering, 2024, 21(2): 3422-3447. doi: 10.3934/mbe.2024151
    [4] Yefu Zheng, Jun Xu, Hongzhang Chen . TOPSIS-based entropy measure for intuitionistic trapezoidal fuzzy sets and application to multi-attribute decision making. Mathematical Biosciences and Engineering, 2020, 17(5): 5604-5617. doi: 10.3934/mbe.2020301
    [5] Jianzhong Shi, Ying Song . Mathematical analysis of a simplified general type-2 fuzzy PID controller. Mathematical Biosciences and Engineering, 2020, 17(6): 7994-8036. doi: 10.3934/mbe.2020406
    [6] Péter Kórus, Juan Eduardo Nápoles Valdés, Bahtiyar Bayraktar . Weighted Hermite–Hadamard integral inequalities for general convex functions. Mathematical Biosciences and Engineering, 2023, 20(11): 19929-19940. doi: 10.3934/mbe.2023882
    [7] Muhammad Akram, G. Muhiuddin, Gustavo Santos-García . An enhanced VIKOR method for multi-criteria group decision-making with complex Fermatean fuzzy sets. Mathematical Biosciences and Engineering, 2022, 19(7): 7201-7231. doi: 10.3934/mbe.2022340
    [8] Muhammad Akram, Ahmad N. Al-Kenani, Anam Luqman . Degree based models of granular computing under fuzzy indiscernibility relations. Mathematical Biosciences and Engineering, 2021, 18(6): 8415-8443. doi: 10.3934/mbe.2021417
    [9] Muhammad Akram, Tayyaba Ihsan, Tofigh Allahviranloo, Mohammed M. Ali Al-Shamiri . Analysis on determining the solution of fourth-order fuzzy initial value problem with Laplace operator. Mathematical Biosciences and Engineering, 2022, 19(12): 11868-11902. doi: 10.3934/mbe.2022554
    [10] Wei Zou, Yanxia Shen, Lei Wang . Design of robust fuzzy iterative learning control for nonlinear batch processes. Mathematical Biosciences and Engineering, 2023, 20(11): 20274-20294. doi: 10.3934/mbe.2023897
  • In this paper, firstly we define the concept of h-preinvex fuzzy-interval-valued functions (h-preinvex FIVF). Secondly, some new Hermite-Hadamard type inequalities (H-H type inequalities) for h-preinvex FIVFs via fuzzy integrals are established by means of fuzzy order relation. Finally, we obtain Hermite-Hadamard Fejér type inequalities (H-H Fejér type inequalities) for h-preinvex FIVFs by using above relationship. To strengthen our result, we provide some examples to illustrate the validation of our results, and several new and previously known results are obtained.



    Hermite-Hadamard inequality (H-H inequality, in short) was firstly introduced by Hermite and Hadamard [1,2] for convex functions are well-acknowledged significant in literature. Since H-H Inequality has been regarded as one of the useful techniques in optimization and mathematical analysis, and for developing the quantitative and qualitative properties of convexity and generalized convexity. Due to applications of this inequality in different directions, there has been continuous growth of interest in such an area of research. As a result, several applications of convex and generalized convex functions have been developed. Following inequality is known as H-H inequality:

    Ψ(μ+ν2)1νμνμΨ(w)dwΨ(μ)+Ψ(ν)2, (1)

    where Ψ:KR is a convex function on the interval K=[μ,ν] with μ<ν. Noor [3] presented the following H-H inequality for h-preinvex function in 2007:

    12h(12)Ψ(2μ+θ(ν,μ)2)1θ(ν,μ)μ+θ(ν,μ)μΨ(w)dw[Ψ(μ)+Ψ(ν)]10h(ξ)dξ, (2)

    where Ψ:KR+ is a preinvex function on the invex set K=[μ,μ+θ(ν,μ)] with μ<μ+θ(ν,μ) and h:[0,1]R+ with h(12)0. A step forward, Marian Matloka [4] constructed H-H Fejér inequalities for h-preinvex function and investigated some different properties of differentiable preinvex function. For convex and nonconvex functions, various extensions and generalizations of the H-H inequality have recently been derived. See [5,6,7,8,9] and the references therein for more information.

    On the other hand, due to a lack of applicability in other sciences, the theory of interval analysis languished for a long period. Moore [10] and Kulish and Miranker [11] introduced and examined the notion of interval analysis. It is the first time in numerical analysis that it is utilized to calculate the error boundaries of numerical solutions of a finite state machine. We direct readers to the papers [12,13,14] and their references for basic facts and applications. In 2018, Zhao et al. [15] developed h-convex interval-valued functions (h-convex IVFs) and demonstrated the following H-H type inequality for h-convex IVFs, based on the above literature.

    Theorem 1. [15] Let Ψ:[μ,ν]RKC+ be an h-convex IVF given by Ψ(w)=[Ψ(w),Ψ(w)] for all w[μ,ν], with h:[0,1]R+ and h(12)0, where Ψ(w) and Ψ(w) are h-convex and h-concave functions, respectively. If Ψ is Riemann integrable (in sort, IR-integrable), then

    12h(12)Ψ(μ+ν2)1νμ(IR)νμΨ(w)dw[Ψ(μ)+Ψ(ν)]10h(ξ)dξ. (3)

    Yanrong An et al. [16] took a step forward by introducing the class of ((h1,h2)-convex IVFs and establishing interval-valued H-H type inequality for (h1,h2)-convex IVFs. We suggest readers to [17,18,19,20,21] for more examination on generalized convex functions and [22,23,24,25,26,27] for more examination of on H-H integral inequalities. Also, the reader can find applications and properties on them.

    Since its inspection five decades ago, the theory of fuzzy sets and system has advanced in variety of ways, see [28]. Therefore, it plays an important role in the study of a wide class problems arising in pure mathematics and applied sciences including operation research, computer science, managements sciences, artificial intelligence, control engineering and decision sciences. The convex analysis has played an important and fundamental part in development of various fields of applied and pure science. Similarly, the concepts of convexity and non-convexity are important in fuzzy optimization because we get fuzzy variational inequalities when we characterize the optimality condition of convexity, so variational inequality theory and fuzzy complementary problem theory established powerful mechanisms of mathematical problems and have a friendly relationship. This fascinating and engaging area has been enriched by the contributions of many authors. Furthermore, Nanda and Kar [29] and Chang [30] developed the concept of convex fuzzy mapping and used fuzzy variational inequality to derive its optimality condition. Fuzzy convexity generalization and extension play an important role in a variety of applications. Let us mention that preinvex fuzzy mapping is one of the most widely studied nonconvex fuzzy mapping classes. Noor [31] presented this concept and demonstrated certain findings using a fuzzy variational-like inequality to identify the fuzzy optimality condition of differentiable fuzzy preinvex mappings. We suggest readers to [32,33,34,35,36] and [37,38,39,40] and the references therein for more examination of literature on the applications and properties of variational-like inequalities and generalized convex fuzzy mappings, respectively. The fuzzy mappings are fuzzy interval valued functions (FIVFs, in short). There are certain integrals that deal with FIVFs, with FIVFs as the integrands. Oseuna-Gomez et al. [41] and Costa et al. [42] built Jensen's integral inequality for FIVF, for example. Costa and Floures provided Minkowski and Beckenbach's inequalities, where the integrands are FIVFs, using the same approach. Costa et al established a relationship between elements of fuzzy-interval space and interval space, and introduced level-wise fuzzy order relation on fuzzy-interval space through Kulisch-Miranker order relation defined on interval space. This was motivated by [15,41,42], especially [43], because Costa et al established a relationship between elements of fuzzy-interval space and interval space, and introduced level-wise fuzzy order relation on fuzzy-interval space through Kulisch-Miranker order relation. For further literature review related to fuzzy integral inequalities, fuzzy interval-valued inequalities, fuzzy fractional integral inequalities, see [44,45,46,47,48,49], [50,51,52,53,54,55], [56,57,58,59,60,61,62] and the references therein.

    We investigate a novel class of generalized convex FIVFs dubbed h-preinvex FIVFs in this study. We analyze integral inequality (Eq 2) by creating fuzzy-interval integral inequality, also known as fuzzy-interval H-H integral inequality, with the help of this class. Fuzzy integrals are also used to introduce some H-H Fejér inequalities for h-preinvex FIVFs.

    In this section, we recall some basic preliminary notions, definitions and results. With the help of these results, some new basic definitions and results are also discussed.

    We begin by recalling the basic notations and definitions. We define interval as, [ω,ω]={wR:ωwωandω,ωR}, where ωω.

    We write len[ω,ω]=ωω, If len [ω,ω]=0 then, [ω,ω] is called degenerate. In this article, all intervals will be non-degenerate intervals. The collection of all closed and bounded intervals of R is denoted and defined as KC={[ω,ω]:ω,ωRandωω}. If ω0 then, [ω,ω] is called positive interval. The set of all positive interval is denoted by KC+ and defined as KC+={[ω,ω]:[ω,ω]KCandω0}.

    We'll now look at some of the properties of intervals using arithmetic operations. Let [ϱ,ϱ],[s,s]KC and ρR, then we have

    [ϱ,ϱ]+[s,s]=[ϱ+s,ϱ+s],
    [ϱ,ϱ]×[s,s]=[min{ϱs,ϱs,ϱs,ϱs}max{ϱs,ϱs,ϱs,ϱs}],
    ρ.[ϱ,ϱ]={[ρϱ,ρϱ]ifρ>0,{0}ifρ=0[ρϱ,ρϱ]ifρ<0.

    For [ϱ,ϱ],[s,s]KC, the inclusion "⊆" is defined by [ϱ,ϱ][s,s], if and only if sϱ, ϱs.

    Remark 1. The relation "≤I" defined on KC by [ϱ,ϱ]I[s,s] if and only if ϱs,ϱs, for all [ϱ,ϱ],[s,s]KC, it is an order relation, see [11].

    Moreover [10] initially proposed the concept of Riemann integral for IVF, which is defined as follows:

    Theorem 2. [10,15] If Ψ:[μ,ν]RKC is an IVF on such that Ψ(w)=[Ψ(w),Ψ(w)]. Then Ψ is Riemann integrable over [μ,ν] if and only if, Ψ and Ψ both are Riemann integrable over [μ,ν] such that

    (IR)νμΨ(w)dw=[(R)νμΨ(w)dw,(R)νμΨ(w)dw].

    A mapping ζ:R[0,1] called the membership function distinguishes a fuzzy subset set A of R. This representation is found to be acceptable in this study. F(R) also stand for the collection of all fuzzy subsets of R.

    A real fuzzy interval ζ is a fuzzy set in R with the following properties:

    1) ζ is normal i.e. there exists wR such that ζ(w)=1;

    2) ζ is upper semi continuous i.e., for given wR, for every wR there exist ϵ>0 there exist δ>0 such that ζ(w)ζ(y)<ϵ for all yR with |wy|<δ;

    3) ζ is fuzzy convex i.e., ζ((1ξ)w+ξy)min(ζ(w),ζ(y)), w,yR and ξ[0,1];

    4) ζ is compactly supported i.e., cl{wR|ζ(w)>0} is compact.

    The collection of all real fuzzy intervals is denoted by F0.

    Let ζF0 be real fuzzy interval, if and only if, β-levels [ζ]β is a nonempty compact convex set of R. This is represented by

    [ζ]β={wR|ζ(w)β}.

    From these definitions, we have

    [ζ]β=[ζ(β),ζ(β)],

    where

    ζ(β)=inf{wR|ζ(w)β},
    ζ(β)=sup{wR|ζ(w)β}.

    Thus a real fuzzy interval ζ can be identified by a parametrized triples

    {(ζ(β),ζ(β),β):β[0,1]}.

    These two end point functions ζ(β) and ζ(β) are used to characterize a real fuzzy interval as a result.

    Proposition 1. [43] Let ζ,ΘF0. Then fuzzy order relation "≼" given on F0 by

    ζΘifandonlyif,[ζ]βI[Θ]βforallβ(0,1],

    it is partial order relation.

    We'll now look at some of the properties of fuzzy intervals using arithmetic operations. Let ζ,ΘF0 and ρR, then we have

    [ζ˜+Θ]β=[ζ]β+[Θ]β (4)
    [ζ˜×Θ]β=[ζ]β×[Θ]β (5)
    [ρ.ζ]β=ρ.[ζ]β (6)

    For ψF0 such that ζ=Θ˜+ψ, we have the existence of the Hukuhara difference of ζ and Θ, which we call the H-difference of ζ and Θ, and denoted by ζ˜Θ. If H-difference exists, then

    (ψ)(β)=(ζ˜Θ)(β)=ζ(β)Θ(β)(ψ)(β)=(ζ˜Θ)(β)=ζ(β)Θ(β) (7)

    Theorem 3. [23] The space F0 dealing with a supremum metric i.e., for ψ,ΘF0

    D(ψ,Θ)=sup0β1H([ζ]β,[Θ]β) (8)

    it is a complete metric space, where H denote the well-known Hausdorff metric on space of intervals.

    Definition 1. [43] A fuzzy-interval-valued map Ψ:KRF0 is called FIVF. For each β(0,1], whose β-levels define the family of IVFs Ψβ:KRKC are given by Ψβ(w)=[Ψ(w,β),Ψ(w,β)] for all wK. Here, for each β(0,1], the end point real functions Ψ(.,β),Ψ(.,β):KR are called lower and upper functions of Ψ.

    The following conclusions can be drawn from the preceding literature review [10,23,24,43]:

    Definition 2. Let Ψ:[μ,ν]RF0 be a FIVF. Then fuzzy integral of Ψ over [μ,ν], denoted by (FR)νμΨ(w)dw, it is given level-wise by

    [(FR)νμΨ(w)dw]β=(IR)νμΨβ(w)dw={νμΨ(w,β)dw:Ψ(w,β)R([μ,ν],β)} (9)

    for all β(0,1], where R([μ,ν],β) denotes the collection of Riemannian integrable functions of IVFs. Ψ is FR-integrable over [μ,ν] if (FR)νμΨ(w)dwF0. Note that, if Ψ(w,β),Ψ(w,β) are Lebesgue-integrable, then Ψ is fuzzy Aumann-integrable function over [μ,ν], see [10,23,24].

    Theorem 4. Let Ψ:[μ,ν]RF0 be a FIVF, whose β-levels define the family of IVFs Ψβ:[μ,ν]RKC are given by Ψβ(w)=[Ψ(w,β),Ψ(w,β)] for all w[μ,ν] and for all β(0,1]. Then Ψ is FR-integrable over [μ,ν] if and only if, Ψ(w,β) and Ψ(w,β) both are R-integrable over [μ,ν]. Moreover, if Ψ is FR-integrable over [μ,ν], then

    \begin{array}{l} {\left[\left(FR\right){\int }_{\mu }^{\nu }\mathit{\Psi} \left(\mathcal{w}\right)d\mathcal{w}\right]}^{\mathit{\boldsymbol{\beta }}} = \left[\left(R\right){\int }_{\mu }^{\nu }{\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right)d\mathcal{w}, \;\;\;\;\;\;\left(R\right){\int }_{\mu }^{\nu }{\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right)d\mathcal{w}\right] \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \left(IR\right){\int }_{\mu }^{\nu }{\mathit{\Psi} }_{\beta }\left(\mathcal{w}\right)d\mathcal{w} \end{array} (10)

    for all \beta \in (0, 1]. For all \beta \in \left(0, 1\right], {\mathcal{F}\mathcal{R}}_{\left(\left[\mu , \nu \right], \beta \right)} denotes the collection of all FR -integrable FIVFs over [\mu , \nu ] .

    Definition 3. Let K be an invex set and \mathit{h}:[0, 1]\to \mathbb{R} such that \mathit{h}\left(\mathcal{w}\right) > 0 . Then FIVF \mathit{\Psi} :K\to {\mathbb{F}}_{C}\left(\mathbb{R}\right) is said to be:

    \mathit{h} -preinvex on K with respect to \theta if

    \mathit{\Psi} \left(\mathcal{w}+\left(1-\xi \right)\theta \left(y, \mathcal{w}\right)\right)\preccurlyeq \mathit{h}\left(\xi \right)\mathit{\Psi} \left(\mathcal{w}\right)\widetilde {+}\mathit{h}\left(1-\xi \right)\mathit{\Psi} \left(y\right) (11)

    for all \mathcal{w}, y\in K, \xi \in \left[0, 1\right], where \mathit{\Psi} \left(\mathcal{w}\right)\succcurlyeq \widetilde {0}, \theta :K\times K\to \mathbb{R}.

