Citation: Jianzhong Shi, Ying Song. Mathematical analysis of a simplified general type-2 fuzzy PID controller[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 7994-8036. doi: 10.3934/mbe.2020406
[1] | A. Kumar, V. Kumar, A novel interval type-2 fractional order fuzzy PID controller: Design, performance evaluation, and its optimal time domain tuning, ISA Trans., 68 (2017), 251-275. doi: 10.1016/j.isatra.2017.03.022 |
[2] | D. R. Wu, W. W. Tan, A simplified type-2 fuzzy logic controller for real-time control, ISA Trans., 45 (2006), 503-516. doi: 10.1016/S0019-0578(07)60228-6 |
[3] | J. Huang, M. H. Ri, D. R. Wu, S. Ri, Interval type-2 fuzzy logic modeling and control of a mobile two-wheeled inverted pendulum, IEEE Trans. Fuzzy Syst., 26 (2018), 2030-2038. doi: 10.1109/TFUZZ.2017.2760283 |
[4] | T. Kumbasar, I. Eksin, M. Guzelkaya, E. Yesil, Interval type-2 fuzzy inverse controller design in nonlinear IMC structure, Eng. Appl. Artif. Intell., 24 (2011), 996-1005. doi: 10.1016/j.engappai.2011.04.016 |
[5] | T. Kumbasar, I. Eksin, M. Guzelkaya, E. Yesil, An inverse controller design method for interval type-2 fuzzy models, Soft Comput., 21 (2017), 2665-2686. doi: 10.1007/s00500-015-1966-0 |
[6] | L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning-I, Inf. Sci., 8 (1975), 199-249. doi: 10.1016/0020-0255(75)90036-5 |
[7] | N. N. Karnik, J. M. Mendel, Centroid of a type-2 fuzzy set, Inf. Sci., 132 (2001), 195-220. doi: 10.1016/S0020-0255(01)00069-X |
[8] | P. Melin, O. Mendoza, O. Castillo, Face recognition with an improved interval type-2 fuzzy logic sugeno integral and modular neural networks, IEEE Trans. Syst., Man, Cybern. A, Syst. Humans., 41 (2011), 1001-1012. doi: 10.1109/TSMCA.2010.2104318 |
[9] | O. Castillo, J. R. Castro, P. Melin, A. Rodriguez-Diaz, Application of interval type-2 fuzzy neural networks in non-linear identification and time series prediction, Soft Comput., 18 (2014), 1213-1224. doi: 10.1007/s00500-013-1139-y |
[10] | V. Uslan, H. Seker, R. John, Overlapping clusters and support vector machines based interval type-2 fuzzy system for the prediction of peptide binding affinity, IEEE Access, 7 (2019), 49756-49764. doi: 10.1109/ACCESS.2019.2910078 |
[11] | I. Eyoh, R. John, G. D. Maere, Hybrid learning for interval type-2 intuitionistic fuzzy logic systems as applied to identification and prediction problems, IEEE Trans. Fuzzy Syst., 26 (2018), 2672-2685. doi: 10.1109/TFUZZ.2018.2803751 |
[12] | P. Melin, O. Castillo, A review on the applications of type-2 fuzzy logic in classification and pattern recognition, Expert Syst. Appl., 40 (2013), 5413-5423. doi: 10.1016/j.eswa.2013.03.020 |
[13] | P. Melin, O. Castillo, A review on type-2 fuzzy logic applications in clustering, classification and pattern recognition, Appl. Soft Comput., 21 (2014), 568-577. doi: 10.1016/j.asoc.2014.04.017 |
[14] | O. Castillo, P. Melin, A review on interval type-2 fuzzy logic applications in intelligent control, Inf. Sci., 279 (2014), 615-631. doi: 10.1016/j.ins.2014.04.015 |
[15] | D. Türkay, A. Baykasoglu, K. Altun K, A. Durmusoglu, I. B. Türksen, Industrial applications of type-2 fuzzy sets and systems: a concise review, Comput. Ind., 62 (2011), 125-137. |
[16] | S. Hassa, M. A. Khanesar, E. Kayacan, J. Jaafar, A. Khosravi, Optimal design of adaptive type-2 neuro-fuzzy systems: a review, Appl. Soft Comput., 44 (2016), 134-143. doi: 10.1016/j.asoc.2016.03.023 |
[17] | T. Kumbasar, A simple design method for interval type-2 fuzzy pid controllers, Soft Comput., 18 (2014), 1293-1304. doi: 10.1007/s00500-013-1144-1 |
[18] | T. Kumbasar, H. Hagra, Big bang-big crunch optimization based interval type-2 fuzzy PID cascade controller design strategy, Inf. Sci., 282 (2014), 277-295. doi: 10.1016/j.ins.2014.06.005 |
[19] | J. M. Mendel, R. Chimatapu, H. Hagras, Comparing the performance potentials of singleton and non-singleton type-1 and interval type-2 fuzzy systems in terms of sculpting the state space. IEEE Trans. Fuzzy Syst., 28 (2020), 783-794. |
[20] | G. Acampora, D. Alghazzawi, H. Hagras, An interval type-2 fuzzy logic based framework for reputation management in peer-to-peer e-commerce, Inf. Sci., 333 (2016), 88-107. doi: 10.1016/j.ins.2015.11.015 |
[21] | M. Antonelli, D. Bernardo, H. Hagras, Multiobjective evolutionary optimization of type-2 fuzzy rule-based systems for financial data classification, IEEE Trans. Fuzzy Syst., 25 (2017), 249-264. doi: 10.1109/TFUZZ.2016.2578341 |
[22] | E. Ramirez, P. Melin, G. Prado-Arechiga, Hybrid model based on neural networks, type-1 and type-2 fuzzy systems for 2-lead cardiac arrhythmia classification, Expert Syst. Appl., 126 (2019), 295-307. doi: 10.1016/j.eswa.2019.02.035 |
[23] | I. Eyoh, R. John, G. D. Maere, Interval type-2 a-intuitionistic fuzzy logic for regression problems, IEEE Trans. Fuzzy Syst., 26 (2018), 2396-2408. doi: 10.1109/TFUZZ.2017.2775599 |
[24] | E. Ontiveros-Robles, P. Melin, A hybrid design of shadowed type-2 fuzzy inference systems applied in diagnosis problems, Eng. Appl. Artif. Intell., 85 (2019), 43-55. |
[25] | O. Castillo, P. Melin, E. Ontiveros, C. Peraza, P. Ochoa, F. Valdez, et al., A high-speed interval type 2 fuzzy system approach for dynamic parameter adaptation in metaheuristics, Eng. Appl. Artif. Intell., 85 (2019), 666-680. doi: 10.1016/j.engappai.2019.07.020 |
[26] | Olivas, F. Valdez, P. Melin, A. Sombra, O. Castillo, Interval type-2 fuzzy logic for dynamic parameter adaptation in a modified gravitational search algorithm, Inf. Sci., 476 (2019), 159-175. doi: 10.1016/j.ins.2018.10.025 |
[27] | A. C. Tolga, I. B. Parlak, O. Castillo, Finite-interval-valued type-2 Gaussian fuzzy numbers applied to fuzzy TODIM in a healthcare problem, Eng. Appl. Artif. Intell., 87 (2020), 103352. doi: 10.1016/j.engappai.2019.103352 |
[28] | A. Sarabakha, C. H. Fu, E. Kayacan, T. Kumbasar, Type-2 fuzzy logic controllers made even simpler: from design to deployment for UAVs, IEEE Trans. Ind. Electron., 65 (2018), 5069-5077. doi: 10.1109/TIE.2017.2767546 |
[29] | A. Beke, T. Kumbasar, learning with type-2 fuzzy activation functions to improve the performance of deep neural networks, Eng. Appl. Artif. Intell., 85 (2019), 372-384. doi: 10.1016/j.engappai.2019.06.016 |
[30] | A. Beke, T. Kumbasar, Type-2 fuzzy logic based linguistic pursuing strategy design and its deployment to a real-world pursuit evasion game, IEEE T. Cybern., 50 (2020), 211-221. doi: 10.1109/TCYB.2018.2868405 |
[31] | H. B. Zhou, H. Ying, A method for deriving the analytical structure of a broad class of typical interval type-2 Mamdani fuzzy controllers. IEEE Trans. Fuzzy Syst., 21 (2013), 447-458. |