    \mathcal{h} -preconcave on K with respect to \theta if inequality (Eq 11) is reversed.

    ● affine \mathit{h} -preinvex on K with respect to \theta if

    \mathit{\Psi} \left(\mathcal{w}+\left(1-\xi \right)\theta (y, \mathcal{w})\right) = \mathit{h}\left(\xi \right)\mathit{\Psi} \left(\mathcal{w}\right)\widetilde {+}\mathit{h}\left(1-\xi \right)\mathit{\Psi} \left(y\right) (12)

    for all \mathcal{w}, y\in K, \xi \in \left[0, 1\right], where \mathit{\Psi} \left(\mathcal{w}\right)\succcurlyeq \widetilde {0}, \theta :K\times K\to \mathbb{R}.

    Remark 4. The \mathit{h} -preinvex FIVFs have some very nice properties similar to preinvex FIVF,

    \left.1\right) if \mathit{\Psi} is \mathit{h} -preinvex FIVF, then {\rm Y} is also \mathit{h} -preinvex for {\rm Y}\ge 0 .

    \left.2\right) if \mathit{\Psi} and \mathcal{J} both are \mathit{h} -preinvex FIVFs, then \mathrm{m}\mathrm{a}\mathrm{x}\left(\mathit{\Psi} \left(\mathcal{w}\right), \mathcal{J}\left(\mathcal{w}\right)\right) is also \mathit{h} -preinvex FIVF.

    Now we discuss some new special cases of \mathit{h} -preinvex FIVFs:

    If \mathit{h}\left(\xi \right) = {\xi }^{s}, then \mathit{h} -preinvex FIVF becomes s -preinvex FIVF, that is

    \mathit{\Psi} \left(\mathcal{w}+\left(1-\xi \right)\theta (y, \mathcal{w})\right)\preccurlyeq {\xi }^{s}\mathit{\Psi} \left(\mathcal{w}\right)\widetilde {+}{\left(1-\xi \right)}^{s}\mathit{\Psi} \left(y\right), \;\forall \mathcal{w}, y\in K, \xi \in \left[0, 1\right].

    If \theta \left(y, \mathcal{w}\right) = y-\mathcal{w}, then \mathit{\Psi} is called s -convex FIVF.

    If \mathit{h}\left(\xi \right) = \xi , then \mathit{h} -preinvex FIVF becomes preinvex FIVF, that is

    \mathit{\Psi} \left(\mathcal{w}+\left(1-\xi \right)\theta (y, \mathcal{w})\right)\preccurlyeq \xi \mathit{\Psi} \left(\mathcal{w}\right)\widetilde {+}\left(1-\xi \right)\mathit{\Psi} \left(y\right), \;\forall \mathcal{w}, y\in K, \xi \in \left[0, 1\right].

    If \theta \left(y, \mathcal{w}\right) = y-\mathcal{w}, then \mathit{\Psi} is called convex FIVF.

    If \mathit{h}\left(\xi \right)\equiv 1, then \mathit{h} -preinvex FIVF becomes P -preinvex FIVF, that is

    \mathit{\Psi} \left(\mathcal{w}+\left(1-\xi \right)\theta (y, \mathcal{w})\right)\preccurlyeq \mathit{\Psi} \left(\mathcal{w}\right)\widetilde {+}\mathit{\Psi} \left(y\right), \;\forall \mathcal{w}, y\in K, \xi \in \left[0, 1\right].

    If \theta \left(y, \mathcal{w}\right) = y-\mathcal{w}, then \mathit{\Psi} is called P -FIVF.

    Theorem 6. Let K be an invex set and \mathit{h}:[0, 1]\subseteq K\to {\mathbb{R}}^{+} such that \mathit{h} > 0 , and let \mathit{\Psi} :K\to {\mathbb{F}}_{C}\left(\mathbb{R}\right) be a FIVF with \mathit{\Psi} \left(\mathcal{w}\right)\succcurlyeq \widetilde {0} , whose \beta -levels define the family of IVFs {\mathit{\Psi} }_{\beta }:K\subset \mathbb{R}\to {{\mathcal{K}}_{C}}^{+}\subset {\mathcal{K}}_{C} are given by

    {\mathit{\Psi} }_{\beta }\left(\mathcal{w}\right) = \left[{\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right), {\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right)\right], \forall \mathcal{w}\in K (13)

    for all \mathcal{w}\in K and for all \beta \in \left[0, 1\right] . Then \mathit{\Psi} is \mathit{h} -preinvex FIVF on K, if and only if, for all \beta \in \left[0, 1\right], {\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right) and {\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right) both are \mathit{h} -preinvex functions.

    Proof. Assume that for each \beta \in \left[0, 1\right], {\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right) and {\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right) are \mathit{h} -preinvex on K. Then from Eq (11), we have

    {\mathit{\Psi} }_{*}\left(\mathcal{w}+\left(1-\xi \right)\theta (y, \mathcal{w}), \beta \right)\le \mathit{h}\left(\xi \right){\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right)+\mathit{h}\left(1-\xi \right){\mathit{\Psi} }_{*}\left(y, \beta \right) , \forall \mathcal{w}, y\in K, \xi \in \left[0, 1\right],

    and

    {\mathit{\Psi} }^{*}\left(\mathcal{w}+\left(1-\xi \right)\theta (y, \mathcal{w}), \beta \right)\le \mathit{h}\left(\xi \right){\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right)+\mathit{h}\left(1-\xi \right){\mathit{\Psi} }^{*}\left(y, \beta \right), \forall \mathcal{w}, y\in K, \xi \in \left[0, 1\right].

    Then by Eqs (13), (4) and (6), we obtain

    {\mathit{\Psi} }_{\beta }\left(\mathcal{w}+\left(1-\xi \right)\theta (y, \mathcal{w})\right) = \left[{\mathit{\Psi} }_{*}\left(\mathcal{w}+\left(1-\xi \right)\theta (y, \mathcal{w}), \beta \right), {\mathit{\Psi} }^{*}\left(\mathcal{w}+\left(1-\xi \right)\theta (y, \mathcal{w}), \beta \right)\right]
    \le \left[\mathit{h}\left(\xi \right){\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right), {\mathit{h}\left(\xi \right)\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right)\right]+\left[\mathit{h}\left(1-\xi \right){\mathit{\Psi} }_{*}\left(y, \beta \right), {\mathit{h}\left(1-\xi \right)\mathit{\Psi} }^{*}\left(y, \beta \right)\right],

    that is

    \mathit{\Psi} \left(\mathcal{w}+\left(1-\xi \right)\theta (y, \mathcal{w})\right)\preccurlyeq \mathit{h}\left(\xi \right)\mathit{\Psi} \left(\mathcal{w}\right)\widetilde {+}\mathit{h}\left(1-\xi \right)\mathit{\Psi} \left(y\right), \forall \mathcal{w}, y\in K, \xi \in \left[0, 1\right].

    Hence, \mathit{\Psi} is \mathit{h} -preinvex FIVF on K .

    Conversely, let \mathit{\Psi} be a \mathit{h} -preinvex FIVF on K. Then for all \mathcal{w}, y\in K and \xi \in \left[0, 1\right], we have \mathit{\Psi} \left(\mathcal{w}+\left(1-\xi \right)\theta (y, \mathcal{w})\right)\preccurlyeq \mathit{h}\left(\xi \right)\mathit{\Psi} \left(\mathcal{w}\right)\widetilde {+}\mathit{h}\left(1-\xi \right)\mathit{\Psi} \left(y\right). Therefore, from Eq (13), we have

    {\mathit{\Psi} }_{\beta }\left(\mathcal{w}+\left(1-\xi \right)\theta (y, \mathcal{w})\right) = \left[{\mathit{\Psi} }_{*}\left(\mathcal{w}+\left(1-\xi \right)\theta (y, \mathcal{w}), \beta \right), {\mathit{\Psi} }^{*}\left(\mathcal{w}+\left(1-\xi \right)\theta (y, \mathcal{w}), \beta \right)\right].

    Again, from Eqs (13), (4) and (6), we obtain

    \mathit{h}\left(\xi \right){\mathit{\Psi} }_{\beta }\left(\mathcal{w}\right)\widetilde {+}\mathit{h}\left(1-\xi \right){\mathit{\Psi} }_{\beta }\left(\mathcal{w}\right) = \left[\mathit{h}\left(\xi \right){\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right), {\mathit{h}\left(\xi \right)\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right)\right]+\left[\mathit{h}\left(1-\xi \right){\mathit{\Psi} }_{*}\left(y, \beta \right), {\mathit{h}\left(1-\xi \right)\mathit{\Psi} }^{*}\left(y, \beta \right)\right],

    for all \mathcal{w}, y\in K and \xi \in \left[0, 1\right]. Then by \mathit{h} -preinvexity of \mathit{\Psi} , we have for all \mathcal{w}, y\in K and \xi \in \left[0, 1\right] such that

    {\mathit{\Psi} }_{*}\left(\mathcal{w}+\left(1-\xi \right)\theta (y, \mathcal{w}), \beta \right)\le \mathit{h}\left(\xi \right){\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right)+\mathit{h}\left(1-\xi \right){\mathit{\Psi} }_{*}\left(y, \beta \right),

    and

    {\mathit{\Psi} }^{*}\left(\mathcal{w}+\left(1-\xi \right)\theta (y, \mathcal{w}), \beta \right)\le \mathit{h}\left(\xi \right){\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right)+\mathit{h}\left(1-\xi \right){\mathit{\Psi} }^{*}\left(y, \beta \right),

    for each \beta \in \left[0, 1\right]. Hence, the result follows.

    Example 1. We consider \mathit{h}\left(\xi \right) = \xi , for \xi \in \left[0, 1\right] and the FIVF \mathit{\Psi} :{\mathbb{R}}^{+}\to {\mathbb{F}}_{C}\left(\mathbb{R}\right) defined by,

    \mathit{\Psi} \left(\mathcal{w}\right)\left(\varrho \right) = \left\{\begin{array}{c}\frac{\varrho -{e}^{\mathcal{w}}}{{e}^{\mathcal{w}}}\varrho \in \left[{e}^{\mathcal{w}}, 2{e}^{\mathcal{w}}\right]\\ \frac{4{e}^{\mathcal{w}}-\varrho }{2{e}^{\mathcal{w}}}\varrho \in (2{e}^{\mathcal{w}}, 4{e}^{\mathcal{w}}]\\ 0otherwise, \end{array}\right.

    then, for each \beta \in \left[0, 1\right], we have {\mathit{\Psi} }_{\beta }\left(\mathcal{w}\right) = \left[(1+\beta ){e}^{\mathcal{w}}, 2(2-\beta ){e}^{\mathcal{w}}\right] . Since {\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right), {\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right) are \mathit{h} -preinvex functions \theta \left(y, \mathcal{w}\right) = y-\mathcal{w} for each \beta \in [0, 1] . Hence \mathit{\Psi} \left(\mathcal{w}\right) is \mathit{h} -preinvex FIVF.

    Now, the application of inequality (Eq 2), Proposition 1, Definition 3, Theorems 2–4 and 6 gives the followings results.

    Theorem 7. Let \mathit{\Psi} :\left[\mu , \mu +\theta (\nu , \mu )\right]\to {\mathbb{F}}_{C}\left(\mathbb{R}\right) be a \mathit{h} -preinvex FIVF with \mathit{h}:[0, 1]\to {\mathbb{R}}^{+} and \mathit{h}\left(\frac{1}{2}\right)\not\equiv 0 , whose \beta -levels define the family of IVFs {\mathit{\Psi} }_{\beta }:\left[\mu , \mu +\theta (\nu , \mu )\right]\subset \mathbb{R}\to {{\mathcal{K}}_{C}}^{+} are given by {\mathit{\Psi} }_{\beta }\left(\mathcal{w}\right) = \left[{\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right), {\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right)\right] for all \mathcal{w}\in \left[\mu , \mu +\theta (\nu , \mu )\right] and for all \beta \in \left[0, 1\right] . If \mathit{\Psi} \in {\mathcal{F}\mathcal{R}}_{\left(\left[\mu , \mu +\theta (\nu , \mu )\right], \beta \right)} , then

    \frac{1}{2\mathit{h}\left(\frac{1}{2}\right)}\mathit{\Psi} \left(\frac{2\mu +\theta (\nu , \mu )}{2}\right)\preccurlyeq \frac{1}{\theta (\nu , \mu )}\left(FR\right){\int }_{\mu }^{\mu +\theta (\nu , \mu )}\mathit{\Psi} \left(\mathcal{w}\right)d\mathcal{w}\preccurlyeq \left[\mathit{\Psi} \left(\mu \right)\widetilde {+}\mathit{\Psi} \left(\nu \right)\right]{\int }_{0}^{1}\mathit{h}\left(\xi \right)d\xi (14)

    If \mathit{\Psi} is \mathit{h} -preinvex FIVF, then Eq (14) is reversed such that

    \frac{1}{2\mathit{h}\left(\frac{1}{2}\right)}\mathit{\Psi} \left(\frac{2\mu +\theta (\nu , \mu )}{2}\right)\succcurlyeq \frac{1}{\theta (\nu , \mu )}\left(FR\right){\int }_{\mu }^{\mu +\theta (\nu , \mu )}\mathit{\Psi} \left(\mathcal{w}\right)d\mathcal{w}\succcurlyeq \left[\mathit{\Psi} \left(\mu \right)\widetilde {+}\mathit{\Psi} \left(\nu \right)\right]{\int }_{0}^{1}\mathit{h}\left(\xi \right)d\xi . (15)

    Proof. Let \mathit{\Psi} :\left[\mu , \mu +\theta (\nu , \mu )\right]\to {\mathbb{F}}_{C}\left(\mathbb{R}\right) be a \mathit{h} -preinvex FIVF. Then, by hypothesis, we have

    \frac{1}{\mathit{h}\left(\frac{1}{2}\right)}\mathit{\Psi} \left(\frac{2\mu +\theta (\nu , \mu )}{2}\right)\preccurlyeq \mathit{\Psi} \left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right)\right)\widetilde {+}\mathit{\Psi} \left(\mu +\xi \theta (\nu , \mu )\right).

    Therefore, for every \beta \in [0, 1] , we have

    \begin{array}{c}\frac{1}{\mathit{h}\left(\frac{1}{2}\right)}{\mathit{\Psi} }_{*}\left(\frac{2\mu +\theta (\nu , \mu )}{2}, \beta \right)\le {\mathit{\Psi} }_{*}\left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right), \beta \right)+{\mathit{\Psi} }_{*}\left(\mu +\xi \theta \left(\nu , \mu \right), \beta \right), \\ \frac{1}{\mathit{h}\left(\frac{1}{2}\right)}{\mathit{\Psi} }^{*}\left(\frac{2\mu +\theta (\nu , \mu )}{2}, \beta \right)\le {\mathit{\Psi} }^{*}\left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right), \beta \right)+{\mathit{\Psi} }^{*}\left(\mu +\xi \theta (\nu , \mu ), \beta \right).\end{array}

    Then

    \begin{array}{c}\frac{1}{\mathit{h}\left(\frac{1}{2}\right)}{\int }_{0}^{1}{\mathit{\Psi} }_{*}\left(\frac{2\mu +\theta (\nu , \mu )}{2}, \beta \right)d\xi \le {\int }_{0}^{1}{\mathit{\Psi} }_{*}\left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right), \beta \right)d\xi +{\int }_{0}^{1}{\mathit{\Psi} }_{*}\left(\mu +\xi \theta (\nu , \mu ), \beta \right)d\xi , \\ \frac{1}{\mathit{h}\left(\frac{1}{2}\right)}{\int }_{0}^{1}{\mathit{\Psi} }^{*}\left(\frac{2\mu +\theta (\nu , \mu )}{2}, \beta \right)d\xi \le {\int }_{0}^{1}{\mathit{\Psi} }^{*}\left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right), \beta \right)d\xi +{\int }_{0}^{1}{\mathit{\Psi} }^{*}\left(\mu +\xi \theta (\nu , \mu ), \beta \right)d\xi .\end{array}

    It follows that

    \begin{array}{c}\frac{1}{\mathit{h}\left(\frac{1}{2}\right)}{\mathit{\Psi} }_{*}\left(\frac{2\mu +\theta (\nu , \mu )}{2}, \beta \right)\le \frac{2}{\theta (\nu , \mu )}{\int }_{\mu }^{\mu +\theta (\nu , \mu )}{\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right)d\mathcal{w}, \\ \frac{1}{\mathit{h}\left(\frac{1}{2}\right)}{\mathit{\Psi} }^{*}\left(\frac{2\mu +\theta (\nu , \mu )}{2}, \beta \right)\le \frac{2}{\theta (\nu , \mu )}{\int }_{\mu }^{\mu +\theta (\nu , \mu )}{\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right)d\mathcal{w}.\end{array}

    That is

    \frac{1}{\mathit{h}\left(\frac{1}{2}\right)}\left[{\mathit{\Psi} }_{*}\left(\frac{2\mu +\theta (\nu , \mu )}{2}, \beta \right), {\mathit{\Psi} }^{*}\left(\frac{2\mu +\theta (\nu , \mu )}{2}, \beta \right)\right]{\begin{array}{c}\begin{array}{c}\le \end{array}\end{array}}_{I}\frac{2}{\theta (\nu , \mu )}\left[{\int }_{\mu }^{\mu +\theta (\nu , \mu )}{\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right)d\mathcal{w}, {\int }_{\mu }^{\mu +\theta (\nu , \mu )}{\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right)d\mathcal{w}\right].