[32] | X. Y. Du, H. Ying, Derivation and analysis of the analytical structures of the interval type-2 fuzzy-PI and PD controllers. IEEE Trans. Fuzzy Syst., 18 (2010), 802-814. |
[33] | H. B. Zhou, H. Ying, C. L. Zhang, Effects of increasing the footprints of uncertainty on analytical structure of the classes of interval type-2 mamdani and TS fuzzy controllers. IEEE Trans. Fuzzy Syst., 27 (2019), 1881-1890. |
[34] | F. L. Liu, An efficient centroid type-reduction strategy for general type-2 fuzzy logic system, Inf. Sci., 178 (2008), 2224-2236. doi: 10.1016/j.ins.2007.11.014 |
[35] | J. M. Mendel, F. L. Liu, D. Y. Zhai, α-Plane representation for type-2 fuzzy sets: theory and applications, IEEE Trans. Fuzzy Syst., 17 (2009), 1189-1207. doi: 10.1109/TFUZZ.2009.2024411 |
[36] | J. M. Mendel, Comments on "α-Plane representation for type-2 fuzzy sets: theory and applications", IEEE Trans. Fuzzy Syst., 18 (2010), 229-230. doi: 10.1109/TFUZZ.2009.2039368 |
[37] | C. Wagner, H. Hagras, zSlices-towards bridging the gap between interval and general type-2 fuzzy logic, IEEE Int. Conf. Fuzzy Syst., (2008), 489-457. |
[38] | C. Wagner, H. Hagras, Towards general type-2 fuzzy logic systems based on zSlices, IEEE Trans. Fuzzy Syst., 18 (2010), 637-660. doi: 10.1109/TFUZZ.2010.2045386 |
[39] | S. Greenfield, F. Chiclana, R. John, S. Coupland, The sampling method of defuzzification for type-2 fuzzy sets: Experimental evaluation, Inf. Sci., 189 (2012), 77-92. doi: 10.1016/j.ins.2011.11.042 |
[40] | S. Coupland, R. John, Geometric type-1 and type-2 fuzzy logic systems, IEEE Trans. Fuzzy Syst., 15 (2007), 3-15. doi: 10.1109/TFUZZ.2006.889764 |
[41] | S. Coupland, R. John, A fast geometric method for defuzzification of type-2 fuzzy sets, IEEE Trans. Fuzzy Syst., 16 (2008), 929-941. doi: 10.1109/TFUZZ.2008.924345 |
[42] | A. D. Torshizi, M. H. F. Zarandi, Hierarchical collapsing method for direct defuzzification of general type-2 fuzzy sets, Inf. Sci., 277 (2014), 842-861. doi: 10.1016/j.ins.2014.03.018 |
[43] | D. R. Wu, J. M. Mendel, Enhanced Karnik-Mendel algorithms, IEEE Trans. Fuzzy Syst., 17 (2009), 923-934. doi: 10.1109/TFUZZ.2008.924329 |
[44] | K. Duran, H. Bernal, M. Melgarejo, Improved iterative algorithm for computing the generalized centroid of an interval type-2 fuzzy set, IEEE Fuzzy Infor. Process. Soc., (2008), 1-5. |
[45] | D. R. Wu, M. Nie, Comparison and practical implementation of type-reduction algorithms for type-2 fuzzy sets and systems, IEEE Int. Conf. Fuzzy Syst., (2011), 2131-2138. |
[46] | T. Kumbasar, H. Hagras, A self-tuning zSlices-based general type-2 fuzzy PI controller, IEEE Trans. Fuzzy Syst., 23 (2015), 991-1013. doi: 10.1109/TFUZZ.2014.2336267 |
[47] | M. A.S anchez, O. Castillo, J. R. Castro, Generalized type-2 fuzzy systems for controlling a mobile robot and a performance comparison with interval type-2 and type-1 fuzzy systems, Expert Syst. Appl., 42 (2015), 5904-5914. doi: 10.1016/j.eswa.2015.03.024 |
[48] | L. Amador-Angulo, O. Castillo, J. R. Castro, A generalized type-2 fuzzy logic system for the dynamic adaptation the parameters in a bee colony optimization algorithm applied in an autonomous mobile robot control, IEEE Int. Conf. Fuzzy Syst., (2016), 537-544. |
[49] | F. Baghbani, M.-R. A T, A. Alireza, Indirect adaptive robust mixed H2/H∞ general type-2 fuzzy control of uncertain nonlinear systems, Appl. Soft Comput., 72 (2018), 392-418. doi: 10.1016/j.asoc.2018.06.049 |
[50] | T. Zhao, Q. Yu, S. Y. Dian, R. Guo, S. C. Li, Non-singleton general type-2 fuzzy control for a two-wheeled self-balancing robot, Int. J. Fuzzy Syst., 21 (2019), 1724-1737. doi: 10.1007/s40815-019-00664-4 |
[51] | S. Y. Dian, J. Han, R. Guo, S. C. Li, T. Zhao, Y. Hu, et al., Double closed-loop general type-2 fuzzy sliding model control for trajectory tracking of wheeled mobile robots, Int. J. Fuzzy Syst., 21 (2019), 2032-2042. doi: 10.1007/s40815-019-00685-z |
[52] | O. Castillo, L. Amador-Angulo, J. R. Castro, M. Garcia-Valdez, A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems, Inf. Sci., 354 (2016), 257-274. doi: 10.1016/j.ins.2016.03.026 |
[53] | M. H. Khooban, N. V afamand, A. Liaghat, T. Dragicevic, An optimal general type-2 fuzzy controller for urban traffic network, ISA Trans., 66 (2016), 335-343. |
[54] | E. Ontiveros, P. Melin, O. Castillo, High order α-planes integration: a new approach to computational cost reduction of general type-2 fuzzy systems, Eng. Appl. Artif. Intell., 74 (2018), 186-197. doi: 10.1016/j.engappai.2018.06.013 |
[55] | A. Mohammadzadeh, O. Kaynak, A novel general type-2 fuzzy controller for fractional-order multi-agent systems under unknown time-varying topology, J. Franklin Inst., 36 (2019), 5151-5171. |
[56] | M. H. Khooban, T. Niknam, M. Sha-Sadeghi, A time-varying general type-II fuzzy sliding mode controller for a class of nonlinear power systems, J. Intell. Fuzzy Syst., 30 (2016), 2927-2937. doi: 10.3233/IFS-151796 |
[57] | E. Ontiveros-Robles, P. Melin, O. Castillo, Comparative analysis of noise robustness of type 2 fuzzy logic controllers, Kybernetika., 54 (2008), 175-201. |
[58] | O. Castillo, L. Cervantes, J. Soria, M. Sanchez, J. R. Castro, A generalized type-2 fuzzy granular approach with applications to aerospace, Inf. Sci., 354 (2016), 165-177. doi: 10.1016/j.ins.2016.03.001 |
[59] | L. Cervantes, O. Castillo, Type-2 fuzzy logic aggregation of multiple fuzzy controllers for airplane flight control, Inf. Sci., 324 (2015), 247-256. doi: 10.1016/j.ins.2015.06.047 |
[60] | J. Z. Shi, S. H. Liang, Y. Yang, R. Li, An improved general type 2 fuzzy sets type reduction and its application in general type 2 fuzzy controller design, Soft Comput., 23 (2019), 13513-13530. doi: 10.1007/s00500-019-03889-5 |
[61] | T. Zhao, Y. Chen, S. Y. Dian, R. Guo, S. C. Li, General type-2 fuzzy gain scheduling PID controller with application to power-line inspection robots, Int. J. Fuzzy Syst., 22 (2020), 181-200. doi: 10.1007/s40815-019-00780-1 |
[62] | T. Zhao, J. Liu, S. Y. Dian, R. Guo, S. C. Li, Sliding-mode-control-theory-based adaptive general type-2 fuzzy neural network control for power-line inspection robots, Neurocomputing, 401 (2020), 281-294. doi: 10.1016/j.neucom.2020.03.050 |
[63] | A. Mohammadzadeh, O. Kaynak, A novel general type-2 fuzzy controller for fractional-order multi-agent systems under unknown time-varying topology, J. Franklin Inst., 356 (2019), 5151-5171. doi: 10.1016/j.jfranklin.2019.05.006 |
[64] | J. Z. Shi, A fractional order general type-2 fuzzy PID controller design algorithm, IEEE Access., 8 (2020), 52151-52172. doi: 10.1109/ACCESS.2020.2980686 |