    Thus,

    \frac{1}{2\mathit{h}\left(\frac{1}{2}\right)}\mathit{\Psi} \left(\frac{2\mu +\theta (\nu , \mu )}{2}\right)\preccurlyeq \frac{1}{\theta (\nu , \mu )}\left(FR\right){\int }_{\mu }^{\mu +\theta (\nu , \mu )}\mathit{\Psi} \left(\mathcal{w}\right)d\mathcal{w}. (16)

    In a similar way as above, we have

    \frac{1}{\theta (\nu , \mu )}\left(FR\right){\int }_{\mu }^{\mu +\theta (\nu , \mu )}\mathit{\Psi} \left(\mathcal{w}\right)d\mathcal{w}\preccurlyeq \left[\mathit{\Psi} \left(\mu \right)\widetilde {+}\mathit{\Psi} \left(\nu \right)\right]{\int }_{0}^{1}\mathit{h}\left(\xi \right)d\xi . (17)

    Combining Eqs (16) and (17), we have

    \frac{1}{2\mathit{h}\left(\frac{1}{2}\right)}\mathit{\Psi} \left(\frac{2\mu +\theta (\nu , \mu )}{2}\right)\preccurlyeq \frac{1}{\theta \left(\nu , \mu \right)}\left(FR\right){\int }_{\mu }^{\mu +\theta \left(\nu , \mu \right)}\mathit{\Psi} \left(\mathcal{w}\right)d\mathcal{w}\preccurlyeq \left[\mathit{\Psi} \left(\mu \right)\widetilde {+}\mathit{\Psi} \left(\nu \right)\right]{\int }_{0}^{1}\mathit{h}\left(\xi \right)d\xi ,

    which complete the proof.

    Note that, inequality (Eq 14) is known as fuzzy-interval H-H inequality for \mathit{h} -preinvex FIVF.

    Remark 5. If \mathit{h}\left(\xi \right) = {\xi }^{s} , then Theorem 7 reduces to the result for s -preinvex FIVF:

    {2}^{s-1}\mathit{\Psi} \left(\frac{2\mu +\theta (\nu , \mu )}{2}\right)\preccurlyeq \frac{1}{\theta (\nu , \mu )}\left(FR\right){\int }_{\mu }^{\mu +\theta (\nu , \mu )}\mathit{\Psi} \left(\mathcal{w}\right)d\mathcal{w}\preccurlyeq \frac{1}{s+1}\left[\mathit{\Psi} \left(\mu \right)\widetilde {+}\mathit{\Psi} \left(\nu \right)\right]. (18)

    If \mathit{h}\left(\xi \right) = \xi , then Theorem 7 reduces to the result for preinvex FIVF:

    \mathit{\Psi} \left(\frac{2\mu +\theta (\nu , \mu )}{2}\right)\preccurlyeq \frac{1}{\theta (\nu , \mu )}\left(FR\right){\int }_{\mu }^{\mu +\theta (\nu , \mu )}\mathit{\Psi} \left(\mathcal{w}\right)d\mathcal{w}\preccurlyeq \frac{\mathit{\Psi} \left(\mu \right)\widetilde {+}\mathit{\Psi} \left(\nu \right)}{2}. (19)

    If \mathit{h}\left(\xi \right)\equiv 1 , then Theorem 7 reduces to the result for P -preinvex FIVF:

    \frac{1}{2}\mathit{\Psi} \left(\frac{2\mu +\theta (\nu , \mu )}{2}\right)\preccurlyeq \frac{1}{\theta (\nu , \mu )}\left(FR\right){\int }_{\mu }^{\mu +\theta (\nu , \mu )}\mathit{\Psi} \left(\mathcal{w}\right)d\mathcal{w}\preccurlyeq \mathit{\Psi} \left(\mu \right)\widetilde {+}\mathit{\Psi} \left(\nu \right). (20)

    If {\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right) = {\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right) and \beta = 1 , then Theorem 7 reduces to the result for \mathit{h} -preinvex function, see [4]:

    \frac{1}{2\mathit{h}\left(\frac{1}{2}\right)}\mathit{\Psi} \left(\frac{2\mu +\theta (\nu , \mu )}{2}\right)\le \frac{1}{\theta (\nu , \mu )}\left(IR\right){\int }_{\mu }^{\mu +\theta (\nu , \mu )}\mathit{\Psi} \left(\mathcal{w}\right)d\mathcal{w}\le \left[\mathit{\Psi} \left(\mu \right)+\mathit{\Psi} \left(\nu \right)\right]{\int }_{0}^{1}\mathit{h}\left(\xi \right)d\xi . (21)

    Note that, if \theta \left(\nu , \mu \right) = \nu -\mu , then integral inequalities (Eqs 18–21) reduce to new ones.

    Example 2: We consider \mathit{h}\left(\xi \right) = \xi , for \xi \in \left[0, 1\right] , and the FIVF \mathit{\Psi} :\left[\mu , \mu +\theta (\nu , \mu )\right] = [0, \theta (2, 0\left)\right]\to {\mathbb{F}}_{C}\left(\mathbb{R}\right) defined by,

    \mathit{\Psi} \left(\mathcal{w}\right)\left(\varrho \right) = \left\{\begin{array}{c}\frac{\varrho }{{2\mathcal{w}}^{2}}\varrho \in \left[0, {2\mathcal{w}}^{2}\right]\\ \frac{{4\mathcal{w}}^{2}-\varrho }{{2\mathcal{w}}^{2}}\varrho \in ({2\mathcal{w}}^{2}, {4\mathcal{w}}^{2}]\\ 0otherwise.\end{array}\right.

    Then, for each \beta \in \left[0, 1\right], we have {\mathit{\Psi} }_{\beta }\left(\mathcal{w}\right) = \left[2\beta {\mathcal{w}}^{2}, (4-2\beta ){\mathcal{w}}^{2}\right] . Since {\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right) = 2\beta {\mathcal{w}}^{2}, {\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right) = (4-2\beta ){\mathcal{w}}^{2} are \mathit{h} -preinvex functions with respect to \theta \left(\nu , \mu \right) = \nu -\mu for each \beta \in [0, 1] . Hence \mathit{\Psi} \left(\mathcal{w}\right) is \mathit{h} -preinvex FIVF with respect to \theta \left(\nu , \mu \right) = \nu -\mu . Since {\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right) = 2\beta {\mathcal{w}}^{2} and {\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right) = (4-2\beta ){\mathcal{w}}^{2} then, we compute the following

    \frac{1}{2\mathit{h}\left(\frac{1}{2}\right)}{\mathit{\Psi} }_{*}\left(\frac{2\mu +\theta (\nu , \mu )}{2}, \beta \right)\le \frac{1}{\theta (\nu , \mu )}{\int }_{\mu }^{\mu +\theta (\nu , \mu )}{\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right)d\mathcal{w}\le \left[{\mathit{\Psi} }_{*}\left(\mu , \beta \right)+{\mathit{\Psi} }_{*}\left(\nu , \beta \right)\right]{\int }_{0}^{1}\mathit{h}\left(\xi \right)d\xi .
    \frac{1}{2\mathit{h}\left(\frac{1}{2}\right)}{\mathit{\Psi} }_{*}\left(\frac{2\mu +\theta (\nu , \mu )}{2}, \beta \right) = {\mathit{\Psi} }_{*}\left(1, \beta \right) = 2\beta ,
    \frac{1}{\theta (\nu , \mu )}{\int }_{\mu }^{\mu +\theta (\nu , \mu )}{\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right)d\mathcal{w} = \frac{1}{2}{\int }_{0}^{2}2\beta {\mathcal{w}}^{2}d\mathcal{w} = \frac{8\beta }{3},
    \left[{\mathit{\Psi} }_{*}\left(\mu , \beta \right)+{\mathit{\Psi} }_{*}\left(\nu , \beta \right)\right]{\int }_{0}^{1}\mathit{h}\left(\xi \right)d\xi = 4\beta ,

    for all \beta \in \left[0, 1\right]. That means

    2\beta \le \frac{8\beta }{3}\le 4\beta .

    Similarly, it can be easily show that

    \frac{1}{2\mathit{h}\left(\frac{1}{2}\right)}{\mathit{\Psi} }^{*}\left(\frac{2\mu +\theta (\nu , \mu )}{2}, \beta \right)\le \frac{1}{\theta (\nu , \mu )}{\int }_{\mu }^{\mu +\theta (\nu , \mu )}{\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right)d\mathcal{w}\le \left[{\mathit{\Psi} }^{*}\left(\mu , \beta \right)+{\mathit{\Psi} }^{*}\left(\nu , \beta \right)\right]{\int }_{0}^{1}\mathit{h}\left(\xi \right)d\xi .

    for all \beta \in \left[0, 1\right], such that

    \frac{1}{2\mathit{h}\left(\frac{1}{2}\right)}{\mathit{\Psi} }^{*}\left(\frac{2\mu +\theta (\nu , \mu )}{2}, \beta \right) = {\mathit{\Psi} }_{*}\left(1, \beta \right) = (4-2\beta ),
    \frac{1}{\theta (\nu , \mu )}{\int }_{\mu }^{\mu +\theta (\nu , \mu )}{\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right)d\mathcal{w} = \frac{1}{2}{\int }_{0}^{2}(4-2\beta ){\mathcal{w}}^{2}d\mathcal{w} = \frac{4(4-2\beta )}{3},
    \left[{\mathit{\Psi} }^{*}\left(\mu , \beta \right)+{\mathit{\Psi} }^{*}\left(\nu , \beta \right)\right]{\int }_{0}^{1}\mathit{h}\left(\xi \right)d\xi = 2\left(4-2\beta \right).

    From which, it follows that

    \left(4-2\beta \right)\le \frac{4\left(4-2\beta \right)}{3}\le 2\left(4-2\beta \right),

    that is

    \left[2\beta , \left(4-2\beta \right)\right]{\begin{array}{c}\begin{array}{c}\le \end{array}\end{array}}_{I}\left[\frac{8\beta }{3}, \frac{4\left(4-2\beta \right)}{3}\right]{\begin{array}{c}\begin{array}{c}\le \end{array}\end{array}}_{I}\left[4\beta , 2\left(4-2\beta \right)\right] for all \beta \in \left[0, 1\right].

    Hence,

    \frac{1}{2\mathit{h}\left(\frac{1}{2}\right)}\mathit{\Psi} \left(\frac{2\mu +\theta (\nu , \mu )}{2}\right)\preccurlyeq \frac{1}{\theta \left(\nu , \mu \right)}\left(FR\right){\int }_{\mu }^{\mu +\theta \left(\nu , \mu \right)}\mathit{\Psi} \left(\mathcal{w}\right)d\mathcal{w}\preccurlyeq \left[\mathit{\Psi} \left(\mu \right)\widetilde {+}\mathit{\Psi} \left(\nu \right)\right]{\int }_{0}^{1}\mathit{h}\left(\xi \right)d\xi ,

    and the Theorem 7 is verified.

    Theorem 8. Let \mathit{\Psi} , \mathcal{J}:\left[\mu , \mu +\theta (\nu , \mu )\right]\to {\mathbb{F}}_{C}\left(\mathbb{R}\right) be two {\mathit{h}}_{1} and {\mathit{h}}_{2} -preinvex FIVFs with {\mathit{h}}_{1}, {\mathit{h}}_{2}:[0, 1]\to {\mathbb{R}}^{+} and {\mathit{h}}_{1}\left(\frac{1}{2}\right){\mathit{h}}_{2}\left(\frac{1}{2}\right)\not\equiv 0, whose \beta -levels define the family of IVFs {\mathit{\Psi} }_{\beta }, {\mathcal{J}}_{\beta }:\left[\mu , \mu +\theta (\nu , \mu )\right]\subset \mathbb{R}\to {{\mathcal{K}}_{C}}^{+} are given by {\mathit{\Psi} }_{\beta }\left(\mathcal{w}\right) = \left[{\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right), {\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right)\right] and {\mathcal{J}}_{\beta }\left(\mathcal{w}\right) = \left[{\mathcal{J}}_{\mathcal{*}}\left(\mathcal{w}, \beta \right), {\mathcal{J}}^{\mathcal{*}}\left(\mathcal{w}, \beta \right)\right] for all \mathcal{w}\in \left[\mu , \mu +\theta (\nu , \mu )\right] and for all \beta \in \left[0, 1\right] . If \mathit{\Psi} , \mathcal{J} and \mathit{\Psi} \mathcal{J}\in {\mathcal{F}\mathcal{R}}_{\left(\left[\mu , \mu +\theta (\nu , \mu )\right], \beta \right)} , then

    \frac{1}{\theta \left(\nu , \mu \right)}\left(FR\right){\int }_{\mu }^{\mu +\theta \left(\nu , \mu \right)}\mathit{\Psi} \left(\mathcal{w}\right)\widetilde {\times }\mathcal{J}\left(\mathcal{w}\right)d\mathcal{w}\preccurlyeq
    \mathcal{M}\left(\mu , \nu \right){\int }_{0}^{1}{\mathit{h}}_{1}\left(\xi \right){\mathit{h}}_{2}\left(\xi \right)d\xi \widetilde {+}\mathcal{N}\left(\mu , \nu \right){\int }_{0}^{1}{\mathit{h}}_{1}\left(\xi \right){\mathit{h}}_{2}\left(1-\xi \right)d\xi ,

    where \mathcal{M}\left(\mu , \nu \right) = \mathit{\Psi} \left(\mu \right)\widetilde {\times }\mathcal{J}\left(\mu \right)\widetilde {+}\mathit{\Psi} \left(\nu \right)\widetilde {\times }\mathcal{J}\left(\nu \right), \mathcal{N}\left(\mu , \nu \right) = \mathit{\Psi} \left(\mu \right)\widetilde {\times }\mathcal{J}\left(\nu \right)\widetilde {+}\mathit{\Psi} \left(\nu \right)\widetilde {\times }\mathcal{J}\left(\mu \right) with {\mathcal{M}}_{\beta }\left(\mu , \nu \right) = \left[{\mathcal{M}}_{\mathcal{*}}\left(\left(\mu , \nu \right), \beta \right), {\mathcal{M}}^{\mathcal{*}}\left(\left(\mu , \nu \right), \beta \right)\right] and {\mathcal{N}}_{\beta }\left(\mu , \nu \right) = \left[{\mathcal{N}}_{\mathcal{*}}\left(\left(\mu , \nu \right), \beta \right), {\mathcal{N}}^{\mathcal{*}}\left(\left(\mu , \nu \right), \beta \right)\right].