[65] | E. Ontiveros, P. Melin, O. Castillo, Comparative study of interval type-2 and general type-2 fuzzy systems in medical diagnosis, Inf. Sci., 525 (2020), 37-53. doi: 10.1016/j.ins.2020.03.059 |
[66] | A. Mohammadzadeh, T. Kumbasar, A new fractional-order general type-2 fuzzy predictive control system and its application for glucose level regulation, Appl. Soft Comput., 91 (2020), 106241. doi: 10.1016/j.asoc.2020.106241 |
[67] | M. H. Fazel Zarandi, S. Soltanzadeh, A. Mohammadi, O. Castillo, Designing a general type-2 fuzzy expert system for diagnosis of depression, Appl. Soft Comput., 80 (2019), 329-341. doi: 10.1016/j.asoc.2019.03.027 |
[68] | H. Shahparas, E. G. Mansoori, Developing an online general type-2 fuzzy classifier using evolving type-1 rules, Int. J. Approx. Reason., 113 (2019), 336-353. doi: 10.1016/j.ijar.2019.07.011 |
[69] | S. M. M. Golsefid, M. H. Fazel Zarandia, I. B. Turksen, Multi-central general type-2 fuzzy clustering approach for pattern recognitions, Inf. Sci., 328 (2016), 172-188. doi: 10.1016/j.ins.2015.08.027 |
[70] | J. M. Mendel, Comparing the performance potentials of interval and general type-2 rule-based fuzzy systems in terms of sculpting the state space, IEEE Trans. Fuzzy Syst., 27 (2019), 58-71. doi: 10.1109/TFUZZ.2018.2856184 |
[71] | D. R. Wu, J. M. Mendel, Similarity measures for closed general type-2 fuzzy sets: overview, comparisons, and a geometric approach, IEEE Trans. Fuzzy Syst., 27 (2019), 515-526. doi: 10.1109/TFUZZ.2018.2862869 |
[72] | Y. Chen, D. Z. Wang, Forecasting by general type-2 fuzzy logic systems optimized with QPSO algorithms, Int. J. Control Autom., 15 (2017), 2950-2958. doi: 10.1007/s12555-017-0793-0 |
[73] | J. Andreu-Perez, F. Cao, H. Hagras, G. Yang, A self-adaptive online brain-machine interface of a humanoid robot through a general type-2 fuzzy inference system, IEEE Trans. Fuzzy Syst., 26 (2018), 101-116. doi: 10.1109/TFUZZ.2016.2637403 |
[74] | K. Mittal, A. Jain, K. S. Vaisla, O. Castillo, J. Kacprzyk, A comprehensive review on type 2 fuzzy logic applications: Past, present and future, Eng. Appl. Artif. Intell., 95 (2020), 103916. doi: 10.1016/j.engappai.2020.103916 |
[75] | J. M. Mendel, H. Hagras, W. W. Tan, W. W. Melek, H. Ying, Introduction to Type-2 Fuzzy Logic Control: Theory and Applications, John Wiley and IEEE Press, Hoboken, NJ, 2014. |
[76] | J. M. Mendel, Uncertain Rule Based Fuzzy Logic Systems: Introduction and New Directions: 2nd edition, Springer Press, New York, 2017. |
[77] | J. M. Mendel, M. R. Rajati, P. Sussner, On clarifying some definitions and notations used for type-2 fuzzy sets as well as some recommended changes, Inf. Sci., 340 (2016), 347-345. |
[78] | M. Nie, W. W. Tan, Towards an efficient type-reduction method for interval type-2 fuzzy logic systems, IEEE Int. Conf. Fuzzy Syst., (2008), 1425-1432. |
[79] | J. M. Mendel, X. W. Liu, Simplified interval type-2 fuzzy logic systems, IEEE Trans. Fuzzy Syst., 21 (2013), 1056-1069. doi: 10.1109/TFUZZ.2013.2241771 |
[80] | A. M. El-Nagar, M. El-Bardini M, Interval type-2 fuzzy PID controller for uncertain nonlinear inverted pendulum system, ISA Trans., 53 (2014), 732-743. |
[81] | A. M. El-Nagar, M. El-Bardini M, Practical realization for the interval type-2 fuzzy PD+I controller using a low-cost microcontroller, Arabian J. Sci. Eng., 39 (2014), 6463-6476. |