    Example 3. We consider {\mathit{h}}_{1}\left(\xi \right) = \xi , {\mathit{h}}_{2}\left(\xi \right)\equiv 1, for \xi \in \left[0, 1\right] , and the FIVFs \mathit{\Psi} , \mathcal{J}:\left[\mu , \mu +\theta (\nu , \mu )\right] = [0, \theta (1, 0\left)\right]\to {\mathbb{F}}_{C}\left(\mathbb{R}\right) defined by,

    \mathit{\Psi} \left(\mathcal{w}\right)\left(\varrho \right) = \left\{\begin{array}{c}\frac{\varrho }{{2\mathcal{w}}^{2}}\varrho \in \left[0, {2\mathcal{w}}^{2}\right]\\ \frac{{4\mathcal{w}}^{2}-\varrho }{{2\mathcal{w}}^{2}}\varrho \in ({2\mathcal{w}}^{2}, {4\mathcal{w}}^{2}]\\ 0otherwise, \end{array}\right.
    \mathcal{J}\left(\mathcal{w}\right)\left(\varrho \right) = \left\{\begin{array}{c}\frac{\varrho }{\mathcal{w}}\varrho \in \left[0, \mathcal{w}\right]\\ \frac{2\mathcal{w}-\varrho }{\mathcal{w}}\varrho \in (w, 2w]\\ 0otherwise, \end{array}\right.

    Then, for each \beta \in \left[0, 1\right], we have {\mathit{\Psi} }_{\beta }\left(\mathcal{w}\right) = \left[2\beta {\mathcal{w}}^{2}, (4-2\beta ){\mathcal{w}}^{2}\right] and {\mathcal{J}}_{\beta }\left(\mathcal{w}\right) = \left[\beta \mathcal{w}, (2-\beta )\mathcal{w}\right]. Since {\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right) = 2\beta {\mathcal{w}}^{2} and {\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right) = (4-2\beta ){\mathcal{w}}^{2} both are {\mathit{h}}_{1} -preinvex functions, and {\mathcal{J}}_{\mathcal{*}}\left(\mathcal{w}, \beta \right) = \beta \mathcal{w} , and {\mathcal{J}}^{\mathcal{*}}\left(\mathcal{w}, \beta \right) = (2-\beta )\mathcal{w} both are also {\mathit{h}}_{2} -preinvex functions with respect to same \theta \left(\nu , \mu \right) = \nu -\mu , for each \beta \in [0, 1] then, \mathit{\Psi} and \mathcal{J} both are {\mathit{h}}_{1} and {\mathit{h}}_{2} -preinvex FIVFs, respectively. Since {\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right) = 2\beta {\mathcal{w}}^{2} and {\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right) = (4-2\beta ){\mathcal{w}}^{2} , and {\mathcal{J}}_{\mathcal{*}}\left(\mathcal{w}, \beta \right) = \beta \mathcal{w} , and {\mathcal{J}}^{\mathcal{*}}\left(\mathcal{w}, \beta \right) = (2-\beta )\mathcal{w} , then

    \frac{1}{\theta (\nu , \mu )}{\int }_{\mu }^{\mu +\theta (\nu , \mu )}{\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right)\times {\mathcal{J}}_{\mathcal{*}}\left(\mathcal{w}, \beta \right)d\mathcal{w} = {\int }_{0}^{1}\left(2\beta {\mathcal{w}}^{2}\right)\left(\beta \mathcal{w}\right)d\mathcal{w} = \frac{{\beta }^{\begin{array}{c}\\ 2\end{array}}}{2},
    \frac{1}{\theta (\nu , \mu )}{\int }_{\mu }^{\mu +\theta (\nu , \mu )}{\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right){\times \mathcal{J}}^{\mathcal{*}}\left(\mathcal{w}, \beta \right)d\mathcal{w} = {\int }_{0}^{1}\left((4-2\beta ){\mu }^{2}\right)\left((2-\beta )\mu \right)d\mathcal{w} = \frac{{(2-\beta )}^{2}}{2},
    {\mathcal{M}}_{\mathcal{*}}\left(\left(\mu , \nu \right), \beta \right){\int }_{0}^{1}{\mathit{h}}_{1}\left(\xi \right){\mathit{h}}_{2}\left(\xi \right)d\xi = \frac{{2\beta }^{2}}{2} = {\beta }^{2},
    {\mathcal{M}}^{\mathcal{*}}\left(\left(\mu , \nu \right), \beta \right){\int }_{0}^{1}{\mathit{h}}_{1}\left(\xi \right){\mathit{h}}_{2}\left(\xi \right)d\xi = \frac{2{(2-\beta )}^{2}}{2} = {(2-\beta )}^{2},
    \begin{array}{c}{\mathcal{N}}_{\mathcal{*}}\left(\left(\mu , \nu \right), \beta \right){\int }_{0}^{1}{\mathit{h}}_{1}\left(\xi \right){\mathit{h}}_{2}\left(1-\xi \right)d\xi = 0\\ {\mathcal{N}}^{\mathcal{*}}\left(\left(\mu , \nu \right), \beta \right){\int }_{0}^{1}{\mathit{h}}_{1}\left(\xi \right){\mathit{h}}_{2}\left(1-\xi \right)d\xi = 0, \end{array}

    for each \beta \in \left[0, 1\right], that means

    \begin{array}{c}\frac{{\beta }^{2}}{2}\le {\beta }^{2}+0 = {\beta }^{2}, \\ \frac{{(2-\beta )}^{2}}{2}\le {(2-\beta )}^{2}+0 = {(2-\beta )}^{2}, \end{array}

    Hence, Theorem 8 is verified.

    Following assumption is required to prove next result regarding the bi-function \theta :K\times K\to \mathbb{R} which is known as:

    Condition C. (see [36]) Let K be an invex set with respect to \theta . For any \mu , \nu \in K and \xi \in \left[0, 1\right] ,

    \theta \left(\nu , \mu +\xi \theta (\nu , \mu )\right) = \left(1-\xi \right)\theta \left(\nu , \mu \right),
    \theta \left(\mu , \mu +\xi \theta (\nu , \mu )\right) = -\xi \theta \left(\nu , \mu \right).

    Clearly for \xi = 0, we have \theta \left(\nu , \mu \right) = 0 if and only if, \nu = \mu , for all \mu , \nu \in K . For the applications of Condition C, see [16,31,36,37,38,39].

    Theorem 9. Let \mathit{\Psi} , \mathcal{J}:\left[\mu , \mu +\theta (\nu , \mu )\right]\to {\mathbb{F}}_{C}\left(\mathbb{R}\right) be two {\mathit{h}}_{1} and {\mathit{h}}_{2} -preinvex FIVFs with {\mathit{h}}_{1}, {\mathit{h}}_{2}:[0, 1]\to {\mathbb{R}}^{+} and {\mathit{h}}_{1}\left(\frac{1}{2}\right){\mathit{h}}_{2}\left(\frac{1}{2}\right)\not\equiv 0, respectively, whose \beta -levels define the family of IVFs {\mathit{\Psi} }_{\beta }, {\mathcal{J}}_{\beta }:\left[\mu , \mu +\theta (\nu , \mu )\right]\subset \mathbb{R}\to {{\mathcal{K}}_{C}}^{+} are given by {\mathit{\Psi} }_{\beta }\left(\mathcal{w}\right) = \left[{\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right), {\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right)\right] and {\mathcal{J}}_{\beta }\left(\mathcal{w}\right) = \left[{\mathcal{J}}_{\mathcal{*}}\left(\mathcal{w}, \beta \right), {\mathcal{J}}^{\mathcal{*}}\left(\mathcal{w}, \beta \right)\right] for all \mathcal{w}\in \left[\mu , \mu +\theta (\nu , \mu )\right] and for all \beta \in \left[0, 1\right] . If \mathit{\Psi} , \mathcal{J} and \mathit{\Psi} \mathcal{J}\in {\mathcal{F}\mathcal{R}}_{\left(\left[\mu , \mu +\theta (\nu , \mu )\right], \beta \right)} and condition C hold for \theta , then

    \frac{1}{2{\mathit{h}}_{1}\left(\frac{1}{2}\right){\mathit{h}}_{2}\left(\frac{1}{2}\right)}\mathit{\Psi} \left(\frac{2\mu +\theta (\nu , \mu )}{2}\right)\widetilde {\times }\mathcal{J}\left(\frac{2\mu +\theta (\nu , \mu )}{2}\right)\preccurlyeq \frac{1}{\theta (\nu , \mu )}\left(FR\right){\int }_{\mu }^{\mu +\theta (\nu , \mu )}\mathit{\Psi} \left(\mathcal{w}\right)\widetilde {\times }\mathcal{J}\left(\mathcal{w}\right)d\mathcal{w}\widetilde {+}\mathcal{M}\left(\mu , \nu \right){\int }_{0}^{1}{\mathit{h}}_{1}\left(\xi \right){\begin{array}{c}h\end{array}}_{2}\left(1-\xi \right)d\xi \widetilde {+}\mathcal{N}\left(\mu , \nu \right){\int }_{0}^{1}{\mathit{h}}_{1}\left(\xi \right){\mathit{h}}_{2}\left(\xi \right)d\xi ,

    where \mathcal{M}\left(\mu , \nu \right) = \mathit{\Psi} \left(\mu \right)\widetilde {\times }\mathcal{J}\left(\mu \right)\widetilde {+}\mathit{\Psi} \left(\nu \right)\widetilde {\times }\mathcal{J}\left(\nu \right), \mathcal{N}\left(\mu , \nu \right) = \mathit{\Psi} \left(\mu \right)\widetilde {\times }\mathcal{J}\left(\nu \right)\widetilde {+}\mathit{\Psi} \left(\nu \right)\widetilde {\times }\mathcal{J}\left(\mu \right), and {\mathcal{M}}_{\beta }\left(\mu , \nu \right) = \left[{\mathcal{M}}_{\mathcal{*}}\left(\left(\mu , \nu \right), \beta \right), {\mathcal{M}}^{\mathcal{*}}\left(\left(\mu , \nu \right), \beta \right)\right] and {\mathcal{N}}_{\beta }\left(\mu , \nu \right) = \left[{\mathcal{N}}_{\mathcal{*}}\left(\left(\mu , \nu \right), \beta \right), {\mathcal{N}}^{\mathcal{*}}\left(\left(\mu , \nu \right), \beta \right)\right].

    Proof. Using condition C, we can write

    \mu +\frac{1}{2}\theta \left(\nu , \mu \right) = \mu +\xi \theta \left(\nu , \mu \right)+\frac{1}{2}\theta \left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right), \mu +\xi \theta \left(\nu , \mu \right)\right).

    By hypothesis, for each \beta \in \left[0, 1\right], we have

    \begin{array}{c}{\mathit{\Psi} }_{*}\left(\frac{2\mu +\theta \left(\nu , \mu \right)}{2}, \beta \right)\times {\mathcal{J}}_{\mathcal{*}}\left(\frac{2\mu +\theta \left(\nu , \mu \right)}{2}, \beta \right)\\ {\mathit{\Psi} }^{*}\left(\frac{2\mu +\theta \left(\nu , \mu \right)}{2}, \beta \right)\times {\mathcal{J}}^{\mathcal{*}}\left(\frac{2\mu +\theta \left(\nu , \mu \right)}{2}, \beta \right)\end{array}
    \begin{array}{c} = {\mathit{\Psi} }_{*}\left(\mu +\xi \theta \left(\nu , \mu \right)+\frac{1}{2}\theta \left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right), \mu +\xi \theta \left(\nu , \mu \right)\right), \beta \right)\\ \times {\mathcal{J}}_{\mathcal{*}}\left(\mu +\xi \theta \left(\nu , \mu \right)+\frac{1}{2}\theta \left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right), \mu +\xi \theta \left(\nu , \mu \right)\right), \beta \right), \\ = {\mathit{\Psi} }^{*}\left(\mu +\xi \theta \left(\nu , \mu \right)+\frac{1}{2}\theta \left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right), \mu +\xi \theta \left(\nu , \mu \right)\right), \beta \right)\\ \times {\mathcal{J}}^{\mathcal{*}}\left(\mu +\xi \theta \left(\nu , \mu \right)+\frac{1}{2}\theta \left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right), \mu +\xi \theta \left(\nu , \mu \right)\right), \beta \right), \end{array}
    \begin{array}{c}\le {\mathit{h}}_{1}\left(\frac{1}{2}\right){\mathit{h}}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathit{\Psi} }_{*}\left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right), \beta \right)\times {\mathcal{J}}_{\mathcal{*}}\left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right), \beta \right)\\ +{\mathit{\Psi} }_{*}\left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right), \beta \right)\times {\mathcal{J}}_{\mathcal{*}}\left(\mu +\xi \theta (\nu , \mu ), \beta \right)\end{array}\right]\\ +{\mathit{h}}_{1}\left(\frac{1}{2}\right){\mathit{h}}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathit{\Psi} }_{*}\left(\mu +\xi \theta (\nu , \mu ), \beta \right)\times {\mathcal{J}}_{\mathcal{*}}\left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right), \beta \right)\\ +{\mathit{\Psi} }_{*}\left(\mu +\xi \theta (\nu , \mu ), \beta \right)\times {\mathcal{J}}_{\mathcal{*}}\left(\mu +\xi \theta (\nu , \mu ), \beta \right)\end{array}\right], \\ \le {\mathit{h}}_{1}\left(\frac{1}{2}\right){\mathit{h}}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathit{\Psi} }^{*}\left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right), \beta \right)\times {\mathcal{J}}^{\mathcal{*}}\left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right), \beta \right)\\ +{\mathit{\Psi} }^{*}\left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right), \beta \right)\times {\mathcal{J}}^{\mathcal{*}}\left(\mu +\xi \theta (\nu , \mu ), \beta \right)\end{array}\right]\\ +{\mathit{h}}_{1}\left(\frac{1}{2}\right){\mathit{h}}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathit{\Psi} }^{*}\left(\mu +\xi \theta \left(\nu , \mu \right), \beta \right)\times {\mathcal{J}}^{\mathcal{*}}\left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right), \beta \right)\\ +{\mathit{\Psi} }^{*}\left(\mu +\xi \theta \left(\nu , \mu \right), \beta \right)\times {\mathcal{J}}^{\mathcal{*}}\left(\mu +\xi \theta \left(\nu , \mu \right), \beta \right)\end{array}\right]\\ \le {\mathit{h}}_{1}\left(\frac{1}{2}\right){\mathit{h}}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathit{\Psi} }_{*}\left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right), \beta \right)\times {\mathcal{J}}_{\mathcal{*}}\left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right), \beta \right)\\ +{\mathit{\Psi} }_{*}\left(\mu +\xi \theta \left(\nu , \mu \right), \beta \right)\times {\mathcal{J}}_{\mathcal{*}}\left(\mu +\xi \theta \left(\nu , \mu \right), \beta \right)\end{array}\right]\\ +{\mathit{h}}_{1}\left(\frac{1}{2}\right){\mathit{h}}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}\left({\mathit{h}}_{1}\left(\xi \right){\mathit{\Psi} }_{*}\left(\mu , \beta \right)+{\mathit{h}}_{1}\left(1-\xi \right){\mathit{\Psi} }_{*}\left(\nu , \beta \right)\right)\\ \times \left({\mathit{h}}_{2}\left(1-\xi \right){\mathcal{J}}_{\mathcal{*}}\left(\mu , \beta \right)+{\mathit{h}}_{2}\left(\xi \right){\mathcal{J}}_{\mathcal{*}}\left(\nu , \beta \right)\right)\\ +\left({{\mathit{h}}_{1}\left(1-\xi \right)\mathit{\Psi} }_{*}\left(\mu , \beta \right)+{\mathit{h}}_{1}\left(\xi \right){\mathit{\Psi} }_{*}\left(\nu , \beta \right)\right)\\ \times \left({\mathit{h}}_{2}\left(\xi \right){\mathcal{J}}_{\mathcal{*}}\left(\mu , \beta \right)+{\mathit{h}}_{2}\left(1-\xi \right){\mathcal{J}}_{\mathcal{*}}\left(\nu , \beta \right)\right)\end{array}\right]\\ \le {\mathit{h}}_{1}\left(\frac{1}{2}\right){\mathit{h}}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathit{\Psi} }^{*}\left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right), \beta \right)\times {\mathcal{J}}^{\mathcal{*}}\left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right), \beta \right)\\ +{\mathit{\Psi} }^{*}\left(\mu +\xi \theta \left(\nu , \mu \right), \beta \right)\times {\mathcal{J}}^{\mathcal{*}}\left(\mu +\xi \theta \left(\nu , \mu \right), \beta \right)\end{array}\right]\\ \end{array}
    \begin{array}{c}\\ \\ \\ +{\mathit{h}}_{1}\left(\frac{1}{2}\right){\mathit{h}}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}\left({\mathit{h}}_{1}\left(\xi \right){\mathit{\Psi} }^{*}\left(\mu , \beta \right)+{\mathit{h}}_{1}\left(1-\xi \right){\mathit{\Psi} }^{*}\left(\nu , \beta \right)\right)\\ \times \left({\mathit{h}}_{2}\left(1-\xi \right){\mathcal{J}}^{\mathcal{*}}\left(\mu , \beta \right)+{\mathit{h}}_{2}\left(\xi \right){\mathcal{J}}^{\mathcal{*}}\left(\nu , \beta \right)\right)\\ +\left({\mathit{h}}_{1}\left(1-\xi \right){\mathit{\Psi} }^{*}\left(\mu , \beta \right)+{\mathit{h}}_{1}\left(\xi \right){\mathit{\Psi} }^{*}\left(\nu , \beta \right)\right)\\ \times \left({\mathit{h}}_{2}\left(\xi \right){\mathcal{J}}^{\mathcal{*}}\left(\mu , \beta \right)+{\mathit{h}}_{2}\left(1-\xi \right){\mathcal{J}}^{\mathcal{*}}\left(\nu , \beta \right)\right)\end{array}\right], \end{array}
    \begin{array}{c} = {\mathit{h}}_{1}\left(\frac{1}{2}\right){\mathit{h}}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathit{\Psi} }_{*}\left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right), \beta \right)\times {\mathcal{J}}_{\mathcal{*}}\left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right), \beta \right)\\ +{\mathit{\Psi} }_{*}\left(\mu +\xi \theta (\nu , \mu ), \beta \right)\times {\mathcal{J}}_{\mathcal{*}}\left(\mu +\xi \theta (\nu , \mu ), \beta \right)\end{array}\right]\\ +2{\mathit{h}}_{1}\left(\frac{1}{2}\right){\mathit{h}}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}\left\{{\mathit{h}}_{1}\left(\xi \right){\mathit{h}}_{2}\left(\xi \right)+{\mathit{h}}_{1}\left(1-\xi \right){\mathit{h}}_{2}\left(1-\xi \right)\right\}{\mathcal{N}}_{\mathcal{*}}\left(\left(\mu , \nu \right), \beta \right)\\ +\left\{{\mathit{h}}_{1}\left(\xi \right){\mathit{h}}_{2}\left(1-\xi \right)+{\mathit{h}}_{1}\left(1-\xi \right){\mathit{h}}_{2}\left(\xi \right)\right\}{\mathcal{M}}_{\mathcal{*}}\left(\left(\mu , \nu \right), \beta \right)\end{array}\right], \\ = {\mathit{h}}_{1}\left(\frac{1}{2}\right){\mathit{h}}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}{\mathit{\Psi} }^{*}\left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right), \beta \right)\times {\mathcal{J}}^{\mathcal{*}}\left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right), \beta \right)\\ +{\mathit{\Psi} }^{*}\left(\mu +\xi \theta (\nu , \mu ), \beta \right)\times {\mathcal{J}}^{\mathcal{*}}\left(\mu +\xi \theta (\nu , \mu ), \beta \right)\end{array}\right]\\ +2{\mathit{h}}_{1}\left(\frac{1}{2}\right){\mathit{h}}_{2}\left(\frac{1}{2}\right)\left[\begin{array}{c}\left\{{\mathit{h}}_{1}\left(\xi \right){\mathit{h}}_{2}\left(\xi \right)+{\mathit{h}}_{1}\left(1-\xi \right){\mathit{h}}_{2}\left(1-\xi \right)\right\}{\mathcal{N}}^{\mathcal{*}}\left(\left(\mu , \nu \right), \beta \right)\\ +\left\{{\mathit{h}}_{1}\left(\xi \right){\mathit{h}}_{2}\left(1-\xi \right)+{\mathit{h}}_{1}\left(1-\xi \right){\mathit{h}}_{2}\left(\xi \right)\right\}{\mathcal{M}}^{\mathcal{*}}\left(\left(\mu , \nu \right), \beta \right)\end{array}\right].\end{array}

    Integrating over \left[0, 1\right], we have

    \begin{array}{c}\\ \frac{1}{2{\mathit{h}}_{1}\left(\frac{1}{2}\right){\mathit{h}}_{2}\left(\frac{1}{2}\right)}{\mathit{\Psi} }_{*}\left(\frac{2\mu +\theta \left(\nu , \mu \right)}{2}, \beta \right)\times {\mathcal{J}}_{\mathcal{*}}\left(\frac{2\mu +\theta \left(\nu , \mu \right)}{2}, \beta \right)\le \frac{1}{\theta \left(\nu , \mu \right)}{\int }_{\mu }^{\mu +\theta \left(\nu , \mu \right)}{\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right)\times {\mathcal{J}}_{\mathcal{*}}\left(\mathcal{w}, \beta \right)d\mathcal{w}\\ +{\mathcal{M}}_{\mathcal{*}}\left(\left(\mu , \nu \right), \beta \right){\int }_{0}^{1}{\mathit{h}}_{1}\left(\xi \right){\mathit{h}}_{2}\left(1-\xi \right)d\xi \\ +{\mathcal{N}}_{\mathcal{*}}\left(\left(\mu , \nu \right), \beta \right){\int }_{0}^{1}{\mathit{h}}_{1}\left(\xi \right){\mathit{h}}_{2}\left(\xi \right)d\xi , \\ \frac{1}{2{\mathit{h}}_{1}\left(\frac{1}{2}\right){\mathit{h}}_{2}\left(\frac{1}{2}\right)}{\mathit{\Psi} }^{*}\left(\frac{2\mu +\theta \left(\nu , \mu \right)}{2}, \beta \right)\times {\mathcal{J}}^{\mathcal{*}}\left(\frac{2\mu +\theta \left(\nu , \mu \right)}{2}, \beta \right)\le \frac{1}{\theta \left(\nu , \mu \right)}{\int }_{\mu }^{\mu +\theta \left(\nu , \mu \right)}{\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right)\times {\mathcal{J}}^{\mathcal{*}}\left(\mathcal{w}, \beta \right)d\mathcal{w}\\ +{\mathcal{M}}^{\mathcal{*}}\left(\left(\mu , \nu \right), \beta \right){\int }_{0}^{1}{\mathit{h}}_{1}\left(\xi \right){\mathit{h}}_{2}\left(1-\xi \right)d\xi \\ +{\mathcal{N}}^{\mathcal{*}}\left(\left(\mu , \nu \right), \beta \right){\int }_{0}^{1}{\mathit{h}}_{1}\left(\xi \right){\mathit{h}}_{2}\left(\xi \right)d\xi , \end{array}

    from which, we have

    \frac{1}{2{\mathit{h}}_{1}\left(\frac{1}{2}\right){\mathit{h}}_{2}\left(\frac{1}{2}\right)}\left[{\mathit{\Psi} }_{*}\left(\frac{2\mu +\theta \left(\nu , \mu \right)}{2}, \beta \right)\times {\mathcal{J}}_{\mathcal{*}}\left(\frac{2\mu +\theta \left(\nu , \mu \right)}{2}, \beta \right), {\mathit{\Psi} }^{*}\left(\frac{2\mu +\theta \left(\nu , \mu \right)}{2}, \beta \right)\times {\mathcal{J}}^{\mathcal{*}}\left(\frac{2\mu +\theta \left(\nu , \mu \right)}{2}, \beta \right)\right]
    {\begin{array}{c}\begin{array}{c}\le \end{array}\end{array}}_{I}\frac{1}{\theta \left(\nu , \mu \right)}\left[{\int }_{\mu }^{\mu +\theta \left(\nu , \mu \right)}{\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right)\times {\mathcal{J}}_{\mathcal{*}}\left(\mathcal{w}, \beta \right)d\mathcal{w}, {\int }_{\mu }^{\mu +\theta \left(\nu , \mu \right)}{\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right){\times \mathcal{J}}^{\mathcal{*}}\left(\mathcal{w}, \beta \right)d\mathcal{w}\right]+{\int }_{0}^{1}{\mathit{h}}_{1}\left(\xi \right){\mathit{h}}_{2}\left(1-\xi \right)d\xi \left[{\mathcal{M}}_{\mathcal{*}}\left(\left(\mu , \nu \right), \beta \right), {\mathcal{M}}^{\mathcal{*}}\left(\left(\mu , \nu \right), \beta \right)\right]+\left[{\mathcal{N}}_{\mathcal{*}}\left(\left(\mu , \nu \right), \beta \right), {\mathcal{N}}^{\mathcal{*}}\left(\left(\mu , \nu \right), \beta \right)\right]{\int }_{0}^{1}{\mathit{h}}_{1}\left(\xi \right){\mathit{h}}_{2}\left(\xi \right)d\xi ,

    that is

    \frac{1}{2{\mathit{h}}_{1}\left(\frac{1}{2}\right){\mathit{h}}_{2}\left(\frac{1}{2}\right)}\mathit{\Psi} \left(\frac{2\mu +\theta \left(\nu , \mu \right)}{2}\right)\widetilde {\times }\mathcal{J}\left(\frac{2\mu +\theta \left(\nu , \mu \right)}{2}\right) \preccurlyeq \frac{1}{\theta \left(\nu , \mu \right)}\left(FR\right){\int }_{\mu }^{\mu +\theta \left(\nu , \mu \right)}\mathit{\Psi} \left(\mathcal{w}\right)\widetilde {\times }\mathcal{J}\left(\mathcal{w}\right)d\mathcal{w} \widetilde {+}\mathcal{M}\left(\mu , \nu \right){\int }_{0}^{1}{\mathit{h}}_{1}\left(\xi \right){\mathit{h}}_{2}\left(1-\xi \right)d\xi \widetilde {+}\mathcal{N}\left(\mu , \nu \right){\int }_{0}^{1}{\mathit{h}}_{1}\left(\xi \right){\mathit{h}}_{2}\left(\xi \right)d\xi ,

    this completes the result.

    Example 4. We consider {\mathit{h}}_{1}\left(\xi \right) = \xi , {\mathit{h}}_{2}\left(\xi \right)\equiv 1-\xi , for \xi \in \left[0, 1\right] , and the FIVFs \mathit{\Psi} , \mathcal{J}:\left[\mu , \mu +\theta \left(\nu , \mu \right)\right] = [0, \theta \left(1, 0\right)]\to {\mathbb{F}}_{C}\left(\mathbb{R}\right) defined by, for each \beta \in \left[0, 1\right], we have {\mathit{\Psi} }_{\beta }\left(\mathcal{w}\right) = \left[2\beta {\mathcal{w}}^{2}, (4-2\beta ){\mathcal{w}}^{2}\right] and {\mathcal{J}}_{\beta }\left(\mathcal{w}\right) = \left[\beta \mathcal{w}, (2-\beta )\mathcal{w}\right], as in Example 3, and \mathit{\Psi} \left(\mathcal{w}\right), \mathcal{J}\left(\mathcal{w}\right) both are {\mathit{h}}_{1} and {\mathit{h}}_{2} -preinvex FIVFs with respect to \theta \left(\nu , \mu \right) = \nu -\mu , respectively. Since {\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right) = 2\beta {\mathcal{w}}^{2}, {\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right) = (4-2\beta ){\mathcal{w}}^{2} and {\mathcal{J}}_{\mathcal{*}}\left(\mathcal{w}, \beta \right) = \beta \mathcal{w} , {\mathcal{J}}^{\mathcal{*}}\left(\mathcal{w}, \beta \right) = (2-\beta )\mathcal{w} then, we have

    \begin{array}{c}\frac{1}{2{\mathit{h}}_{1}\left(\frac{1}{2}\right){\mathit{h}}_{2}\left(\frac{1}{2}\right)}{\mathit{\Psi} }_{*}\left(\frac{2\mu +\theta \left(\nu , \mu \right)}{2}, \beta \right)\times {\mathcal{J}}_{\mathcal{*}}\left(\frac{2\mu +\theta \left(\nu , \mu \right)}{2}, \beta \right) = \frac{{\beta }^{2}}{2}, \\ \frac{1}{2{\mathit{h}}_{1}\left(\frac{1}{2}\right){\mathit{h}}_{2}\left(\frac{1}{2}\right)}{\mathit{\Psi} }^{*}\left(\frac{2\mu +\theta \left(\nu , \mu \right)}{2}, \beta \right)\times {\mathcal{J}}^{\mathcal{*}}\left(\frac{2\mu +\theta \left(\nu , \mu \right)}{2}, \beta \right) = \frac{{(2-\beta )}^{2}}{2}, \end{array}
    \begin{array}{c}\frac{1}{\theta \left(\nu , \mu \right)}{\int }_{\mu }^{\mu +\theta \left(\nu , \mu \right)}{\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right)\times {\mathcal{J}}_{\mathcal{*}}\left(\mathcal{w}, \beta \right)d\mathcal{w} = \frac{{\beta }^{2}}{2}\\ \frac{1}{\theta \left(\nu , \mu \right)}{\int }_{\mu }^{\mu +\theta \left(\nu , \mu \right)}{\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right)\times {\mathcal{J}}^{\mathcal{*}}\left(\mathcal{w}, \beta \right)d\mathcal{w} = \frac{{(2-\beta )}^{2}}{2}, \end{array}
    \begin{array}{c}{\mathcal{M}}_{\mathcal{*}}\left(\left(\mu , \nu \right), \beta \right){\int }_{0}^{1}{\mathit{h}}_{1}\left(\xi \right){\mathit{h}}_{2}\left(1-\xi \right)d\xi = \frac{{\beta }^{2}}{3}, \\ {\mathcal{M}}^{\mathcal{*}}\left(\left(\mu , \nu \right), \beta \right){\int }_{0}^{1}{\mathit{h}}_{1}\left(\xi \right){\mathit{h}}_{2}\left(1-\xi \right)d\xi = \frac{{(2-\beta )}^{2}}{3}, \end{array}
    \begin{array}{c}{\mathcal{N}}_{\mathcal{*}}\left(\left(\mu , \nu \right), \beta \right){\int }_{0}^{1}{\mathit{h}}_{1}\left(\xi \right){\mathit{h}}_{2}\left(\xi \right)d\xi = 0, \\ {\mathcal{N}}^{\mathcal{*}}\left(\left(\mu , \nu \right), \beta \right){\int }_{0}^{1}{\mathit{h}}_{1}\left(\xi \right){\mathit{h}}_{2}\left(\xi \right)d\xi = 0, \end{array}

    for each \beta \in \left[0, 1\right], that means

    \begin{array}{c}\frac{{\beta }^{2}}{2}\le \frac{{\beta }^{2}}{2}+0+\frac{{\beta }^{2}}{3} = \frac{{5\beta }^{2}}{6}, \\ \frac{{(2-\beta )}^{2}}{2}\le \frac{{\left(2-\beta \right)}^{2}}{2}+0+\frac{{(2-\beta )}^{2}}{3} = \frac{5{(2-\beta )}^{2}}{6}, \end{array}

    hence, Theorem 9 is demonstrated.

    We now give H-H Fejér inequalities for h-preinvex FIVFs. Firstly, we obtain the second H-H Fejér inequality for h-preinvex FIVF.

    Theorem 10. Let \mathit{\Psi} :\left[\mu , \mu +\theta (\nu , \mu )\right]\to {\mathbb{F}}_{C}\left(\mathbb{R}\right) be a \mathit{h} -preinvex FIVF with \mu < \mu +\theta (\nu , \mu ) and \mathit{h}:[0, 1]\to {\mathbb{R}}^{+} , whose \beta -levels define the family of IVFs {\mathit{\Psi} }_{\beta }:\left[\mu , \mu +\theta (\nu , \mu )\right]\subset \mathbb{R}\to {{\mathcal{K}}_{C}}^{+} are given by {\mathit{\Psi} }_{\beta }\left(\mathcal{w}\right) = \left[{\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right), {\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right)\right] for all \mathcal{w}\in \left[\mu , \mu +\theta (\nu , \mu )\right] and for all \beta \in \left[0, 1\right] . If \mathit{\Psi} \in {\mathcal{F}\mathcal{R}}_{\left(\left[\mu , \mu +\theta (\nu , \mu )\right], \beta \right)} and \Omega :\left[\mu , \mu +\theta (\nu , \mu )\right]\to \mathbb{R}, \Omega \left(\mathcal{w}\right)\ge 0, symmetric with respect to \mu +\frac{1}{2}\theta \left(\nu , \mu \right), then

    \frac{1}{\theta (\nu , \mu )}\left(FR\right){\int }_{\mu }^{\mu +\theta (\nu , \mu )}\mathit{\Psi} \left(\mathcal{w}\right)\Omega \left(\mathcal{w}\right)d\mathcal{w}\preccurlyeq \left[\mathit{\Psi} \left(\mu \right)\widetilde {+}\mathit{\Psi} \left(\nu \right)\right]{\int }_{0}^{1}\mathit{h}\left(\xi \right)\Omega \left(\mu +\xi \theta (\nu , \mu )\right)d\xi . (22)

    Proof. Let \mathit{\Psi} be a \mathit{h} -preinvex FIVF. Then, for each \beta \in \left[0, 1\right], we have

    {\mathit{\Psi} }_{*}\left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right), \beta \right)\Omega \left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right)\right)
    \le \left(\mathit{h}\left(\xi \right){\mathit{\Psi} }_{*}\left(\mu , \beta \right)+\mathit{h}\left(1-\xi \right){\mathit{\Psi} }_{*}\left(\nu , \beta \right)\right)\Omega \left(\mu +\left(1-\xi \right)\theta (\nu , \mu )\right)
    {\mathit{\Psi} }^{*}\left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right), \beta \right)\Omega \left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right)\right)
    \le \left(\mathit{h}\left(\xi \right){\mathit{\Psi} }^{*}\left(\mu , \beta \right)+\mathit{h}\left(1-\xi \right){\mathit{\Psi} }^{*}\left(\nu , \beta \right)\right)\Omega \left(\mu +\left(1-\xi \right)\theta (\nu , \mu )\right) (23)

    And

    \begin{array}{c}\\ {\mathit{\Psi} }_{*}\left(\mu +\xi \theta (\nu , \mu ), \beta \right)\Omega \left(\mu +\xi \theta (\nu , \mu )\right)\le \left(\mathit{h}\left(1-\xi \right){\mathit{\Psi} }_{*}\left(\mu , \beta \right)+\mathit{h}\left(\xi \right){\mathit{\Psi} }_{*}\left(\nu , \beta \right)\right)\Omega \left(\mu +\xi \theta (\nu , \mu )\right)\\ {\mathit{\Psi} }^{*}\left(\mu +\xi \theta (\nu , \mu ), \beta \right)\Omega \left(\mu +\xi \theta (\nu , \mu )\right)\le \left(\mathit{h}\left(1-\xi \right){\mathit{\Psi} }^{*}\left(\mu , \beta \right)+\mathit{h}\left(\xi \right){\mathit{\Psi} }^{*}\left(\nu , \beta \right)\right)\Omega \left(\mu +\xi \theta (\nu , \mu )\right)\end{array} (24)

    After adding Eqs (23) and (24), and integrating over \left[0, 1\right], we get

    \begin{array}{c}\\ {\int }_{0}^{1}{\mathit{\Psi} }_{*}\left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right), \beta \right)\Omega \left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right)\right)d\xi +{\int }_{0}^{1}{\mathit{\Psi} }_{*}\left(\mu +\xi \theta (\nu , \mu ), \beta \right)\Omega \left(\mu +\xi \theta (\nu , \mu )\right)d\xi \\ \le {\int }_{0}^{1}\left[\begin{array}{c}{\mathit{\Psi} }_{*}\left(\mu , \beta \right)\left\{\mathit{h}\left(\xi \right)\Omega \left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right)\right)+\mathit{h}\left(1-\xi \right)\Omega \left(\mu +\xi \theta \left(\nu , \mu \right)\right)\right\}\\ +{\mathit{\Psi} }_{*}\left(\nu , \beta \right)\left\{\mathit{h}\left(1-\xi \right)\Omega \left(\mu +\left(1-\xi \right)\theta (\nu , \mu )\right)+\mathit{h}\left(\xi \right)\Omega \left(\mu +\xi \theta (\nu , \mu )\right)\right\}\end{array}\right]d\xi , \\ {\int }_{0}^{1}{\mathit{\Psi} }^{*}\left(\mu +\xi \theta (\nu , \mu ), \beta \right)\Omega \left(\mu +\xi \theta (\nu , \mu )\right)d\xi +{\int }_{0}^{1}{\mathit{\Psi} }^{*}\left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right), \beta \right)\Omega \left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right)\right)d\xi \\ \le {\int }_{0}^{1}\left[\begin{array}{c}{\mathit{\Psi} }^{*}\left(\mu , \beta \right)\left\{\mathit{h}\left(\xi \right)\Omega \left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right)\right)+\mathit{h}\left(1-\xi \right)\Omega \left(\mu +\xi \theta \left(\nu , \mu \right)\right)\right\}\\ +{\mathit{\Psi} }^{*}\left(\nu , \beta \right)\left\{\mathit{h}\left(1-\xi \right)\Omega \left(\mu +\left(1-\xi \right)\theta (\nu , \mu )\right)+\mathit{h}\left(\xi \right)\Omega \left(\mu +\xi \theta (\nu , \mu )\right)\right\}\end{array}\right]d\xi .\end{array}
    \begin{array}{c}\\ = 2{\mathit{\Psi} }_{*}\left(\mu , \beta \right){\int }_{0}^{1}\begin{array}{c}\mathit{h}\left(\xi \right)\Omega \left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right)\right)\end{array}d\xi +2{\mathit{\Psi} }_{*}\left(\nu , \beta \right){\int }_{0}^{1}\begin{array}{c}\mathit{h}\left(\xi \right)\Omega \left(\mu +\xi \theta (\nu , \mu )\right)\end{array}d\xi , \\ = 2{\mathit{\Psi} }^{*}\left(\mu , \beta \right){\int }_{0}^{1}\begin{array}{c}\mathit{h}\left(\xi \right)\Omega \left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right)\right)\end{array}d\xi +2{\mathit{\Psi} }^{*}\left(\nu , \beta \right){\int }_{0}^{1}\begin{array}{c}\mathit{h}\left(\xi \right)\Omega \left(\mu +\xi \theta (\nu , \mu )\right)\end{array}d\xi .\end{array}

    Since \Omega is symmetric, then

    \begin{array}{c}\\ = 2\left[{\mathit{\Psi} }_{*}\left(\mu , \beta \right)+{\mathit{\Psi} }_{*}\left(\nu , \beta \right)\right]{\int }_{0}^{1}\begin{array}{c}\mathit{h}\left(\xi \right)\Omega \left(\mu +\xi \theta (\nu , \mu )\right)\end{array}d\xi , \\ = 2\left[{\mathit{\Psi} }^{*}\left(\mu , \beta \right)+{\mathit{\Psi} }^{*}\left(\nu , \beta \right)\right]{\int }_{0}^{1}\begin{array}{c}\mathit{h}\left(\xi \right)\Omega \left(\mu +\xi \theta (\nu , \mu )\right)\end{array}d\xi .\end{array} (25)

    Since

    {\int }_{0}^{1}{\mathit{\Psi} }_{*}\left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right), \beta \right)\Omega \left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right)\right)d\xi = {\int }_{0}^{1}{\mathit{\Psi} }_{*}\left(\mu +\xi \theta \left(\nu , \mu \right), \beta \right)\Omega \left(\mu +\xi \theta \left(\nu , \mu \right)\right)d\xi = \frac{1}{\theta \left(\nu , \mu \right)}{\int }_{\mu }^{\mu +\theta \left(\nu , \mu \right)}{\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right)\Omega \left(\mathcal{w}\right)d\mathcal{w}
    {\int }_{0}^{1}{\mathit{\Psi} }^{*}\left(\mu +\xi \theta \left(\nu , \mu \right), \beta \right)\Omega \left(\mu +\xi \theta \left(\nu , \mu \right)\right)d\xi = {\int }_{0}^{1}{\mathit{\Psi} }^{*}\left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right), \beta \right)\Omega \left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right)\right)d\xi = \frac{1}{\theta (\nu , \mu )}{\int }_{\mu }^{\mu +\theta (\nu , \mu )}{\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right)\Omega \left(\mathcal{w}\right)d\mathcal{w} (26)

    From Eqs (25) and (26), we have

    \begin{array}{c}\\ \frac{1}{\theta (\nu , \mu )}{\int }_{\mu }^{\mu +\theta (\nu , \mu )}{\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right)\Omega \left(\mathcal{w}\right)d\mathcal{w}\le \left[{\mathit{\Psi} }_{*}\left(\mu , \beta \right)+{\mathit{\Psi} }_{*}\left(\nu , \beta \right)\right]{\int }_{0}^{1}\begin{array}{c}\mathit{h}\left(\xi \right)\Omega \left(\mu +\xi \theta \left(\nu , \mu \right)\right)\end{array}d\xi , \\ \\ \frac{1}{\theta (\nu , \mu )}{\int }_{\mu }^{\mu +\theta (\nu , \mu )}{\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right)\Omega \left(\mathcal{w}\right)d\mathcal{w}\le \left[{\mathit{\Psi} }^{*}\left(\mu , \beta \right)+{\mathit{\Psi} }^{*}\left(\nu , \beta \right)\right]{\int }_{0}^{1}\begin{array}{c}\mathit{h}\left(\xi \right)\Omega \left(\mu +\xi \theta \left(\nu , \mu \right)\right)\end{array}d\xi , \end{array}

    that is

    \left[\frac{1}{\theta \left(\nu , \mu \right)}{\int }_{\mu }^{\mu +\theta \left(\nu , \mu \right)}{\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right)\Omega \left(\mathcal{w}\right)d\mathcal{w}, \frac{1}{\theta \left(\nu , \mu \right)}{\int }_{\mu }^{\mu +\theta \left(\nu , \mu \right)}{\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right)\Omega \left(\mathcal{w}\right)d\mathcal{w}\right]
    {\le }_{I}\left[{\mathit{\Psi} }_{*}\left(\mu , \beta \right)+{\mathit{\Psi} }_{*}\left(\nu , \beta \right), {\mathit{\Psi} }^{*}\left(\mu , \beta \right)+{\mathit{\Psi} }^{*}\left(\nu , \beta \right)\right]{\int }_{0}^{1}\begin{array}{c}\mathit{h}\left(\xi \right)\Omega \left(\mu +\xi \theta \left(\nu , \mu \right)\right)\end{array}d\xi ,

    hence

    \frac{1}{\theta (\nu , \mu )}\left(FR\right){\int }_{\mu }^{\mu +\theta (\nu , \mu )}\mathit{\Psi} \left(\mathcal{w}\right)\Omega \left(\mathcal{w}\right)d\mathcal{w}\preccurlyeq \left[\mathit{\Psi} \left(\mu \right)\widetilde {+}\mathit{\Psi} \left(\nu \right)\right]{\int }_{0}^{1}\mathit{h}\left(\xi \right)\Omega \left(\mu +\xi \theta \left(\nu , \mu \right)\right)d\xi .

    this completes the proof.

    Next, we construct first H-H Fejér inequality for h-preinvex FIVF, which generalizes first H-H Fejér inequality for h-preinvex function, see [4].

    Theorem 11. Let \mathit{\Psi} :\left[\mu , \mu +\theta (\nu , \mu )\right]\to {\mathbb{F}}_{C}\left(\mathbb{R}\right) be a \mathit{h} -preinvex FIVF with \mu < \mu +\theta (\nu , \mu ) and \mathit{h}:[0, 1]\to {\mathbb{R}}^{+} , whose \beta -levels define the family of IVFs {\mathit{\Psi} }_{\beta }:\left[\mu , \mu +\theta (\nu , \mu )\right]\subset \mathbb{R}\to {{\mathcal{K}}_{C}}^{+} are given by {\mathit{\Psi} }_{\beta }\left(\mathcal{w}\right) = \left[{\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right), {\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right)\right] for all \mathcal{w}\in \left[\mu , \mu +\theta (\nu , \mu )\right] and for all \beta \in \left[0, 1\right] . If \mathit{\Psi} \in {\mathcal{F}\mathcal{R}}_{\left(\left[\mu , \mu +\theta (\nu , \mu )\right], \beta \right)} and \Omega :\left[\mu , \mu +\theta (\nu , \mu )\right]\to \mathbb{R}, \Omega \left(\mathcal{w}\right)\ge 0, symmetric with respect to \mu +\frac{1}{2}\theta \left(\nu , \mu \right), and {\int }_{\mu }^{\mu +\theta (\nu , \mu )}\Omega \left(\mathcal{w}\right)d\mathcal{w} > 0 , and Condition C for \theta , then

    \mathit{\Psi} \left(\mu +\frac{1}{2}\theta \left(\nu , \mu \right)\right)\preccurlyeq \frac{2\mathit{h}\left(\frac{1}{2}\right)}{{\int }_{\mu }^{\mu +\theta (\nu , \mu )}\Omega \left(\mathcal{w}\right)d\mathcal{w}}\left(FR\right){\int }_{\mu }^{\mu +\theta (\nu , \mu )}\mathit{\Psi} \left(\mathcal{w}\right)\Omega \left(\mathcal{w}\right)d\mathcal{w}. (27)

    Proof. Using condition C, we can write

    \mu +\frac{1}{2}\theta \left(\nu , \mu \right) = \mu +\xi \theta \left(\nu , \mu \right)+\frac{1}{2}\theta \left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right), \mu +\xi \theta \left(\nu , \mu \right)\right).

    Since \mathit{\Psi} is a \mathit{h} -preinvex, then for \beta \in \left[0, 1\right], we have

    {\mathit{\Psi} }_{*}\left(\mu +\frac{1}{2}\theta \left(\nu , \mu \right), \beta \right) = {\mathit{\Psi} }_{*}\left(\mu +\xi \theta \left(\nu , \mu \right)+\frac{1}{2}\theta \left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right), \mu +\xi \theta \left(\nu , \mu \right)\right), \beta \right)\le \mathit{h}\left(\frac{1}{2}\right)\left({\mathit{\Psi} }_{*}\left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right), \beta \right)+{\mathit{\Psi} }_{*}\left(\mu +\xi \theta \left(\nu , \mu \right), \beta \right)\right)
    {\mathit{\Psi} }^{*}\left(\mu +\frac{1}{2}\theta \left(\nu , \mu \right), \beta \right) = {\mathit{\Psi} }^{*}\left(\mu +\xi \theta \left(\nu , \mu \right)+\frac{1}{2}\theta \left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right), \mu +\xi \theta \left(\nu , \mu \right)\right), \beta \right)
    \le \mathit{h}\left(\frac{1}{2}\right)\left({\mathit{\Psi} }^{*}\left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right), \beta \right)+{\mathit{\Psi} }^{*}\left(\mu +\xi \theta \left(\nu , \mu \right), \beta \right)\right) (28)

    By multiplying Eq(28) by \Omega \left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right)\right) = \Omega \left(\mu +\xi \theta \left(\nu , \mu \right)\right) and integrate it by \xi over \left[0, 1\right], we obtain

    {\mathit{\Psi} }_{*}\left(\mu +\frac{1}{2}\theta \left(\nu , \mu \right), \beta \right){\int }_{0}^{1}\Omega \left(\mu +\xi \theta \left(\nu , \mu \right)\right)d\xi \le \mathit{h}\left(\frac{1}{2}\right)\left(\begin{array}{c}{\int }_{0}^{1}{\mathit{\Psi} }_{*}\left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right), \beta \right)\Omega \left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right)\right)d\xi \\ +{\int }_{0}^{1}{\mathit{\Psi} }_{*}\left(\mu +\xi \theta \left(\nu , \mu \right), \beta \right)\Omega \left(\mu +\xi \theta \left(\nu , \mu \right)\right)d\xi \end{array}\right)
    {\mathit{\Psi} }^{*}\left(\mu +\frac{1}{2}\theta \left(\nu , \mu \right), \beta \right){\int }_{0}^{1}\Omega \left(\mu +\xi \theta \left(\nu , \mu \right)\right)d\xi \le \mathit{h}\left(\frac{1}{2}\right)\left(\begin{array}{c}{\int }_{0}^{1}{\mathit{\Psi} }^{*}\left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right), \beta \right)\Omega \left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right)\right)d\xi \\ +{\int }_{0}^{1}{\mathit{\Psi} }^{*}\left(\mu +\xi \theta \left(\nu , \mu \right), \beta \right)\Omega \left(\mu +\xi \theta \left(\nu , \mu \right)\right)d\xi \end{array}\right) (29)

    Since

    {\int }_{0}^{1}{\mathit{\Psi} }_{*}\left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right), \beta \right)\Omega \left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right)\right)d\xi = {\int }_{0}^{1}{\mathit{\Psi} }_{*}\left(\mu +\xi \theta \left(\nu , \mu \right), \beta \right)\Omega \left(\mu +\xi \theta \left(\nu , \mu \right)\right)d\xi = \frac{1}{\theta (\nu , \mu )}{\int }_{\mu }^{\mu +\theta (\nu , \mu )}{\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right)\Omega \left(\mathcal{w}\right)d\mathcal{w}
    {\int }_{0}^{1}{\mathit{\Psi} }^{*}\left(\mu +\xi \theta \left(\nu , \mu \right), \beta \right)\Omega \left(\mu +\xi \theta \left(\nu , \mu \right)\right)d\xi = {\int }_{0}^{1}{\mathit{\Psi} }^{*}\left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right), \beta \right)\Omega \left(\mu +\left(1-\xi \right)\theta \left(\nu , \mu \right)\right) = \frac{1}{\theta (\nu , \mu )}{\int }_{\mu }^{\mu +\theta (\nu , \mu )}{\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right)\Omega \left(\mathcal{w}\right)d\mathcal{w} (30)

    From Eqs (29) and (30), we have

    \begin{array}{c}\\ {\mathit{\Psi} }_{*}\left(\mu +\frac{1}{2}\theta \left(\nu , \mu \right), \beta \right)\le \frac{2\mathit{h}\left(\frac{1}{2}\right)}{{\int }_{\mu }^{\mu +\theta \left(\nu , \mu \right)}\Omega \left(\mathcal{w}\right)d\mathcal{w}}{\int }_{\mu }^{\mu +\theta \left(\nu , \mu \right)}{\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right)\Omega \left(\mathcal{w}\right)d\mathcal{w}, \\ {\mathit{\Psi} }^{*}\left(\mu +\frac{1}{2}\theta \left(\nu , \mu \right), \beta \right)\le \frac{2\mathit{h}\left(\frac{1}{2}\right)}{{\int }_{\mu }^{\mu +\theta \left(\nu , \mu \right)}\Omega \left(\mathcal{w}\right)d\mathcal{w}}{\int }_{\mu }^{\mu +\theta \left(\nu , \mu \right)}{\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right)\Omega \left(\mathcal{w}\right)d\mathcal{w}.\\ \end{array}

    From which, we have

    \left[{\mathit{\Psi} }_{*}\left(\mu +\frac{1}{2}\theta \left(\nu , \mu \right), \beta \right), {\mathit{\Psi} }^{*}\left(\mu +\frac{1}{2}\theta \left(\nu , \mu \right), \beta \right)\right] {\begin{array}{c}\begin{array}{c}\le \end{array}\end{array}}_{I}\frac{2\mathit{h}\left(\frac{1}{2}\right)}{{\int }_{\mu }^{\mu +\theta \left(\nu , \mu \right)}\Omega \left(\mathcal{w}\right)d\mathcal{w}}\left[{\int }_{\mu }^{\mu +\theta \left(\nu , \mu \right)}{\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right)\Omega \left(\mathcal{w}\right)d\mathcal{w}, {\int }_{\mu }^{\mu +\theta \left(\nu , \mu \right)}{\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right)\Omega \left(\mathcal{w}\right)d\mathcal{w}\right]

    that is

    \mathit{\Psi} \left(\mu +\frac{1}{2}\theta \left(\nu , \mu \right)\right)\preccurlyeq \frac{2\mathit{h}\left(\frac{1}{2}\right)}{{\int }_{\mu }^{\mu +\theta \left(\nu , \mu \right)}\Omega \left(\mathcal{w}\right)d\mathcal{w}}\left(FR\right){\int }_{\mu }^{\mu +\theta \left(\nu , \mu \right)}\mathit{\Psi} \left(\mathcal{w}\right)\Omega \left(\mathcal{w}\right)d\mathcal{w},

    Then we complete the proof.

    Remark 6. If \mathit{h}\left(\xi \right) = \xi then inequalities in Theorems 10 and 11 reduces for preinvex FIVFs which are also new one.

    If {\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right) = {\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right) with \beta = 1 , then Theorems 10 and 11 reduces to classical first and second H-H Fejér inequality for h-preinvex function, see [4].

    If {\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right) = {\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right) with \beta = 1 and \theta \left(\nu , \mu \right) = \nu -\mu then Theorem 10 reduces to classical second H-H Fejér inequality for h-convex function, see [18].

    Example 5. We consider \mathit{h}\left(\xi \right) = \xi , for \xi \in \left[0, 1\right] and the FIVF \mathit{\Psi} :\left[1, 1+\partial (4, 1)\right]\to {\mathbb{F}}_{C}\left(\mathbb{R}\right) defined by,

    \mathit{\Psi} \left(\mathcal{w}\right)\left(\varrho \right) = \left\{\begin{array}{c}\frac{\varrho -{e}^{\mathcal{w}}}{{e}^{\mathcal{w}}}, \varrho \in \left[{e}^{\mathcal{w}}, 2{e}^{\mathcal{w}}\right]\\ \frac{4{e}^{\mathcal{w}}-\varrho }{2{e}^{\mathcal{w}}}, \varrho \in \left(2{e}^{\mathcal{w}}, 4{e}^{\mathcal{w}}\right], \\ 0, otherwise, \end{array}\right.

    Then, for each \beta \in \left[0, 1\right], we have {\mathit{\Psi} }_{\beta }\left(\mathcal{w}\right) = \left[(1+\beta ){e}^{\mathcal{w}}, 2(2-\beta ){e}^{\mathcal{w}}\right] . Since {\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right) and {\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right) are \mathit{h} -preinvex functions \theta \left(y, \mathcal{w}\right) = y-\mathcal{w} for each \beta \in [0, 1] , then \mathit{\Psi} \left(\mathcal{w}\right) is \mathit{h} -preinvex FIVF. If

    \Omega \left(\mathcal{w}\right) = \left\{\begin{array}{c}w-1, \varrho \in \left[1, \frac{5}{2}\right]\\ 4-w, \varrho \in \left(\frac{5}{2}, 4\right], \end{array}\right.

    then, we have

    \begin{array}{c}\\ \frac{1}{\theta \left(4, 1\right)}{\int }_{1}^{1+\theta \left(4, 1\right)}{\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right)\Omega \left(\mathcal{w}\right)d\mathcal{w} = \frac{1}{3}{\int }_{1}^{4}{\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right)\Omega \left(\mathcal{w}\right)d\mathcal{w} = \frac{1}{3}{\int }_{1}^{\frac{5}{2}}{\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right)\Omega \left(\mathcal{w}\right)d\mathcal{w}\\ +\frac{1}{3}{\int }_{\frac{5}{2}}^{4}{\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right)\Omega \left(\mathcal{w}\right)d\mathcal{w}, \\ \frac{1}{\theta \left(4, 1\right)}{\int }_{1}^{1+\theta \left(4, 1\right)}{\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right)\Omega \left(\mathcal{w}\right)d\mathcal{w} = \frac{1}{3}{\int }_{1}^{4}{\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right)\Omega \left(\mathcal{w}\right)d\mathcal{w} = \frac{1}{3}{\int }_{1}^{\frac{5}{2}}{\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right)\Omega \left(\mathcal{w}\right)d\mathcal{w}\\ +\frac{1}{3}{\int }_{\frac{5}{2}}^{4}{\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right)\Omega \left(\mathcal{w}\right)d\mathcal{w}, \\ \end{array}
    \begin{array}{c} = \frac{1}{3}\left(1+\beta \right){\int }_{1}^{\frac{5}{2}}{e}^{\mathcal{w}}\left(\mathcal{w}-1\right)d\mathcal{w}+\frac{1}{3}\left(1+\beta \right){\int }_{\frac{5}{2}}^{4}{e}^{\mathcal{w}}\left(4-\mathcal{w}\right)d\mathcal{w} = 11\left(1+\beta \right), \\ = \frac{2}{3}\left(2-\beta \right){\int }_{1}^{\frac{5}{2}}{e}^{\mathcal{w}}\left(\mathcal{w}-1\right)d\mathcal{w}+\frac{2}{3}\left(2-\beta \right){\int }_{\frac{5}{2}}^{4}{e}^{\mathcal{w}}\left(4-\mathcal{w}\right)d\mathcal{w} = 21\left(2-\beta \right), \\ \end{array} (31)

    and

    \begin{array}{c}\\ \left[{\mathit{\Psi} }_{*}\left(\mu , \beta \right)+{\mathit{\Psi} }_{*}\left(\nu , \beta \right)\right]{\int }_{0}^{1}\begin{array}{c}\mathit{h}\left(\xi \right)\Omega \left(\mu +\xi \theta \left(\nu , \mu \right)\right)\end{array}d\xi \\ \\ \left[{\mathit{\Psi} }^{*}\left(\mu , \beta \right)+{\mathit{\Psi} }^{*}\left(\nu , \beta \right)\right]{\int }_{0}^{1}\begin{array}{c}\mathit{h}\left(\xi \right)\Omega \left(\mu +\xi \theta \left(\nu , \mu \right)\right)\end{array}d\xi \end{array}
    \begin{array}{c} = \left(1+\beta \right)\left[e+{e}^{4}\right]\left[{\int }_{0}^{\frac{1}{2}}3{\xi }^{2}d\mathcal{w}+{\int }_{\frac{1}{2}}^{1}\xi \left(3-3\xi \right)d\xi \right] = 21.5\left(1+\beta \right)\\ \\ = 2\left(2-\beta \right)\left[e+{e}^{4}\right]\left[{\int }_{0}^{\frac{1}{2}}3{\xi }^{2}d\mathcal{w}+{\int }_{\frac{1}{2}}^{1}\xi \left(3-3\xi \right)d\xi \right] = 43\left(2-\beta \right)\end{array} (32)

    From Eqs (31) and (32), we have

    \left[11\left(1+\beta \right), 21\left(2-\beta \right)\right]{\begin{array}{c}\begin{array}{c}\le \end{array}\end{array}}_{I}\left[21.5\left(1+\beta \right), 43\left(2-\beta \right)\right], for each \beta \in \left[0, 1\right].

    Hence, Theorem 10 is verified.

    For Theorem 11, we have

    \begin{array}{c}{\mathit{\Psi} }_{*}\left(\mu +\frac{1}{2}\theta \left(\nu , \mu \right), \beta \right) = 12.8\left(1+\beta \right), \\ {\mathit{\Psi} }^{*}\left(\mu +\frac{1}{2}\theta \left(\nu , \mu \right), \beta \right) = 24.4\left(2-\beta \right), \\ \end{array} (33)
    {\int }_{\mu }^{\mu +\theta \left(\nu , \mu \right)}\Omega \left(\mathcal{w}\right)d\mathcal{w} = {\int }_{1}^{\frac{5}{2}}\left(\mathcal{w}-1\right)d\mathcal{w}+{\int }_{\mu }^{\mu +\theta \left(\nu , \mu \right)}\left(4-\mathcal{w}\right)d\mathcal{w} = \frac{9}{4},
    \begin{array}{c}\\ \frac{2\mathit{h}\left(\frac{1}{2}\right)}{{\int }_{\mu }^{\mu +\theta \left(\nu , \mu \right)}\Omega \left(\mathcal{w}\right)d\mathcal{w}}{\int }_{\mu }^{\mu +\theta \left(\nu , \mu \right)}{\mathit{\Psi} }_{*}\left(\mathcal{w}, \beta \right)\Omega \left(\mathcal{w}\right)d\mathcal{w} = 14.6\left(1+\beta \right)\\ \frac{2\mathit{h}\left(\frac{1}{2}\right)}{{\int }_{\mu }^{\mu +\theta \left(\nu , \mu \right)}\Omega \left(\mathcal{w}\right)d\mathcal{w}}{\int }_{\mu }^{\mu +\theta \left(\nu , \mu \right)}{\mathit{\Psi} }^{*}\left(\mathcal{w}, \beta \right)\Omega \left(\mathcal{w}\right)d\mathcal{w} = 29.3\left(2-\beta \right)\\ \end{array} (34)

    From Eqs (33) and (34), we have

    \left[12.8\left(1+\beta \right), 24.4\left(2-\beta \right)\right]{\begin{array}{c}\begin{array}{c}\le \end{array}\end{array}}_{I}\left[14.6\left(1+\beta \right), 29.3\left(2-\beta \right)\right].

    Hence, Theorem 11 is verified.

    In this article, we proposed the class of \mathit{h} - preinvexity for FIVFs. By using this class, we presented several fuzzy-interval H-H inequalities and fuzzy-interval H-H Fejér inequalities. Useful examples that illustrate the applicability of theory developed in this study are also presented. In future, we intend to discuss generalized \mathit{h} -preinvex functions. We hope that this concept will be helpful for other authors to pay their roles in different fields of sciences.

    The authors would like to thank the Rector, COMSATS University Islamabad, Islamabad, Pakistan, for providing excellent research and academic environments, and Taif University Researchers Supporting Project number (TURSP-2020/318), Taif University, Taif, Saudi Arabia.

    The authors declare that they have no competing interests.



    [1] J. Hadamard, Étude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann, J. Math. Pures Appl., (1893), 171–215.
    [2] C. Hermite, Sur deux limites d'une intégrale définie, Mathesis, 3 (1883), 1–82.
    [3] M. A. Noor, Hermite-Hadamard integral inequalities for log-preinvex functions, J. Math. Anal. Approx. Theory, 5 (2007), 126–131.
    [4] M. Matłoka, Inequalities for h-preinvex functions, Appl. Math. Comput., 234 (2014), 52–57. doi: 10.1016/j.amc.2014.02.030. doi: 10.1016/j.amc.2014.02.030
    [5] M. Avci, H. Kavurmaci, M.E. Ozdemir, New inequalities of Hermite-Hadamard type via s-convex functions in the second sense with applications, Appl. Math. Comput., 217 (2011), 5171–5176. doi: 10.1016/j.amc.2010.11.047. doi: 10.1016/j.amc.2010.11.047
    [6] E. Ata, I. O. Kıymaz, A study on certain properties of generalized special functions defined by Fox-Wright function, Appl. Math. Nonlinear Sci., 5 (2020), 147–162. doi: 10.2478/amns.2020.1.00014. doi: 10.2478/amns.2020.1.00014
    [7] E. ˙Ilhan, ˙I. O. Kıymaz, A generalization of truncated M-fractional derivative and applications to fractional differential equations, Appl. Math. Nonlinear Sci., 5 (2020), 171–188. doi: 10.2478/amns.2020.1.00016. doi: 10.2478/amns.2020.1.00016
    [8] H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aequationes Math., 48 (1994), 100–111. doi: 10.1007/BF01837981. doi: 10.1007/BF01837981
    [9] I. Iscan, A new generalization of some integral inequalities for (α, m)-convex functions, Math. Sci., 7 (2013), 1–8. doi: 10.1186/2251-7456-7-22. doi: 10.1186/2251-7456-7-22
    [10] R. E. Moore, C. T. Yang, Interval Analysis, Prentice Hall, Englewood Cliffs, 1966.
    [11] U. Kulish, W. Miranker, Computer Arithmetic in Theory and Practice, Academic Press, New York, 2014. doi: 10.1137/1025138.
    [12] H. Rezazadeh, A. Korkmaz, A. E. Achab, W. Adel, A. Bekir, New travelling wave solution-based new Riccati Equation for solving KdV and modified KdV Equations, Appl. Math. Nonlinear Sci., 5 (2021), 447–458. doi: 10.2478/amns.2020.2.00034. doi: 10.2478/amns.2020.2.00034
    [13] J. M. Snyder, Interval analysis for computer graphics, SIGGRAPH Comput. Graph., 26 (1992), 121–130. doi: 10.1145/142920.134024. doi: 10.1145/142920.134024
    [14] E. de Weerdt, Q. P. Chu, J. A. Mulder, Neural network output optimization using interval analysis, IEEE Trans. Neural Networks, 20 (2009), 638–653. doi: 10.1109/TNN.2008.2011267. doi: 10.1109/TNN.2008.2011267
    [15] D. F. Zhao, T. Q. An, G. J. Ye, W. Liu, New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions, J. Inequal. Appl., 2 (2018), 1–14. doi: 10.1186/s13660-018-1896-3. doi: 10.1186/s13660-018-1896-3
    [16] K. Touchent, Z. Hammouch, T. Mekkaoui, A modified invariant subspace method for solving partial differential equations with non-singular kernel fractional derivatives, Appl. Math. Nonlinear Sci., 5 (2020), 35–48. doi: 10.2478/amns.2020.2.00012. doi: 10.2478/amns.2020.2.00012
    [17] B. Bede, Studies in Fuzziness and Soft Computing, in Mathematics of Fuzzy Sets and Fuzzy Logic, Springer, 295 (2013). doi: 10.1007/978-3-642-35221-8.
    [18] R. S¸ahin, O. Yagci, Fractional calculus of the extended hypergeometric function, Appl. Math. Nonlinear Sci., 5 (2020), 369–384. doi: 10.2478/amns.2020.1.00035. doi: 10.2478/amns.2020.1.00035
    [19] D. Kaur, P. Agarwal, M. Rakshit, M. Chand, Fractional calculus involving (p, q)-Mathieu type series, Appl. Math. Nonlinear Sci., 5 (2020), 15–34. doi: 10.2478/amns.2020.2.00011. doi: 10.2478/amns.2020.2.00011
    [20] S. Kabra, H. Nagar, K. S. Nisar, D. L. Suthar, The Marichev-Saigo-Maeda fractional calculus operators pertaining to the generalized k-Struve function, Appl. Math. Nonlinear Sci., 5 (2020), 593–602. doi: 10.2478/amns.2020.2.00064. doi: 10.2478/amns.2020.2.00064
    [21] P. Diamond, P. Kloeden, Metric spaces of fuzzy sets, Fuzzy Sets Syst., 35 (1990), 241–249. doi: 10.1016/0165-0114(90)90197-E. doi: 10.1016/0165-0114(90)90197-E
    [22] M. Gürbüz, Ç. Yıldız, Some new inequalities for convex functions via Riemann-Liouville fractional integrals, Appl. Math. Nonlinear Sci., 6 (2021), 537–544. doi: 10.2478/amns.2020.2.00015. doi: 10.2478/amns.2020.2.00015
    [23] J. R. Goetschel, W. Voxman, Elementary fuzzy calculus, Fuzzy Sets Syst., 18 (1986), 31–43. doi: 10.1016/0165-0114(86)90026-6. doi: 10.1016/0165-0114(86)90026-6
    [24] O. Kaleva, Fuzzy differential equations, Fuzzy Sets Syst., 24 (1987), 301–317. doi: 10.1016/0165-0114(87)90029-7. doi: 10.1016/0165-0114(87)90029-7
    [25] M. L. Puri, D. A. Ralescu, Fuzzy random variables, in Readings in fuzzy sets for intelligent systems, Morgan Kaufmann, (1993), 265–271. doi: 10.1016/B978-1-4832-1450-4.50029-8.
    [26] E. J. Rothwell, M. J. Cloud, Automatic error analysis using intervals, IEEE Trans. Ed., 55 (2012), 9–15. doi: 10.1016/B978-1-4832-1450-4.50029-8. doi: 10.1016/B978-1-4832-1450-4.50029-8
    [27] A. O. Akdemir, E. Deniz, E. Yüksel, On some integral inequalities via conformable fractional integrals, Appl. Math. Nonlinear Sci., 6 (2021), 489–498. doi: 10.2478/amns.2020.2.00071. doi: 10.2478/amns.2020.2.00071
    [28] L. A. Zadeh, Fuzzy sets, in Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by Lotfi A Zadeh, (1996), 394–432.
    [29] I. Iscan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacettepe J. Math. Stat., 43 (2014), 935–942.
    [30] Y. Chalco-Cano, A. Flores-Franuliˇc, H. Román-Flores, Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative, Comput. Appl. Math., 31 (2012), 457–472. doi: 10.1590/S1807-03022012000300002. doi: 10.1590/S1807-03022012000300002
    [31] M. A. Noor, Fuzzy preinvex functions, Fuzzy Sets Syst., 64 (1994), 95–104. doi: 10.1016/0165-0114(94)90011-6. doi: 10.1016/0165-0114(94)90011-6
    [32] B. Bede, S. G. Gal, Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Sets Syst., 151 (2005), 581–599. doi: 10.1016/j.fss.2004.08.001. doi: 10.1016/j.fss.2004.08.001
    [33] A. Ben-Isreal, B. Mond, What is invexity? The Anziam J., 28 (1986), 1–9.
    [34] J. Cervelati, M. D. Jiménez-Gamero, F. Vilca-Labra, M. A. Rojas-Medar, Continuity for s-convex fuzzy processes, in Soft methodology and random information systems, Springer, Berlin, Heidelberg, 7 (2004), 653–660. doi: 10.1007/978-3-540-44465-7_81.
    [35] Y. Chalco-Cano, M. A. Rojas-Medar, H. Román-Flores, M-convex fuzzy mappings and fuzzy integral mean, Comput. Math. Appl., 40 (2000), 1117–1126. doi: 10.1016/S0898-1221(00)00226-1. doi: 10.1016/S0898-1221(00)00226-1
    [36] M. S. Mohan, S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl., 189 (1995), 901–908. doi: 10.1006/jmaa.1995.1057. doi: 10.1006/jmaa.1995.1057
    [37] A. Vanli, I. Ünal, D. Özdemir, Normal complex contact metric manifolds admitting a semi symmetric metric connection, Appl. Math. Nonlinear Sci., 5 (2020), 49–66. doi: 10.2478/amns.2020.2.00013. doi: 10.2478/amns.2020.2.00013
    [38] M. Sharifi, B. Raesi, Vortex theory for two dimensional boussinesq equations, Appl. Math. Nonlinear Sci., 5 (2020), 67–84. doi: 10.2478/AMNS.2020.2.00014. doi: 10.2478/AMNS.2020.2.00014
    [39] M. R. Kanna, R. P. Kumar, S. Nandappa, I. Cangul, On solutions of fractional order telegraph partial differential equation by Crank-Nicholson finite difference method, Appl. Math. Nonlinear Sci., 5 (2020), 85–98. doi: 10.2478/AMNS.2020.2.00017. doi: 10.2478/AMNS.2020.2.00017
    [40] P. Harisha, Ranjini, V. Lokesha, S. Kumar, Degree sequence of graph operator for some standard graphs, Appl. Math. Nonlinear Sci., 5 (2020), 99–108. doi.: 10.2478/AMNS.2020.2.00018.
    [41] R. Osuna-G´omez, M. D. Jim´enez-Gamero, Y. Chalco-Cano, M. A. Rojas-Medar, Hadamard and Jensen inequalities for s-convex fuzzy processes, in Soft Methodology and Random Information Systems. Advances in Soft Computing, Springer, Berlin, Heidelberg, 26 (2004), 1–15. doi: 10.1007/978-3-540-44465-7_80.
    [42] T. M. Costa, Jensen's inequality type integral for fuzzy-interval-valued functions, Fuzzy Sets Syst., 327 (2017), 31–47. doi: 10.1016/j.fss.2017.02.001. doi: 10.1016/j.fss.2017.02.001
    [43] T. M. Costa, H. Roman-Flores, Some integral inequalities for fuzzy-interval-valued functions, Inform. Sci., 420 (2017), 110–125. doi: 10.1016/j.ins.2017.08.055. doi: 10.1016/j.ins.2017.08.055
    [44] I. Iscan, Hermite-Hadamard type inequalities for p-convex functions, Int. J. Anal. Appl., 11 (2016), 137–145.
    [45] S. Nanda, K. Kar, Convex fuzzy mappings, Fuzzy Sets Syst., 48 (1992), 129–132. doi: 10.1016/0165-0114(92)90256-4. doi: 10.1016/0165-0114(92)90256-4
    [46] M. B. Khan, M. A. Noor, K. I. Noor, Y-M. Chu, New Hermite-Hadamard type inequalities for (h1, h2)-convex fuzzy-interval-valued functions, Adv. Differ. Equations, 2021 (2021), 6–20. doi: 10.1186/s13662-021-03245-8. doi: 10.1186/s13662-021-03245-8
    [47] P. Liu, M. B. Khan, M. A. Noor, K. I. Noor, New Hermite–Hadamard and Jensen inequalities for log-s-convex fuzzy-interval-valued functions in the second sense, Complex Intell. Syst., 2021 (2021), 1–15. doi: 10.1007/s40747-021-00379-w. doi: 10.1007/s40747-021-00379-w
    [48] M. B. Khan, M. A. Noor, L. Abdullah, K. I. Noor, New Hermite-Hadamard and Jensen inequalities for Log-h-Convex Fuzzy-interval-valued functions, Int. J. Comput. Intell. Syst., 14 (2021), 155. doi: 10.1007/s44196-021-00004-1. doi: 10.1007/s44196-021-00004-1
    [49] M. B. Khan, M. A. Noor, L. Abdullah, Y. M. Chu, Some new classes of Preinvex fuzzy-interval-valued functions and inequalities, Int. J. Comput. Intell. Syst., 14 (2021), 1403–1418. doi: 10.2991/ijcis.d.210409.001. doi: 10.2991/ijcis.d.210409.001
    [50] M. B. Khan, P. O. Mohammed, M. A. Noor, Y. S. Hamed, New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus and related inequalities, Symmetry., 13 (2021), 673. doi: 10.3390/sym13040673. doi: 10.3390/sym13040673
    [51] M. B. Khan, P. O. Mohammed, M. A. Noor, K. Abuahalnaja, Fuzzy integral inequalities on coordinates of convex fuzzy interval-valued functions, Math. Biosci. Eng., 18 (2021), 6552–6580. doi: 10.3934/mbe.2021325. doi: 10.3934/mbe.2021325
    [52] M. B. Khan, M. A. Noor, K. I. Noor, H. Almusawa, K. S. Nisar, Exponentially preinvex fuzzy mappings and fuzzy exponentially mixed variational-like inequalities, Int. J. Anal. Appl., 19 (2021), 518–541.
    [53] M. B. Khan, P. O. Mohammed, M. A. Noor, D. Baleanu, J. L. G. Guirao, Some new fractional estimates of inequalities for LR-p-convex interval-valued functions by means of pseudo order relation, Axioms, 10 (2021), 1–18. doi: 10.3390/axioms10030175. doi: 10.3390/axioms10030175
    [54] M. B. Khan, M. A. Noor, K. I. Noor, A. T. Ab Ghani, L. Abdullah, Extended perturbed mixed variational-like inequalities for fuzzy mappings, J. Math., 2021 (2021), 1–16. doi: 10.1155/2021/6652930. doi: 10.1155/2021/6652930
    [55] M. B. Khan, M. A. Noor, T. Abdeljawad, B. Abdalla, A. Althobaiti, Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions, AIMS Math., 7 (2022), 349–370. doi: 10.3934/math.2022024. doi: 10.3934/math.2022024
    [56] R. Şahin, O. Yağcı, Fractional calculus of the extended Hypergeometric function, Appl. Math. Nonlinear Sci., 5 (2020), 369–384. doi: 10.2478/AMNS.2020.1.00035. doi: 10.2478/AMNS.2020.1.00035
    [57] M. B. Khan, M. A. Noor, K. I. Noor, K. S. Nisar, K. A. Ismail, A. Elfasakhany, Some Inequalities for LR-(h1, h2)(h1, h2)-Convex Interval-Valued Functions by Means of Pseudo Order Relation, Int. J. Comput. Intell. Syst., 14 (2021), 1–15. doi: 10.1007/s44196-021-00032-x. doi: 10.1007/s44196-021-00032-x
    [58] M. B. Khan, M. A. Noor, T. Abdeljawad, B. Abdalla, A. Althobaiti, Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions, AIMS Math., 7 (2022), 349–370. doi: 10.3934/math.2022024. doi: 10.3934/math.2022024
    [59] M. B. Khan, M. A. Noor, P. O. Mohammed, J. L. Guirao, K. I. Noor, Some integral inequalities for generalized convex fuzzy-interval-valued functions via fuzzy Riemann integrals, Int. J. Comput. Intell. Syst., 4 (2021), 1–15. doi: 10.1007/s44196-021-00009-w. doi: 10.1007/s44196-021-00009-w
    [60] M. B. Khan, P. O. Mohammed, M. A. Noor, Y. S. Hameed. K. I. Noor, New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation, AIMS Math., 6 (2021), 10964–10988. doi: 10.3934/math.2021637. doi: 10.3934/math.2021637
    [61] M. B. Khan, M. A. Noor, K. I. Noor, Y. M. Chu, Higher-order strongly preinvex fuzzy mappings and fuzzy mixed variational-like inequalities, Int. J. Comput. Intell. Syst., 2021 (2021). doi: 10.2991/ijcis.d.210616.001. doi: 10.2991/ijcis.d.210616.001
    [62] G. Sana, M. B. Khan, M. A. Noor, P. O. Mohammed, Y. M. Chu, Harmonically convex fuzzy-interval-valued functions and fuzzy-interval Riemann-Liouville fractional integral inequalities, Int. J. Comput. Intell. Syst., 2021 (2021). doi:10.2991/ijcis.d.210620.001. doi: 10.2991/ijcis.d.210620.001
  • This article has been cited by:

    1. Muhammad Bilal Khan, Hatim Ghazi Zaini, Savin Treanțǎ, Gustavo Santos-García, Jorge E. Macías-Díaz, Mohamed S. Soliman, Fractional Calculus for Convex Functions in Interval-Valued Settings and Inequalities, 2022, 14, 2073-8994, 341, 10.3390/sym14020341
    2. Muhammad Bilal Khan, Savin Treanțǎ, Mohamed S. Soliman, Kamsing Nonlaopon, Hatim Ghazi Zaini, Some New Versions of Integral Inequalities for Left and Right Preinvex Functions in the Interval-Valued Settings, 2022, 10, 2227-7390, 611, 10.3390/math10040611
    3. Hari Mohan Srivastava, Soubhagya Kumar Sahoo, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Yasser S. Hamed, New Riemann–Liouville Fractional-Order Inclusions for Convex Functions via Interval-Valued Settings Associated with Pseudo-Order Relations, 2022, 6, 2504-3110, 212, 10.3390/fractalfract6040212
    4. Muhammad Bilal Khan, Hatim Ghazi Zaini, Gustavo Santos-García, Pshtiwan Othman Mohammed, Mohamed S. Soliman, Riemann–Liouville Fractional Integral Inequalities for Generalized Harmonically Convex Fuzzy-Interval-Valued Functions, 2022, 15, 1875-6883, 10.1007/s44196-022-00081-w
    5. Hari Mohan Srivastava, Soubhagya Kumar Sahoo, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, Khadijah M. Abualnaja, Interval valued Hadamard-Fejér and Pachpatte Type inequalities pertaining to a new fractional integral operator with exponential kernel, 2022, 7, 2473-6988, 15041, 10.3934/math.2022824
    6. Muhammad Bilal Khan, Gustavo Santos-García, Hatim Ghazi Zaini, Savin Treanță, Mohamed S. Soliman, Some New Concepts Related to Integral Operators and Inequalities on Coordinates in Fuzzy Fractional Calculus, 2022, 10, 2227-7390, 534, 10.3390/math10040534
    7. Muhammad Bilal Khan, Muhammad Aslam Noor, Nehad Ali Shah, Khadijah M. Abualnaja, Thongchai Botmart, Some New Versions of Hermite–Hadamard Integral Inequalities in Fuzzy Fractional Calculus for Generalized Pre-Invex Functions via Fuzzy-Interval-Valued Settings, 2022, 6, 2504-3110, 83, 10.3390/fractalfract6020083
    8. Andika Wisnujati, Agung Mulyo Widodo, Mudjijana Mudjijana, Kraugusteeliana Tambunan, Mosiur Rahaman, Hsing-Chung Chen, 2023, 2972, 0094-243X, 060004, 10.1063/5.0182808
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2312) PDF downloads(80) Cited by(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog